首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endocannabinoid system may serve important functions in the central and peripheral regulation of pain. In the present study, we investigated the effects of the endocannabinoid transport inhibitor AM404 [N-(4-hydroxyphenyl)-eicosa-5,8,11,14-tetraenamide] on rodent models of acute and persistent nociception (intraplantar formalin injection in the mouse), neuropathic pain (sciatic nerve ligation in the rat), and inflammatory pain (complete Freund's adjuvant injection in the rat). In the formalin model, administration of AM404 (1-10 mg/kg i.p.) elicited dose-dependent antinociceptive effects, which were prevented by the CB(1) cannabinoid receptor antagonist rimonabant (SR141716A; 1 mg/kg i.p.) but not by the CB2 antagonist SR144528 (1 mg/kg i.p.) or the vanilloid antagonist capsazepine (30 mg/kg i.p.). Comparable effects were observed with UCM707 [N-(3-furylmethyl)-eicosa-5,8,11,14-tetraenamide], another anandamide transport inhibitor. In both the chronic constriction injury and complete Freund's adjuvant model, daily treatment with AM404 (1-10 mg/kg s.c.) for 14 days produced a dose-dependent reduction in nocifensive responses to thermal and mechanical stimuli, which was prevented by a single administration of rimonabant (1 mg/kg i.p.) and was accompanied by decreased expression of cyclooxygenase-2 and inducible nitric-oxide synthase in the sciatic nerve. The results provide new evidence for a role of the endocannabinoid system in pain modulation and point to anandamide transport as a potential target for analgesic drug development.  相似文献   

2.
It has been indicated that acute and chronic morphine administrations enhance nociceptin/orphanin FQ (N/OFQ) levels in the brain, which might play role in the development of tolerance to the antinociceptive effect of morphine. Accordingly, N/OFQ receptor (NOP) antagonists have been shown to prevent the development of antinociceptive tolerance to morphine. Our aim is to observe whether cannabinoids, similarly to opioids, enhance N/OFQ levels in pain‐related brain regions and whether antagonism of NOP receptors attenuates the development of tolerance to the antinociceptive effect of cannabinoids. Hot plate and Tail flick tests are used to assess the antinociceptive response in Sprague‐Dawley rats. N/OFQ levels are measured in cortex, amygdala, hypothalamus, periaqueductal gray, nucleus raphe magnus and locus coeruleus of rat brains using Western blotting and immunohistochemistry. Within 9 days, animals became completely tolerant to the antinociceptive effect of the cannabinoid agonist WIN 55,212‐2 (2, 4, 6 mg/kg, i.p.). Chronic administration of JTC‐801, a NOP receptor antagonist, at a dose that exerted no effect on its own (1 mg/kg, i.p.), attenuated development of tolerance to the antinociceptive effect of WIN 55,212‐2 (4 mg/kg, i.p.). Western blotting and immunohistochemistry results showed that N/OFQ levels significantly increased in amygdala, periaqueductal gray, nucleus raphe magnus and locus coeruleus of rat brains when WIN 55,212‐2 was combined with JTC‐801. We hypothesize that, similar to opioids, chronic cannabinoid + NOP antagonist administration may enhance N/OFQ levels and NOP receptor antagonism prevents development of tolerance to cannabinoid antinociception.  相似文献   

