首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study explored a liquid phase coating technique to produce polymethyl methacrylate (PMMA)-coated alginate microspheres. Alginate microspheres with a mean diameter of 85.6?µm were prepared using an emulsification method. The alginate microspheres, as cores, were then coated with different types of PMMA by a liquid phase coating technique. The release characteristics of these coated microspheres in simulated gastric (SGF) and intestinal (SIF) fluids and the influence of drug load on encapsulation efficiency were studied. The release of paracetamol, as a model hydrophilic drug, from the coated microspheres in SGF and SIF was greatly retarded. Release rates of Eudragit RS100-coated microspheres in SGF and SIF were similar as the rate-controlling polymer coat was insoluble in both media. Drug release from Eudragit S100-coated microspheres was more sustained in SGF than in SIF, due to the greater solubility of the coating polymer in media with pH greater than 7.0. The drug release rate was affected by the core:coat ratio. Drug release from the coated microspheres was best described by the Higuchi's square root model. The liquid phase coating technique developed offers an efficient method of coating small microspheres with markedly reduced drug loss and possible controlled drug release.  相似文献   

2.
This study explored a liquid phase coating technique to produce polymethyl methacrylate (PMMA)-coated alginate microspheres. Alginate microspheres with a mean diameter of 85.6 microm were prepared using an emulsification method. The alginate microspheres, as cores, were then coated with different types of PMMA by a liquid phase coating technique. The release characteristics of these coated microspheres in simulated gastric (SGF) and intestinal (SIF) fluids and the influence of drug load on encapsulation efficiency were studied. The release of paracetamol, as a model hydrophilic drug, from the coated microspheres in SGF and SIF was greatly retarded. Release rates of Eudragit RS100-coated microspheres in SGF and SIF were similar as the rate-controlling polymer coat was insoluble in both media. Drug release from Eudragit S100-coated microspheres was more sustained in SGF than in SIF, due to the greater solubility of the coating polymer in media with pH greater than 7.0. The drug release rate was affected by the core:coat ratio. Drug release from the coated microspheres was best described by the Higuchi's square root model. The liquid phase coating technique developed offers an efficient method of coating small microspheres with markedly reduced drug loss and possible controlled drug release.  相似文献   

3.
本文制备了双氯芬酸钠肠溶微丸型片剂。以丙烯酸树脂EudragitNE30D和EudragitL30D-55不同比例的混合物作为衣膜材料,对不同粒径大小的双氯芬酸钠速释丸芯进行不同增重水平的包衣,并与不同压缩特性和用量比例的缓冲微丸混合,压片。所得的双氯芬酸钠肠溶微丸型片剂在人工胃液中2 h内累积释放百分数<10%,在人工肠液中1 h内累积释放百分数为(83±2.42)%。结果表明EudragitNE30D与EudragitL30D-55以一定比例混合制备得到适合压片的肠溶微丸,硬脂酸制备的缓冲微丸可用于微丸型片剂的制备。  相似文献   

4.
目的:制备氟比洛芬肠溶片并考察其体外释放特性。方法:以乙基纤维素(EC)、甲基丙烯酸共聚物(Eudragit S100)、乳糖为辅料,采用直接压片法制备制剂;考察处方中不同辅料用量对药物释放的影响及其在0.1mol·L-1盐酸溶液(HCl)和pH6.8磷酸盐缓冲液(PBS)中的体外释放特性。结果:以EC0.250g、Eudragit S1000.750g、乳糖3.750g时组成的处方可在HCl中不释放,在PBS中完全释放达94.20%。结论:该制剂处方设计和制备方法可行,其释放行为符合设计要求。  相似文献   

