首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The activation of rat mesocortical dopaminergic (DA) neurons evoked by the electrical stimulation of the ventral tegmental area (VTA) induces a marked inhibition of the spontaneous activity of prefrontocortical cells. In the present study, it was first shown that systemic administration of either clozapine (a mixed antagonist of D1, D2, and α1-adrenergic receptors) (3–5 mg/ kg, i.v.), prazosin (an α1-adrenergic antagonist) (0.2 mg/ kg, i.v.), or sulpiride (a D2 antagonist) (30 mg/ kg, i.v.), but not SCH 23390 (a D1 antagonist) (0.2 mg/ kg, i.v.), reversed this cortical inhibition. Second, it was found that following the systemic administration of prazosin, the VTA-induced cortical inhibition reappeared when either SCH 23390 or sulpiride was applied by iontophoresis into the prefrontal cortex. Third, it was seen that, whereas haloperidol (0.2 mg/ kg, i.v.), a D2 antagonist which also blocks α1-adrenergic receptors, failed to reverse the VTA-induced inhibition, the systemic administration of haloperidol plus SCH 23390 (0.2 mg/ kg, i.v.) blocked this inhibition. Finally, it was verified that the cortical inhibitions obtained following treatments with either “prazosin plus sulpiride” or “prazosin plus SCH 23390” were blocked by a superimposed administration of either SCH 23390 or sulpiride, respectively. These data indicate that complex interactions between cortical D2, D1, and α1-adrenergic receptors are involved in the regulation of the activity of prefrontocortical cells innervated by the VTA neurons. They confirm that the physiological stimulation of cortical α1-adrenergic receptors hampers the functional activity of cortical D1 receptors and suggest that the stimulations of cortical D1 and D2 receptors exert mutual inhibition on each other's transmission. Synapse 30:362–370, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
3.
4.
The role of μ opioid receptor subtypes, μ1 and μ2, in morphine-conditioned place preference was examined using ddY and μ1 opioid receptor-deficient CXBK mice. In ddY mice, the μ receptor agonist morphine caused a dose-related preference for the drug-associated place, but the κ agonist U-50,488H produced a dose-related place aversion. These results demonstrated that the mouse is available for place preference conditioning using opioids. Under this condition, the influence of pretreatment with selective μ1 opioid receptor antagonist naloxonazine morphine-induced place preference was investigated in ddY mice. Although pretreatment with the selective μ1 antagonist naloxonazine (35 mg/kg, s.c.) did not modify the morphine-induced place preference, pretreatment with the selective μ antagonist β-funaltrexamine (β-FNA 10 mg/kg, s.c.) eliminated the appetitive effect of morphine. Furthermore, morphine (1–5 mg/kg, s.c.) produced a dose-related preference for the drug-associated place in CXBK mice. These findings suggest that the morphine-induced conditioned place preference may be mediated by naloxonazine-insensitive sites (μ2 opioid receptors). In addition, chronic infusion of the dopamine D1 antagonist SCH23390 (1.0 mg/kg/day) during the conditioning sessions eliminated the morphine-induced place preference in CXBK mice. Similarly, morphine combined with naloxonazine failed to produce the place preference in ddY mice chronically treated with SCH23390. The blocking effect of SCH23390 on the morphine-conditioned place preference suggests that μ2 receptors may regulate the dopaminergic system, especially dopamine D1 receptors, and are also involved in the reinforcing effects of morphine.  相似文献   

5.