3.
CB(1) cannabinoid receptors mediate profound hypothermia when cannabinoid agonists are administered to rats. Glutamate, the principal excitatory neurotransmitter in the central nervous system (CNS), is thought to tonically increase body temperature by activating N-methyl-D-aspartate (NMDA) receptors. Because NMDA antagonists block cannabinoid-induced antinociception and catalepsy, intimate glutamatergic-cannabinoid interactions may exist in the CNS. The present study investigated the effect of two NMDA antagonists on the hypothermic response to WIN 55212-2 [4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1-i,j]quinolin-6-one], a selective cannabinoid agonist, in rats. WIN 55212-2 (1-10 mg/kg i.m.) produced dose-dependent hypothermia that peaked 60 to 180 min postinjection. Dextromethorphan (5-75 mg/kg i.m.), a noncompetitive NMDA antagonist, or LY 235959 [(-)-6-[phosphonomethyl-1,2,3,4,4a,5,6,7,8,8a-decahydro-isoquinoline-2-carboxylate]](1-4 mg/kg i.m.), a competitive and highly selective NMDA antagonist, evoked hypothermia in a dose-sensitive manner, suggesting that endogenous glutamate exerts a hyperthermic tone on body temperature. A dose of dextromethorphan (10 mg/kg) that did not affect body temperature by itself potentiated the hypothermic response to WIN 55212-2 (1, 2.5, or 5 mg/kg). The enhancement was strongly synergistic, indicated by a 2.7-fold increase in the relative potency of WIN 55212-2. Similarly, a dose of LY 235959 (1 mg/kg) that did not affect body temperature augmented the hypothermia associated with a single dose of WIN 55212-2 (2.5 mg/kg), thus confirming that NMDA receptors mediated the synergy. We have demonstrated previously that CB(1) receptors mediate WIN 55212-2-evoked hypothermia in rats. The present data are the first evidence that NMDA antagonists exert a potentiating effect on cannabinoid-induced hypothermia. Taken together, these data suggest that interactions between NMDA and CB(1) receptors produce synergistic hypothermia.  相似文献   

4.
Ahn DK  Choi HS  Yeo SP  Woo YW  Lee MK  Yang GY  Jeon HJ  Park JS  Mokha SS 《Pain》2007,132(1-2):23-32
The present study is the first to investigate the participation of central cyclooxygenase (COX) pathways in modulating the antinociceptive effects of intracisternally administered cannabinoid on nociception induced by inflammation of the temporomandibular joint (TMJ) in freely moving rats. Following intra-articular injection of 5% formalin in the TMJ, nociceptive scratching behavior was recorded for nine successive 5-min intervals in Sprague-Dawley rats. Intracisternal injection of 30 microg of WIN 55,212-2, a synthetic non-subtype-selective CB1/2 agonist, administered 20 min prior to formalin injection significantly reduced the number of scratches and duration of scratching induced by formalin compared with the vehicle-treated group. Antinociceptive effect of WIN 55,212-2 was blocked by intracisternal injection of 10 microg of AM251, a CB1 receptor-selective antagonist, but not by AM630, a CB2 receptor-selective antagonist. A 10 microg dose of WIN 55,212-2 that was ineffective in producing antinociception became effective following intracisternal administration of NS-398, a selective COX-2 inhibitor; indomethacin, a non-selective COX 1/2 inhibitor; acetaminophen, a putative COX-3 inhibitor, but not following pretreatment with the selective COX-1 inhibitor, SC-560. The ED(50) value of WIN 55,212-2 in the NS-398-treated group was significantly lower than that in the vehicle-treated group. Importantly, administration of low doses of COX inhibitors alone did not attenuate nociception. These results indicate that inhibition of central COX pathways, presumably via COX-2 inhibition, reduces inflammatory pain by enhancing the cannabinoid-induced antinociceptive effect. Based on our observations, combined administration of cannabinoids with COX inhibitors may hold a therapeutic promise in the treatment of inflammatory TMJ pain.  相似文献   