5.
Propranolol hydrochloride was directly encapsulated in alginate gel microspheres (40-50?μm in diameter) using a novel method involving impinging aerosols of CaCl(2) cross-linking solution and sodium alginate solution containing the drug. Microspheres formulated using 0.1?M CaCl(2) exhibited the highest drug loading (14%, w/w of dry microspheres) with 66.5% encapsulation efficiency. Less than 4% and 35% propranolol release occurred from hydrated and dried microspheres, respectively, in 2?h in simulated gastric fluid (SGF). The majority of the drug load (90%) was released in 5 and 7?h from hydrated and dried microspheres, respectively, in simulated intestinal fluid (SIF). Prior incubation of hydrated microspheres (cross-linked using 0.5?M CaCl(2)) in SGF prolonged the time of release in SIF to 10?h, which has implications for the design of protocols and correlation with in?vivo release behaviour. Restricted propranolol release in SGF and complete extraction in SIF demonstrate the potential of alginate gel microspheres for oral delivery of pharmaceuticals.  相似文献   

6.
Abstract

Objectives: To formulate sustained release rifampicin-loaded solid lipid microparticles (SLMs) using structured lipid matrices based on Moringa oil (MO) and Phospholipon 90G (P90G).

Methods: Rifampicin-loaded and unloaded SLMs were formulated by melt homogenization and characterized in terms of particle morphology and size, percentage drug content (PDC), pH stability, stability in simulated gastric fluid (SGF, pH 1.2), minimum inhibitory concentration (MIC) and in vitro release. In vivo release was studied in Wistar rats.

Results: Rifampicin-loaded SLMs had particle size range of 32.50?±?2.10 to 34.0?±?8.40?μm, highest PDC of 87.6% and showed stable pH. SLMs had good sustained release properties with about 77.1% release at 12?h in phosphate buffer (pH 6.8) and 80.3% drug release at 12?h in simulated intestinal fluid (SIF, pH 7.4). SLMs exhibited 48.51% degradation of rifampicin in SGF at 3?h, while rifampicin pure sample had 95.5% degradation. Formulations exhibited MIC range of 0.781 to 1.562, 31.25 to 62.5 and 6.25 to 12.5?μg/ml against Salmonella typhi, Escherichia coli, and Bacillus subtilis respectively and had higher in vivo absorption than the reference rifampicin (p?<?0.05).

Conclusion: Rifampicin-loaded SLMs could be used once daily for the treatment tuberculosis.  相似文献   

7.
The drug substance SAG/ZK has a short biological half-life and because of its weakly basic nature a strong pH-dependent solubility was observed. The aim of this study was to develop a controlled release (cr) multiple unit pellet formulation for SAG/ZK with pH-independent drug release. Pellets with a drug load of 60% were prepared by extrusion/spheronization followed by cr-film coating with an extended release polyvinyl acetate/polyvinyl pyrrolidone dispersion (Kollidon SR 30 D). To overcome the problem of pH-dependent drug release the pellets were then coated with a second layer of an enteric methacrylic acid and ethyl acrylate copolymer (Kollicoat MAE 30 DP). To increase the drug release rates from the double layered cr-pellets different osmotically active ionic (sodium and potassium chloride) and nonionic (sucrose) additives were incorporated into the pellet core. Drug release studies were performed in media of different osmotic pressure to clarify the main release mechanism. Extended release coated pellets of SAG/ZK demonstrated pH-dependent drug release. Applying a second enteric coat on top of the extended release film coat failed in order to achieve pH-independent drug release. Already low enteric polymer levels on top of the extended release coated pellets decreased drug release rates at pH 1 drastically, thus resulting in a reversal of the pH-dependency (faster release at pH 6.8 than in 0.1N HCl). The addition of osmotically active ingredients (sodium and potassium chloride, and sucrose) increased the imbibing of aqueous fluids into the pellet cores thus providing a saturated drug solution inside the beads and increasing drug concentration gradients. In addition, for these pellets increased formation of pores and cracks in the polymer coating was observed. Hence drug release rates from double layered beads increased significantly. Therefore, pH-independent osmotically driven SAG/ZK release was achieved from pellets containing osmotically active ingredients and coated with an extended and enteric polymer. In contrast, with increasing osmotic pressure of the dissolution medium the in vitro drug release rates decreased significantly.  相似文献   