γ‐Aminobutyric acid type A receptors (GABAARs) that contain the α5 subunit are expressed predominantly in the hippocampus, where they regulate learning and memory processes. Unlike conventional postsynaptic receptors, GABAARs containing the α5 subunit (α5 GABAARs) are localized primarily to extrasynaptic regions of neurons, where they generate a tonic inhibitory conductance. The unique characteristics of α5 GABAARs have been examined with pharmacological, immunostaining, and electrophysiological techniques; however, little is known about their biochemical properties. The aim of this study was to modify existing purification and enrichment techniques to isolate α5 GABAARs preferentially from the mouse hippocampus and to identify the α5 subunit by using tandem mass spectroscopy (MS/MS). The results showed that the detergent solubility of the α5 subunits was distinct from that of α1 and α2 subunits, and the relative distribution of the α5 subunits in Triton X‐100‐soluble fractions was correlated with that of the extracellular protein radixin but not with that of the postsynaptic protein gephyrin. Mass spectrometry identified the α5 subunit and showed that this subunit associates with multiple α, β, and γ subunits, but most frequently the β3 subunit. Thus, the α5 subunits coassemble with similar subunits as their synaptic counterparts yet have a distinct detergent solubility profile. Mass spectroscopy now offers a method for detecting and characterizing factors that confer the unique detergent solubility and possibly cellular location of α5 GABAARs in hippocampal neurons. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Aim. To test for α2 adrenergic modulation of dopamine D2/3 receptor availability in striatum of living mice using the high‐affinity ligand [18F]fallypride and microPET. Methods. Groups of anesthetized mice were pretreated with saline, the α2‐agonist clonidine (1 mg/kg), and the α2‐antagonists RX821002 (1 mg/kg) and yohimbine (1 mg/kg). Dynamic microPET recordings lasting 120 min were then initiated upon i.v. tracer injection of [18F]fallypride. Parametric maps of [18F]fallypride binding potential (BPND) were calculated using the Logan method, with cerebellum serving as the reference region. Results. Mean striatal [18F]fallypride BPND was 10.6 ± 1.7 in the saline control animals, 8.9 ± 1.7 (?16%; P < 0.05) in the RX821002 group, 8.3 ± 2.6 (?22%; P < 0.05) in the yohimbine group and 10.3 ± 2.2 (n.s.) in the clonidine group. Conclusions. These findings are consistent with a tonic inhibition of dopamine release by α2 adrenergic receptors, such that α2 blockade increased the competition from endogenous dopamine at D2/3 receptors, thus reducing the [18F]fallypride BPND by about 20%. Absent effects of clonidine suggest a ceiling effect in the tonic inhibition of dopamine release. This in vivo PET evidence for α2/dopaminergic interaction may be relevant to putative actions of atypical antipsychotic medications via adrenergic receptors. Synapse, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Nucleus accumbens receives glutamatergic projection from the prefrontal cortex (PFC) and dopaminergic input from the Ventral tegmental area (VTA). Recent studies have suggested a critical role for serine/threonine kinase glycogen synthase kinase 3β (GSK3β) in cocaine‐induced hyperactivity; however, the effect of GSK3β on the modulation of glutamatergic and dopaminergic afferents is unclear. In this study, we found that the GSK3 inhibitors, LiCl (100 mg/kg, i.p.) or SB216763 (2.5 mg/kg, i.p.), blocked the cocaine‐induced hyperlocomotor activity in rats. By employing single‐unit recordings in vivo, we found that pretreatment with either SB216763 or LiCl for 15 min reversed the cocaine‐inhibited firing frequency of medium spiny neuron (MSN) in the nucleus accumbens (NAc). Preperfusion of SB216763 (5 μM) ameliorated the inhibitory effect of cocaine on both the α‐Amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) (up to 99 ± 6.8% inhibition) and N‐methyl‐D‐aspartic acid receptor (NMDAR)‐mediate EPSC (up to 73 ± 9.7% inhibition) in the NAc in brain slices. The effect of cocaine on AMPA and NMDA receptor‐mediate excitatory postsynaptic current (EPSC) were mimicked by the D1‐like receptor agonist SKF 38393 and blocked by the D1‐like receptor antagonist SCH 23390, whereas D2‐like receptor agonist or antagonist failed to mimic or to block the action of cocaine. Preperfusion of SB216763 for 5 min also ameliorated the inhibitory effect of SKF38393 on both AMPA and NMDA receptor‐mediated components of EPSC, indicate the effect of SB216763 on cocaine was via the D1‐like receptor. Moreover, cocaine inhibited the presynaptic release of glutamate in the NAc, and SB216763 reversed this effect. In conclusion, D1 receptor–GSK3β pathway, which mediates glutamatergic transmission in the NAc core through a presynaptic mechanism, plays an important role in acute cocaine‐induced hyperlocomotion.  相似文献   

8.