5.
Cannabinoids evoke profound hypothermia in rats by activating central CB(1) receptors. Nitric oxide (NO), a prominent second messenger in central and peripheral neurons, also plays a crucial role in thermoregulation, with previous studies suggesting pyretic and antipyretic functions. Dense nitric-oxide synthase (NOS) staining and CB(1) receptor immunoreactivity have been detected in regions of the hypothalamus that regulate body temperature, suggesting that intimate NO-cannabinoid associations may exist in the central nervous system. The present study investigated the effect of N(omega)-nitro-L-arginine methyl ester (L-NAME), a NO synthase inhibitor, on the hypothermic response to WIN 55212-2 [4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenylcarbonyl)-6H-pyrrolo[3,2,1ij]quinolin-6-one], a selective cannabinoid agonist, in rats. WIN 55212-2 (1-5 mg/kg, i.m.) produced dose-dependent hypothermia that peaked 45 to 90 min post-injection. L-NAME (10-100 mg/kg, i.m.) by itself did not significantly alter body temperature. However, a nonhypothermic dose of L-NAME (50 mg/kg) potentiated the hypothermia caused by WIN 55212-2 (0.5-5 mg/kg). The augmentation was strongly synergistic, indicated by a 2.5-fold increase in the relative potency of WIN 55212-2. The inactive enantiomer of WIN 55212-2, WIN 55212-3 [S-(-)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-napthanlenyl) methanone mesylate] (5 mg/kg, i.m.), did not produce hypothermia in the absence or presence of L-NAME (50 mg/kg), confirming that cannabinoid receptors mediated the synergy. The present data are the first evidence that drug combinations of NOS blockers and cannabinoid agonists produce synergistic hypothermia. Thus, NO and cannabinoid systems may interact to induce superadditive hypothermia.  相似文献   

6.
Paclitaxel is an effective antineoplastic drug treatment used as an anti-tumoral therapy. Unfortunately its use is associated with unwanted side effects, which include the development of peripheral neuropathies and neuropathic pain, greatly affecting the quality of life of patients. It is well known that agonists of the cannabinoid receptor are able to reduce hyperalgesia and allodynia that develop after nerve injury. Our aim was to evaluate the efficacy of the cannabinoid agonist WIN 55,212-2 to reduce the thermal hyperalgesia and the tactile allodynia induced by administration of paclitaxel in rats. Present results demonstrate that WIN 55,212-2 (1 mg/kg i.p.) significantly reduced the heat (P<0.0001) and the mechanical (P=0.0003) withdrawal thresholds, the dose being smaller than that required to reach similar effects in the sciatic nerve constriction model (1.5 mg/kg). When the cannabinoid tetrad test was evaluated to measure behavioral modifications, it was found that WIN 55,212-2 (1mg/kg) did not induce changes either in body temperature or in immobility time, and only a reduction in spontaneous motility was recorded. This effect was antagonized by SR 141716A, suggesting the involvement of the CB1 receptor, although the participation of CB2 receptors cannot be excluded from this study. When WIN 55,212-2 was administered intraplantar, no differences were observed between the injected paw and the contralateral paw, suggesting that systemic mechanisms are needed to reach effectiveness. From these results we suggest that cannabinoids may be an interesting alternative to reduce neuropathic symptoms induced by paclitaxel, however more work is required to assess this possibility.  相似文献   

7.
The present study investigated the effect of the selective cannabinoid agonist, WIN 55212-2 [(4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1ij]quinolin-6-one], on body temperature. WIN 55212-2 (1, 2.5, 5, and 10 mg/kg, i.m.) induced hypothermia in a dose-dependent manner. The peak hypothermia occurred 60 to 180 min postinjection. Body temperature was still suppressed 5 h after the injection of the highest dose of WIN 55212-2. The selective CB(1) antagonist, SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride] (5 and 10 mg/kg, i.m.), blocked the WIN 55212-2-induced hypothermia, suggesting that CB(1) receptor activation mediated the hypothermia. In contrast, the selective CB(2) antagonist, SR144528 [N-((1S)-endo-1,3,3-trimethyl bicyclo heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide)] (5 mg/kg, i.m.), did not alter the WIN 55212-2-induced hypothermia. Neither SR141716A nor SR144528 alone altered body temperature. WIN 55212-2 (1-30 microg/microl) injected directly into the preoptic anterior hypothalamic nucleus (POAH) induced hypothermia in an immediate and dose-dependent fashion. The hypothermia produced by intra-POAH injection of WIN 55212-2 was brief, with body temperature returning to baseline 60 min postinjection. SR141716A (5 mg/kg, i.m.) abolished the hypothermia induced by intra-POAH injection of WIN 55212-2 (30 microg/microl), indicating that CB(1) receptors in the POAH mediated the hypothermia. The present results confirm the idea that CB(1) receptors mediate the hypothermic response to cannabinoid agonists. Moreover, the present data suggest that 1) the POAH is the central locus for thermoregulation, and 2) CB(1) receptors within the POAH are the primary mediators of cannabinoid-induced hypothermia.  相似文献   