8.
目的:研究羟丙基甲基纤维素(HPMC)的凝胶特性及其对曲尼司特缓释片释放行为的影响。方法:采用称重法、图像法和体积测量法,研究HPMC辅料片和曲尼司特缓释片在不同pH环境中的水合度和溶胀度。结果:辅料片在SGF和SIF中的水合速率常数分别为0.897 h-1和0.681 h-1;溶胀速率常数分别为1.005 h-1和0.713 h-1。曲尼司特缓释片在SGF中,在0.5 h内迅速水合和溶胀,其后呈负增长;而在SIF中,重量和体积都缓慢增加,5 h后重量稍有下降,体积保持不变。结论:HPMC水凝胶的形成速度和形态与介质的pH有关,凝胶层的溶蚀速度控制药物的释放。  相似文献   

9.
Purpose: To optimise the Eudragit/Surelease®-coated pH-sensitive pellets for controlled and target drug delivery to the colon tissue and to avoid frequent high dosing and associated side effects which restrict its use in the colorectal-cancer therapy.

Methods: The pellets were prepared using extrusion-spheronisation technique. Box–Behnken and 32 full factorial designs were applied to optimise the process parameters [extruder sieve size, spheroniser-speed, and spheroniser-time] and the coating levels [%w/v of Eudragit S100/Eudragit-L100 and Surelease®], respectively, to achieve the smooth optimised size pellets with sustained drug delivery without prior drug release in upper gastrointestinal tract (GIT).

Results: The design proposed the optimised batch by selecting independent variables at; extruder sieve size (X1?=?1?mm), spheroniser speed (X2?=?900 revolutions per minute, rpm), and spheroniser time (X3?=?15?min) to achieve pellet size of 0.96?mm, aspect ratio of 0.98, and roundness 97.42%. The 16%w/v coating strength of Surelease® and 13%w/v coating strength of Eudragit showed pH-dependent sustained release up to 22.35?h (t99%). The organ distribution study showed the absence of the drug in the upper part of GIT tissue and the presence of high level of capecitabine in the caecum and colon tissue. Thus, the presence of Eudragit coat prevent the release of drug in stomach and the inner Surelease® coat showed sustained drug release in the colon tissue.

Conclusion: The study demonstrates the potential of optimised Eudragit/Surelease®-coated capecitabine-pellets for effective colon-targeted delivery system to avoid frequent high dosing and associated systemic side effects of drug.  相似文献   

10.
The purpose of this study was to develop a method to prepare Metoprolol Succinate (MS) sustained release pellets and compress them into pellet-containing tablets without losing sustained release property. The drug layered pellets were coated with Eudragit NE 30D to obtain a sustained release (SR) property. The mechanical properties and permeability of the coating film were tailored by adjusting the proportion of talc in the coating dispersion and the weight gain of the coating film. Pellets with different MS release rates were tested and then mixed together by different ratios to optimize drug release rate. The mixed pellets were compressed into tablets with cushioning excipients. The results showed that when the ratio of talc and coating material was 1:4, the coating operation could be conducted successfully without pellet conglutination and the mechanical property of the coating film was enhanced to withstand the compress force during tableting. Blending SR-coated pellets of 20% weight gain with SR-coated pellets of 40% weight gain at the ratio of 1:5 could produce a constant and desired drug release rate. The formulation and the procedure developed in the study were suitable to prepare MS pellet-containing tablets with selected SR properties.  相似文献   

11.
A new approach to developing a drug-polymer mixed coat for highly water-soluble diltiazem pellets was investigated at different coating levels. Drug layering and the coating procedures were performed using a bottom spray fluidized bed coater. Drug pellets were coated with Eudragit NE40 (NE40) alone and in combination with diltiazem and hydrophilic cellulose derivatives. Dissolution studies revealed that incorporation of hydrophilic substances such as methylcellulose (MC), hydroxypropyl methylcellulose (HPMC), and the drug itself considerably increased the release rates. The release from mixed polymer coatings was fast compared to pellets coated with NE40 only. The major portion of the drug was released in about 2 hours in case of MC and NE40 mixed coat compared to hours from coated pellets containing HPMC or diltiazem. Incorporation of 15% to 25% drug with respect to the polymer coat helped to achieve a drug-release profile at a desirable rate over a 12 hour period. Moreover, the test formulation comprising 25% diltiazem with respect to 7% NE40 had a dissolution profile that matched the commercial product, Herbesser SR capsules. The release of diltiazem from the coated pellets was slightly affected by the pH of dissolution media.  相似文献   