Methamphetamine (METH) is a psychostimulant that induces long‐term deficits of dopamine terminal markers and apoptotic cell death in the striatum. Our laboratory demonstrated that pharmacological blockade of the neurokinin‐1 receptor attenuated the METH‐induced damage to the striatal dopamine terminals and the apoptotic cell death of some striatal neurons. Here, we used histological methods to assess the effect of METH on neurokinin‐1 receptor trafficking in the striatum as an indirect index of signaling by the neuropeptide substance P (natural ligand for this receptor). Male mice received a single injection of METH (30 mg/kg, i.p.) and were sacrificed 30 min later. Immunohistofluorescence confocal microscopy confirmed that the neurokinin‐1 receptor is located on cholinergic and somatostatin interneurons of the striatum. METH induced the trafficking of the neurokinin‐1 receptor from the membrane into cytoplasmic endosomes primarily in the somatostatin/NPY/NOS interneurons, and this phenomenon was attenuated by antagonists of the dopamine D1 (SCH‐23390), D2 (raclopride), or neurokinin‐1 (WIN‐51,708) receptors. These data demonstrate that METH induces the trafficking of the striatal neurokinin‐1 receptors principally in the somatostatin/NPY/NOS interneurons and that this phenomenon is dependent on the activity of dopamine D1 and D2 receptors. Synapse, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
The insular cortex plays essential roles in nicotine addiction. However, much is still unknown about its cellular and synaptic mechanisms responsible for nicotine addiction. We have previously shown that in layer 5 pyramidal neurons of the mouse insular cortex, activation of the nicotinic acetylcholine receptors (nAChRs) suppresses synaptic potentiation through enhancing GABAergic synaptic transmission, although it enhances both glutamatergic and GABAergic synaptic transmission. In the present study, we examined whether dopamine receptors might contribute to the nicotine‐induced inhibition of synaptic potentiation. The nicotine‐induced inhibition of synaptic potentiation was decreased in the presence of a D1 dopamine receptor antagonist SCH23390 irrespective of the presence of a D2 dopamine receptor antagonist sulpiride, suggesting that D1 dopamine receptors are involved in nicotine‐induced inhibition. We also investigated how dopamine receptors might contribute to the nAChR‐induced enhancement of glutamatergic and GABAergic synaptic transmission. The nAChR‐induced enhancement of GABAergic synaptic transmission was decreased in the presence of SCH23390 irrespective of the presence of sulpiride, whereas that of glutamatergic synaptic transmission was not altered in the presence of SCH23390 and sulpiride. These results suggest that D1 dopamine receptors are involved in the nAChR‐induced enhancement of GABAergic synaptic transmission while dopamine receptors are not involved in that of glutamatergic synaptic transmission. These observations indicate that the interaction between nAChRs and D1 dopamine receptors plays critical roles in synaptic activities in layer 5 pyramidal neurons of the mouse insular cortex. These insular synaptic changes might be associated with nicotine addiction.  相似文献   

10.
The present study was designed to investigate: (1) the involvement of dopamine D1 and D2 receptors, and (2) the roles of these receptors and endogenous opioid systems (endorphinergic and enkephalinergic systems) in the ethanol-induced place preference in rats exposed to conditioned fear stress using the conditioned place preference paradigm. The administration of ethanol (300 mg/kg, i.p.) induced a significant place preference. The selective D1 receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H3-benzazepine)hydrochloride (SCH23390; 0.01 and 0.03 mg/kg, s.c.) and the selective D2 receptor antagonist S(−)-5-(aminosulfonyl)-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-methoxybenzamide (sulpiride; 20 and 40 mg/kg, s.c.) significantly attenuated the ethanol-induced place preference. The administration of ethanol (75 mg/kg, i.p.) tended to produce a place preference, but this effect was not significant. SCH23390 (0.03 mg/kg, s.c.) and sulpiride (40 mg/kg, s.c.) significantly attenuated the enhancement of the ethanol (75 mg/kg, i.p.)-induced place preference produced by the μ-opioid receptor agonist morphine (0.1 mg/kg, s.c.). In addition, SCH23390 (0.03 mg/kg, s.c.) also significantly attenuated the enhancement of the ethanol (75 mg/kg, i.p.)-induced place preference produced by the selective δ-opioid receptor agonist 2-methyl-4aα-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12aα-octahydroquinolino[2,3,3,-g]isoquinoline (TAN-67; 20 mg/kg, s.c.). On the other hand, sulpiride (40 mg/kg) had no significant effect on the enhancement of the ethanol (75 mg/kg, i.p.)-induced place preference produced by TAN-67. These results suggest that D1 and D2 receptors may be involved in the rewarding mechanism of ethanol under psychological stress. In addition, D1 receptors may participate in the rewarding effect of ethanol modulated by the activation of μ- and δ-opioid receptors, whereas D2 receptors may participate in the rewarding effect of ethanol modulated by the activation of μ-opioid receptors, but not in that modulated by the activation of δ-opioid receptors.  相似文献   

11.