8.
The compound N-piperidinyl-[8-chloro-1-(2,4-dichlorophenyl)-1,4,5,6-tetrahydrobenzo [6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide] (NESS 0327) was synthesized and evaluated for binding affinity toward cannabinoid CB1 and CB2 receptor. NESS 0327 exhibited a stronger selectivity for CB1 receptor compared with N-piperidinyl-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR 141716A), showing a much higher affinity for CB1 receptor (Ki = 350 +/- 5 fM and 1.8 +/- 0.075 nM, respectively) and a higher affinity for the CB2 receptor (Ki = 21 +/- 0.5 nM and 514 +/- 30 nM, respectively). Affinity ratios demonstrated that NESS 0327 was more than 60,000-fold selective for the CB1 receptor, whereas SR 141716A only 285-fold. NESS 0327 alone did not produce concentration-dependent stimulation of guanosine 5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS) binding in rat cerebella membranes. Conversely, NESS 0327 antagonized [R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrolol [1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone mesylate] (WIN 55,212-2)-stimulated [35S]GTPgammaS binding. In functional assay, NESS 0327 antagonized the inhibitory effects of WIN 55,212-2 on electrically evoked contractions in mouse isolated vas deferens preparations with pA2 value of 12.46 +/- 0.23. In vivo studies indicated that NESS 0327 antagonized the antinociceptive effect produced by WIN 55,212-2 (2 mg/kg s.c.) in both tail-flick (ID50 = 0.042 +/- 0.01 mg/kg i.p.) and hot-plate test (ID50 = 0.018 +/- 0.006 mg/kg i.p.). These results indicated that NESS 0327 is a novel cannabinoid antagonist with high selectivity for the cannabinoid CB1 receptor.  相似文献   

9.
Scott DA  Wright CE  Angus JA 《Pain》2004,109(1-2):124-131
The roles of the two cannabinoid receptor subtypes, CB-1 and CB-2, have not been clarified in cannabinoid-mediated analgesia. We investigated the efficacy of the non-selective cannabinoid receptor agonist CP55,940 in the modulation of responses in the rat to both acute pain (tail flick) and neuropathic pain (tactile allodynia following chronic L5/6 spinal nerve ligation). Responses were also assessed in the presence of the CB-1 antagonist SR141716A (SR1) and the CB-2 antagonist SR144528 (SR2). CP55,940 attenuated tactile allodynia (ED(50) 0.04 mg/kg i.t. (95% CI 0.032-0.044 mg/kg), 0.12 mg/kg i.p. (95% CI 0.10-0.15 mg/kg)) and induced thermal antinociception (ED(50) tail flick 0.07 mg/kg i.t. (95% CI 0.05-0.10 mg/kg), 0.17 mg/kg i.p. (95% CI 0.11-0.26 mg/kg)). SR1 0.5 mg/kg i.t. attenuated the antinociceptive effect of CP55,940 in both modalities. However, SR1 1.0 mg/kg i.p. decreased tail flick latency but had no effect on tactile allodynia antinociception. In contrast, SR2 1.0 mg/kg i.p. significantly decreased the effect of i.p. CP55,940 on both tail flick antinociception and tactile allodynia (P<0.005). The combination of SR1 and SR2 (i.p.) had an additive effect in decreasing the antinociception induced by CP55,940 on tail flick responses (P<0.005). These results suggest a role for CB-2 receptor-mediated antinociception in both acute and neuropathic pain in addition to centrally located CB-1 mechanisms.  相似文献   