12.
胰岛素肠溶PLGA纳米粒的制备及体内外性质的评价   总被引:8,自引:0,他引:8  
目的制备肠溶胰岛素PLGA纳米粒,并对其理化性质、体外释药以及在正常大鼠体内的降血糖效果进行研究。方法采用改良的乳化溶剂扩散法分别制备了胰岛素PLGA纳米粒和肠溶胰岛素纳米粒(PLGA HP55 NP、PLGA HP50 NP)。通过激光粒度测定仪测定粒径大小,系统考察了肠溶材料HP55的用量及类型对纳米粒性质的影响,以及各种纳米粒在人工胃液、人工肠液中的释药行为和其在正常大鼠体内的降血糖作用,并与PLGA HP50 NP进行了比较。结果制得的最终处方的肠溶纳米粒(PLGA HP55)的粒径为(169±16)nm,胰岛素的载药量为(3.17±0.24)%。肠溶纳米粒在人工胃液中的释药速率明显低于PLGA纳米粒。PLGA纳米粒和肠溶PLGA HP50、PLGA HP55纳米粒均能显著降低正常大鼠的血糖浓度,其在正常大鼠体内24 h相对于皮下注射给药的相对生物利用度分别为(5.46±0.7)%、(6.31±0.64)%和(8.72±0.5)%。结论胰岛素肠溶纳米粒可以有效抑制胰岛素在人工胃液中的释放,与PLGA纳米粒相比显著降低正常大鼠的血糖浓度。其中PLGA HP55纳米粒的降糖作用显著高于PLGA HP50纳米粒。pH值高的纳米粒有望成为胰岛素口服给药的有效载体。  相似文献   

13.
κ-Carrageenan is a novel pelletisation aid with high formulation robustness and quick disintegration leading to fast drug release unlike the matrix-like release from non-disintegrating microcrystalline cellulose pellets. Compression of pellets into tablets is cost effective. The feasibility of formulating multiparticulate tablets with coated κ-carrageenan pellets was investigated. Pellets containing a highly soluble drug in acid, namely bisacodyl and κ-carrageenan or MCC as pelletisation aid were prepared, enteric coated with a mixture of Kollicoat(?) MAE 30 DP and Eudragit(?) NE 30 D and compressed using silicified microcrystalline cellulose as embedding powder. The effect of coating level, type of pellet core, compression force and punch configurations on drug release were studied. A sufficient coating thickness for κ-carrageenan pellets was necessary to obtain multiparticulate tablets with adequate resistance in the acid stage regardless of the compression pressure used. While κ-carrageenan pellets and their tablets released over 80% of the drug during the neutral stage only about 20-24% was released from MCC pellets and their tablets. The type of punches used (oblong or round) did not significantly influence the drug release from the prepared tablets. Moreover, sufficient prolonged release properties were obtained with κ-carrageenan pellets containing theophylline as a model drug and coated with Kollicoat(?) SR 30 D using Kollicoat(?) IR as pore former. A lower coating level and higher amount of pore former were needed in case of theophylline pellets formulated with MCC as pelletisation aid. The sustained release properties of both coated pellet formulations were maintained after compression at different compression pressures.  相似文献   