We investigated involvement of dopamine receptor subtypes and two dopaminergic terminal areas in the acquisition and the expression of the amphetamine conditioned place preference (CPP). When injected systemically before conditioning, both D1 and D2 dopamine antagonists blocked acquisition in a dose-dependent manner. When injected systemically before testing, the effects of the same D1 and D2 antagonists differed. The selective D1 antagonist SCH23390 dose-dependently blocked expression of the previously established conditioned behavior within the dose range that also blocked acquisition. In contrast, D2 antagonists failed to block expression of the amphetamine CPP at doses which blocked acquisition. Expression was, however, blocked by higher doses of D2 antagonists, which may have lost their selectivity for the D2 dopamine receptor. The expression of the CPP was also blocked by microinjections of SCH23390 or sulpiride into nucleus accumbens, but not into striatum. In a control experiment, sodium pentobarbital, which significantly reduced spontaneous locomotor activity in a manner similar to the higher doses of the dopamine antagonists, had no effect on the expression of the amphetamine CPP when given before testing. Finally, electrolytic lesions of the dorsal striatum potentiated the amphetamine CPP. These findings indicate that the dopamine released by amphetamine interacts with both D1 and D2 dopamine receptors to establish a CPP, but that the expression of the CPP may involve activation of the D1 dopamine receptor in the nucleus accumbens.  相似文献   

12.
In vitro, D2 dopamine receptors (DAR) can exist in low‐ and high‐affinity states for agonists and increases of D2 receptors in high‐affinity state have been proposed to underlie DA receptor supersensitivity in vivo. Deletion of the gene for dopamine β‐hydroxylase (DBH) causes mice to become hypersensitive to the effects of psychostimulants, and in vitro radioligand binding results suggest an increased percentage of D2 receptors in a high‐affinity state. To determine whether DBH knockout mice display an increase of high‐affinity state D2 receptors in vivo, we scanned DBH knockout and control mice with the agonist PET radioligand [11C]MNPA, which is thought to bind preferentially to the high‐affinity state of the D2 receptor. In addition, we performed in vitro binding experiments on striatal homogenates with [3H]methylspiperone to measure Bmax values and the percentages of high‐ and low‐affinity states of the D2 receptor. We found that the in vivo striatal binding of [11C]MNPA was similar in DBH knockout mice and heterozygous controls and the in vitro Bmax values and percentages of D2 receptors in the high‐affinity state, were not significantly different between these two groups. In summary, our results suggest that DBH knockout mice have normal levels of D2 receptors in the high‐affinity state and that additional mechanisms contribute to their behavioral sensitivity to psychostimulants. Synapse 64:699–703, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Striatal‐enriched phosphatase 61 (STEP61) plays an essential role in synaptic plasticity and has recently been implicated in neurodegenerative disease. Here we characterized a possible role of STEP61 in Alzheimer's disease (AD) pathology using a mouse model of AD (Tg‐APPswe/PSEN1dE9, APP/PS1 mice) and an in vitro model of AD [cortical neurons treated with amyloid β (Aβ)1–42 peptides]. Our data indicate age‐related elevation of STEP61 levels and the proportion of dephosphorylated STEP61 (active STEP61) in wild‐type mice, which was enhanced in APP/PS1 mice. Furthermore, the increased STEP61 levels and active STEP61 were observed in the hippocampus and cortex from 12‐month‐old APP/PS1 mice and in Aβ1–42‐treated cortical neurons. An α7 nicotinic acetylcholine receptors (nAChRs) antagonist, α‐bungarotoxin (BTX), inhibited the Aβ1–42‐induced increase of STEP61 expression and activation. In addition, extracellular signal‐regulated kinase 1/2 (ERK1/2) and cAMP response element binding (CREB) were impaired in Aβ1–42‐treated cortical neurons, and knockdown of STEP61 enhanced the activation of ERK1/2 and CREB. Collectively, these findings indicate two alternate pathological pathways effecting STEP61 regulation in AD. First, Aβ regulating STEP61 activity is mediated by Aβ binding to α7 nAChRs. Second, STEP61 negatively regulates Aβ‐mediated ERK/CREB pathway, an important signaling cascade involved in memory formation. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