10.
Dogrul A  Gul H  Akar A  Yildiz O  Bilgin F  Guzeldemir E 《Pain》2003,105(1-2):11-16
Analgesic effects of cannabimimetic compounds have been known to be related to their central effects. Cannabinoid receptors also exist in the periphery but their role in pain perception has been remained to be clarified. Therefore, we assessed topical antinociceptive effects of WIN 55, 212-2, a mixed CB(1) and CB(2) receptors agonist, in mice using tail-flick test. Immersion of the tail of mouse into the WIN 55, 212-2 solution produced dose-dependent antinociception. This antinociceptive activity was limited to the portion of the tail exposed to WIN 55, 212-2. The antinociceptive response was dependent on duration of exposure to WIN 55, 212-2 solution. The topical antinociceptive effects of WIN 55, 212-2 were dose dependently blocked by topical pretreatment of CB(1) receptor-selective antagonist, AM 251. Thus, topical antinociceptive action of WIN 55, 212-2 involve CB(1) receptors. Intrathecal (i.th.) administration of WIN 55, 212-2 produced a dose-dependent antinociceptive effect. Interestingly, ineffective i.th. doses of WIN 55, 212-2 produced a marked antinociception when combined with topical application of WIN 55, 212-2 and topical antinociceptive effect was potentiated. The dose-response curve of i.th. WIN 55, 212-2 was shifted to the left 15-fold by topical WIN 55, 212-2. This finding suggests that there is an antinociceptive synergy between peripheral and spinal sites of cannabinoid action and it also implicates that local activation of cannabinoid system may regulate pain initiation in cutaneous tissue. Our findings support that cannabinoid system participates in buffering the emerging pain signals at the peripheral sites in addition to their spinal and supraspinal sites of action. In addition, an antinociceptive synergy between topical and spinal cannabinoid actions exists. These results also indicate that topically administered cannabinoid agonists may reduce pain without the dysphoric side effects and abuse potential of centrally acting cannabimimetic drugs.  相似文献   

11.
Cannabinoids elicit marked cardiovascular responses. It is not clear how peripheral effects on the autonomic nervous system contribute to these responses. The aim of the present study was to characterize the peripheral actions of cannabinoids on the autonomic innervation of the heart. Experiments were carried out on pithed rabbits. In the first series of experiments, postganglionic sympathetic cardioaccelerator fibers were stimulated electrically. The synthetic cannabinoid receptor agonists WIN55212-2 (0.005, 0.05, 0.5, and 1.5 mg kg(-1) i.v.) and CP55940 (0.003, 0.03, 0.3, and 1 mg kg(-1) i.v.) dose dependently inhibited the electrically evoked cardioacceleration. The inhibition by WIN55212-2 (0.5 mg kg(-1) i.v.) was prevented by the CB(1) cannabinoid receptor antagonist SR141716A (0.5 mg kg(-1) i.v.). WIN55212-2 (0.5 mg kg(-1) i.v.) did not change the increase in heart rate evoked by injection of isoprenaline. In the second series of experiments, preganglionic vagal fibers were stimulated electrically. WIN55212-2 (0.005, 0.05, and 0.5 mg kg(-1) i.v.) and CP55940 (0.003, 0.03, and 0.3 mg kg(-1) i.v.) dose dependently inhibited the stimulation-evoked decrease in heart rate. The inhibition produced by WIN55212-2 (0.005, 0.05, and 0.5 mg kg(-1) i.v.) was antagonized by SR141716A (0.5 mg kg(-1) i.v.). The results indicate that cannabinoids, by activating CB(1) cannabinoid receptors, inhibit sympathetic and vagal neuroeffector transmission in the heart. The mechanism of the sympathoinhibition is probably presynaptic inhibition of noradrenaline release from postganglionic sympathetic neurons. The mechanism of the inhibition of vagal activity was not clarified: cannabinoids may have an inhibitory action on both pre- and postganglionic vagal neurons.  相似文献   