14.
Compression of pellets coated with various aqueous polymer dispersions   总被引:4,自引:0,他引:4  
Pellets coated with a new aqueous polyvinyl acetate dispersion, Kollicoat SR 30 D, could be compressed into tablets without rupture of the coating providing unchanged release profiles. In contrast, the compression of pellets coated with the ethylcellulose dispersion, Aquacoat ECD 30, resulted in rupture of the coating and an increase in drug release. Plasticizer-free Kollicoat SR coatings were too brittle and ruptured during compression. The addition of only 10% w/w triethyl citrate as plasticizer improved the flexibility of the films significantly and allowed compaction of the pellets. The drug release was almost independent of the compression force and the pellet content of the tablets. The inclusion of various tabletting excipients slightly affected the drug release, primarily because of a different disintegration rate of the tablets. The core size of the starting pellets had no influence on the drug release. Pellets coated with the enteric polymer dispersion Kollicoat 30 D MAE 30 DP [poly(methacrylic acid, ethyl acrylate) 1:1] lost their enteric properties after compression because of the brittle properties of this enteric polymer. Coating of pellets with a mixture of Kollicoat MAE 30 DP and Kollicoat EMM 30 D [poly(ethyl acrylate, methyl methacrylate) 2:1] at a ratio of 70/30 and compaction of the pellets resulted in sufficient enteric properties.  相似文献   

15.
快速崩解茶碱包衣小丸骨架片的研制   总被引:3,自引:1,他引:3  
用挤出/滚圆法以茶碱主模型药物研制快速崩解包衣小丸骨架片,以Eudragit NE30D或RL/RS30D为包衣材料,用底喷式流化床包衣,再压制成骨架片,对包衣材料的种类、压片辅料的组成和用量,压片力等因素进行了考察优化,得到了符合美国药典释放度要求的包衣小丸骨架片。  相似文献   

16.
There has been growing interest in orally disintegrating tablets (ODTs) during the last decade due to their better patient acceptance and compliance. Further, drug dissolution and absorption may be significantly improved. This work describes the preparation of fast and pH-dependent release ODTs for domperidone by direct compression using crospovidone as superdisintegrant. Solid dispersions of domperidone and Eudragit L100-55, at different weight ratios, were prepared and characterized by DSC, TGA, X-ray diffraction, and FTIR, which indicated the presence of drug–polymer interaction. Disintegration time, friability, and hardness of ODTs were evaluated. In vitro drug release in 0.1N HCl and in phosphate buffer (pH 5.8 and 6.8) was investigated. All domperidone ODTs had fast disintegration times (6 KP) and acceptable friability (<1%). Drug release from fast release ODTs was highly improved; reaching 97% after 10?min in 0.1N HCl, compared to the dissolution of the free drug. Drug release from solid dispersions was pH dependent; showing higher release rates at pH 6.8 than at lower pH values. The controlled-release ODT resulted in 47% drug release in 0.1N HCl, with the rest of drug released at pH 6.8. Domperidone ODTs were considered suitable for ODT formulation.  相似文献   

17.

Background

The purpose of the present work is to mask the intensely bitter taste of Itopride HCl and to formulate an Oro dispersible tablet (ODT) of the taste-masked drug by incorporation of microspheres in the tablets for use in specific populations viz. pediatrics, geriatrics and patients experiencing difficulty in swallowing.

Methods

With this objective in mind, microspheres loaded with Itopride HCl were prepared by solvent evaporation method using acetone as solvent for pH-sensitive polymer, Eudragit EPO and light liquid paraffin as the encapsulating medium. The prepared microspheres were characterized with regard to yield, drug content, flow properties, particle size and size distribution, surface features, in vitro drug release and taste. The ODTs so prepared from these microspheres were evaluated for hardness, thickness, weight variation, friability, disintegration time, drug content, wetting time, water absorption ratio, moisture uptake, in vitro dispersion, in vitro disintegration, in vitro drug release and stability.

Results

The average size of microspheres was found to be satisfactory in terms of the size and size distribution. Microspheres prepared were of a regular spherical shape. Comparison of the dissolution profiles of microspheres in different pH media showed that microspheres having drug: polymer ratio of 1:2 produced a retarding effect in simulated salivary fluid (pH 6.8) and were further used for formulation into ODTs after addition of suitable amounts of excipients such as superdisintegrant, diluent, sweetener and flavor of directly compressible grade.