We previously showed that 5‐HT3 receptors are involved in the development and expression of methamphetamine (MAP)‐induced locomotor sensitization in mice. Here, we examined whether the dopaminergic or the GABAergic systems areinvolved in the attenuating effects of the 5‐HT3 receptor antagonist MDL72222 on MAP‐induced locomotor sensitization. Quantitative autoradiography of D1 ([3H]SCH23390), D2 ([3H]raclopride) receptor, and GABAA receptor benzodiazepine ([3H]flunitrazepam) binding was carried out in the brains of mice treated with chronic MAP and pretreatment with MDL72222. No significant differences were found in D1 and D2 binding between the two groups, suggesting that the attenuating effects of MDL72222 on MAP‐induced locomotor sensitization is not medicated by D1 and D2 receptors. Postsynaptic dopamine (DA) receptor supersensitivity was measured by challenge with apomorphine, a dopamine D1 and D2 receptor agonist, after repeated MAP treatment or pretreatment with MDL72222 before MAP. Apomorphine induced an enhanced locomotor activity in both chronic MAP‐treated mice and mice pretreated with MDL 72222, with no significant differences between the two groups. The binding of [3H]flunitrazepam was significantly decreased in the motor and cingulate cortex, caudate putamen, and nucleus accumbens of mice in the repeated MAP treatment group compared with the control group, and this effect was reversed by pretreatment with MDL72222. This suggested that GABAA benzodiazepine binding sites are involved in the attenuating effects of a 5‐HT3 receptor antagonist on MAP‐induced locomotor sensitization. Synapse 64:274–279, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
In the postnatal central nervous system, glial cells expressing the chondroitin sulfate proteoglycan NG2 (NG2‐cells) constitute a cell population exhibiting several properties of oligodendrocyte precursors such as the ability to proliferate. One particular feature of NG2‐cells is that they express several glutamatergic and GABAergic ionotropic receptors activated by synaptic neurotransmitter release. Here, we used patch‐clamp recordings, immunostaining, calcium imaging, and intracellular labeling to test for the presence of ionotropic nicotinic acetylcholine receptors (nAChRs) in NG2‐cells identified in acute hippocampal slices of mice. We demonstrated that these cells express functional nAChRs during the second postnatal week, i.e., the period in which they become the most abundant proliferative cell type of CA1 stratum radiatum. Pharmacological experiments showed that NG2‐cells express α7‐containing nAChRs. In particular, the powerful positive allosteric modulator of these receptors PNU‐120596 induced a 20‐fold increase of agonist‐induced currents and revealed rises in intracellular calcium concentration upon agonist applications. In addition, nanomolar concentrations of nicotine, which did not induce any response in these cells, largely desensitized nAChR‐mediated currents. These data indicate that the functional expression of Ca2+‐permeable α7‐containing nAChRs in hippocampal slices is not restricted to neurons and that the receptors of NG2‐cells can be desensitized by low concentrations of nicotine. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
The aggregation of β‐amyloid protein (Aβ) and α‐synuclein (αS) are hypothesized to be the key pathogenic event in Alzheimer's disease (AD) and Lewy body diseases (LBD), with oligomeric assemblies thought to be the most neurotoxic. Inhibitors of oligomer formation, therefore, could be valuable therapeutics for patients with AD and LBD. Here, we examined the effects of antiparkinsonian agents (dopamine, levodopa, trihexyphenidyl, selegiline, zonisamide, bromocriptine, peroxide, ropinirole, pramipexole, and entacapone) on the in vitro oligomer formation of Aβ40, Aβ42, and αS using a method of photo‐induced cross‐linking of unmodified proteins (PICUP), electron microscopy, and atomic force microscopy. The antiparkinsonian agents except for trihexyphenidyl inhibited both Aβ and αS oligomer formations, and, among them, dopamine, levodopa, pramipexole, and entacapone had the stronger in vitro activity. Circular dichroism and thioflavin T(S) assays showed that secondary structures of Aβ and αS assemblies inhibited by antiparkinsonian agents were statistical coil state and that their seeding activities had disappeared. The antiparkinsonian agents could be potential therapeutic agents to prevent or delay AD and LBD progression. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
The present study was designed to investigate: (1) the involvement of dopamine D(1) and D(2) receptors, and (2) the roles of these receptors and endogenous opioid systems (endorphinergic and enkephalinergic systems) in the ethanol-induced place preference in rats exposed to conditioned fear stress using the conditioned place preference paradigm. The administration of ethanol (300 mg/kg, i.p.) induced a significant place preference. The selective D(1) receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4, 5-tetrahydro-1H3-benzazepine)hydrochloride (SCH23390; 0.01 and 0.03 mg/kg, s.c.) and the selective D(2) receptor antagonist S(-)-5-(aminosulfonyl)-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2- methoxybenzamide (sulpiride; 20 and 40 mg/kg, s.c.) significantly attenuated the ethanol-induced place preference. The administration of ethanol (75 mg/kg, i.p.) tended to produce a place preference, but this effect was not significant. SCH23390 (0.03 mg/kg, s.c.) and sulpiride (40 mg/kg, s.c.) significantly attenuated the enhancement of the ethanol (75 mg/kg, i.p.)-induced place preference produced by the mu-opioid receptor agonist morphine (0.1 mg/kg, s.c.). In addition, SCH23390 (0.03 mg/kg, s.c.) also significantly attenuated the enhancement of the ethanol (75 mg/kg, i.p.)-induced place preference produced by the selective delta-opioid receptor agonist 2-methyl-4aalpha-(3-hydroxyphenyl)-1,2,3,4,4a,5,12, 12aalpha-octahydroquinolino[2,3,3,-g]isoquinoline (TAN-67; 20 mg/kg, s.c.). On the other hand, sulpiride (40 mg/kg) had no significant effect on the enhancement of the ethanol (75 mg/kg, i.p.)-induced place preference produced by TAN-67. These results suggest that D(1) and D(2) receptors may be involved in the rewarding mechanism of ethanol under psychological stress. In addition, D(1) receptors may participate in the rewarding effect of ethanol modulated by the activation of mu- and delta-opioid receptors, whereas D(2) receptors may participate in the rewarding effect of ethanol modulated by the activation of mu-opioid receptors, but not in that modulated by the activation of delta-opioid receptors.  相似文献   

18.
The addictive properties of morphine limit its clinical use. Learned associations that develop between the abused opiate and the environment in which it is consumed are engendered through Pavlovian conditioning processes. Disruption of the learned associations between the opiate and environmental cues may be a therapeutic approach to prevent morphine dependence. Although a role for the δ‐opioid receptor in the regulation of the rewarding properties of morphine has already been shown, in this study we further characterized the role of the δ‐opioid receptor in morphine‐induced conditioned responses by examining the effect of a selective δ2‐opioid receptor antagonist (naltriben), using a conditioned place preference paradigm in rats. Additionally, we used a subcellular fractionation technique to analyze the synaptic localization of μ‐opioid and δ‐opioid receptors in the hippocampus, in order to examine the molecular mechanisms that may underlie this morphine‐induced conditioned behavior. Our data show that the administration of 1 mg/kg naltriben (but not 0.1 mg/kg) prior to morphine was able to block morphine‐induced conditioned place preference. Interestingly, this naltriben‐induced disruption of morphine conditioned place preference was associated with a significant increase in the expression of the δ‐opioid receptor dimer at the postsynaptic density. In addition, we also observed that morphine conditioned place preference was associated with an increase in the expression of the μ‐opoid receptor in the total homogenate. Overall, these results suggest that modulation of the δ‐opioid receptor expression and its synaptic localization may constitute a viable therapeutic approach to disrupt morphine‐induced conditioned responses.  相似文献   

19.