Conclusions

Effective taste-masking was achieved for Itopride HCl by way of preparation of microspheres and ODTs of acceptable characteristics.  相似文献   

18.
ABSTRACT

Formulation and preparation parameters of drug/ion-exchange particles microencapsulated in cross-linked chitosan were evaluated for controlled release of the water-soluble drug chlorpheniramine maleate (CPM) in a suspension. An emulsion solvent evaporation method was used to produce CPM-resinates embedded in glutaraldehyde (GTA) crosslinked chitosan microspheres (MCSs). Crosslinking extent in the chitosan was monitored by swelling measurements. Controlled release was evaluated by dissolution tests in simulated gastric fluid without enzyme (SGF) and in simulated intestinal fluid without enzyme (SIF). CPM-resinates contained 62% (w/w) of drug. MCSs were spherical, ranging from 82 to 420 μm in diameter, and contained multiple resinates. The sizes of MCSs prepared with safflower oil and Span 80 were controlled by surfactant concentration, stirring speed, and duration of stirring. Maximum crosslinking was produced with 240 mg GTA per 250 mg of chitosan. Maximum drug release from free CPM-resinates was about 60% by 1 hr in SGF, and was about 100% by 3 hr in SIF. CPM release was slower from MCSs crosslinked with 120 mg of GTA compared to 5 mg GTA in both media. By 8.3 hr, the more crosslinked MCSs released about 30% CPM in SGF, and about 60% in SIF. Because of the apparent ceiling on release in SGF, the final experiments were conducted in SIF. Increasing the weight ratio of the chitosan coating to CPM-resinate ratio from 1:1 to 4:1 moderately decreased release profiles carried out to 33 hr. Increasing MCS diameters from 82 to 163 μm moderately decreased release profiles. Microencapsulation of CPM-resinates with crosslinked chitosan demonstrated controlled release of CPM in SGF and SIF without enzymes. The retardation effect increased when the crosslinking extent and chitosan to resin ratio increased.  相似文献   

19.
The present study was aimed at designing a microflora triggered colon targeted drug delivery system (MCDDS) based on swellable polysaccharide, Sterculia gum in combination with biodegradable polymers with a view to specifically deliver azathioprine in the colonic region for the treatment of IBD with reduced systemic toxicity. The microflora degradation properties of Sterculia gum was investigated in rat caecal phosphate buffer medium. The polysaccharide tablet cores were coated to different film thicknesses with blends of Eudragit RLPO and chitosan and overcoated with Eudragit L00 to provide acid and intestinal resistance. Swelling and drug release studies were carried out in simulated gastric fluid, SGF (pH 1.2), simulated intestinal fluid, SIF (pH 6.8) and simulated colonic fluid, SCF (pH 7.4 under anaerobic environment), respectively. Drug release study in SCF revealed that swelling force of the Sterculia gum could concurrently drive the drug out of the polysaccharide core due to the rupture of the chitosan/Eudargit coating in microflora activated environment. The degradation of chitosan was the rate-limiting factor for drug release in the colon. Drug release from the MCDDS was directly proportional to the concentration of the pore former (chitosan), but inversely related to the Eudragit RLPO coating thickness.  相似文献   

20.
Colon is being extensively investigated as a drug delivery site. This study presents a comparison of the usual enteric coating polymers viz. Eudragit, cellulose acetate phathalate with shellac and ethyl cellulose, as carriers for colon specific drug delivery. Lactose based indomethacin tablets were prepared. These were coated with one of the coating polymers to a varying coat thickness. The coated formulations were evaluated for dissolution rates under simulated stomach and small intestine conditions. From the dissolution data obtained, it was found that the dissolution rate varied with the type and concentration of the polymer applied. Comparative dissolution data revealed that, of all the polymers and coat thicknesses used, a 3% (m/m) coat of shellac was most suitable for colonic drug delivery. It retarded drug release by 3-4 h (the usual small intestinal transit time) in simulated small intestinal fluid, whereafter a rapid drug release was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号