Exposure of neonatal rat to sevoflurane leads to neurodegeneration and deficits of spatial learning and memory in adulthood. However, the underlying mechanisms remain unclear. The type A γ‐aminobutyric acid receptor (GABAAR) is a target receptor for sevoflurane. The present study intends to investigate the changes in GABAAR α1/α2 expression and its relationship with the neurotoxicity effect due to sevoflurane in neonatal rats. After a dose–response curve was constructed to determine minimum alveolar concentration (MAC) and safety was guaranteed in our 7‐day‐old neonatal rat pup mode, we conducted two studies among the following groups: (A) the control group; (B) the sham anesthesia group; and (C) the sevoflurane anesthesia group and all three groups were treated in the same way as the model. First, poly(ADP‐ribose) polymerase‐1 protein (PARP‐1) expression was determined in the different brain areas at 6 hr after anesthesia. Second, the expression of PARP‐1 and GABAAR α1/GABAAR α2 in the hippocampus area was tested by Western blotting at 6 hr, 24 hr, and 72 hr after anesthesia in all three groups. After 4 hr, with 0.8 MAC (2.1%) sevoflurane anesthesia, the PARP‐1 expression was significantly higher in the hippocampus than the other brain areas (p < .05). Compared with Groups A and B, the expression of PARP‐1 in the hippocampus of Group C significantly increased at 6 hr after sevoflurane exposure (216% ± 15%, p < .05), and the ratio of the α1/α2 subunit of GABAAR surged at 6 hr (126% ± 6%), 24 hr (127% ± 8%), and 72 hr (183% ± 22%) after sevoflurane exposure in the hippocampus (p < .05). Our study showed that sevoflurane exposure of 0.8 MAC (2.1%)/4 hr was a suitable model for 7‐day‐old rats. And the exposure to sevoflurane could induce the apoptosis of neurons in the early stage, which may be related to the transmission from GABAAR α2 to GABAAR α1.  相似文献   

20.
Dopamine receptors regulate glutamatergic neurotransmission and Na(+),K(+)-ATPase via protein kinase A (PKA) and dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32)-dependent signaling. Consequently, dopamine receptor activation may modulate neonatal hypoxic-ischemic (H-I) neuronal damage in the selectively vulnerable putamen enriched with dopaminergic receptors. Piglets subjected to two durations of hypoxia followed by asphyxic cardiac arrest were treated with a D1-like (SCH23390) or D2-like (sulpiride) receptor antagonist. At 4 days of recovery from less severe H-I, the remaining viable neurons in putamen were 60% of control, but nearly completely salvaged by pretreatment with SCH23390 or sulpiride. After more severe H-I in which only 18% of neurons were viable, partial neuroprotection was seen with SCH23390 pretreatment (50%) and posttreatment (39%) and with sulpiride pretreatment (35%), but not with sulpiride posttreatment (24%). Dopamine was significantly elevated in microdialysis samples from putamen during asphyxia and the first 15 mins of reoxygenation. Pretreatment with SCH23390 or sulpiride largely attenuated the increased nitrotyrosine and the decreased Na(+),K(+)-ATPase activity that occurred at 3 h after severe H-I. Pretreatment with SCH23390, but not sulpiride, also attenuated H-I-induced increases in PKA-dependent phosphorylation of Thr34 on DARPP-32, Ser943 on the alpha subunit of Na(+),K(+)-ATPase, and Ser897 of the N-methyl-D-aspartate (NMDA) receptor NR1 subunit. These findings indicate that D1 and D2 dopamine receptor activation contribute to neuronal death in newborn putamen after H-I in association with increased protein nitration and decreased Na(+),K(+)-ATPase activity. Furthermore, mechanisms of D1 receptor toxicity may involve DARPP-32-dependent phosphorylation of NMDA receptor NR1 and Na(+),K(+)-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号