12.
Bonnefont J  Chapuy E  Clottes E  Alloui A  Eschalier A 《Pain》2005,114(3):482-490
The regulation of nociceptive processing by 5-HT at the spinal level is intricate since the neurotransmitter has been implicated in both pro and antinociception. The aim of our study was to investigate, according to the nature of the noxious stimulus, how the blockade of spinal 5-HT(1A) receptors could influence the antinociceptive actions of exogenous 5-HT as well as two analgesics involving endogenous 5-HT, paracetamol and venlafaxine. Rats were submitted either to the formalin test (tonic pain) or the paw pressure test (acute pain). WAY-100635 (40 microg/rat, i.t.), a selective 5-HT(1A) receptor antagonist, had no intrinsic action in either test. However, in the formalin test, it blocked the antinociceptive action of 5-HT (50 microg/rat, i.t.) and paracetamol (300 mg/kg, i.v.) in both phases of biting/licking behaviour and that of venlafaxine (2.5 mg/kg, s.c.) in the late phase only. In the paw pressure test, the combination of sub-effective doses of 5-HT (0.01 microg/rat, i.t.), paracetamol (50 mg/kg, i.v.) or venlafaxine (20 mg/kg, s.c.) with WAY-100635 led to a significant antinociceptive effect, which seems to depend on the reinforcement of the activity of inhibitory GABAergic interneurones. In conclusion, both direct stimulation of the spinal 5-HT(1A) receptors by 5-HT, and indirect stimulation using paracetamol or venlafaxine can differently influence pain transmission. We propose that the nature of the applied nociceptive stimulus would be responsible for the dual effect of the 5-HT(1A) receptors rather than the hyperalgesic state or the supraspinal integration of the pain message.  相似文献   

13.
Bereiter DA  Bereiter DF  Hirata H 《Pain》2002,99(3):547-556
Cannabinoids act at receptors on peripheral and central neurons to modulate diverse physiological functions and produce analgesia. Corneal sensory nerves express the CB1 cannabinoid receptor and project to two spatially discrete regions of the lower brainstem, the trigeminal interpolaris/caudalis (Vi/Vc) transition and subnucleus caudalis/upper cervical cord (Vc/C1) junction region. The function of CB1 expression on corneal nerves is not known. To determine if cannabinoid receptors in the anterior eye affect the activity of trigeminal brainstem neurons at the Vi/Vc and Vc/C1 the CB1 agonist, WIN55,212-2 (WIN-2), was applied topically prior to chemical excitation of corneal afferent fibers. In the first series of experiments WIN-2 was applied topically prior to excitation of corneal nociceptors by mustard oil (MO). WIN-2 reduced significantly the number of Fos-like immunoreactive neuronal nuclei (Fos-LI) at the Vi/Vc transition (-46.7+/-8.2%, P<0.05), while smaller non-significant reductions occurred at the Vc/C1 junction region (-20.3+/-7.6%). The selective CB1 antagonist, SR141716A (1mg/kg, i.v.), prevented WIN-2-evoked reduction in Fos-LI after MO. Systemic administration of WIN-2 (1 or 10mg/kg, i.p.) or SR141716A (1mg/kg, i.v.) or topical corneal application of morphine sulfate did not affect Fos-LI produced by MO. In parallel experiments, topical WIN-2 reduced the magnitude of single unit activity recorded at the Vi/Vc transition (-80+/-7%, P<0.025), but not at the Vc/C1 junction region (-34+/-30%) evoked by CO(2) pulses applied to the cornea. Topical morphine did not alter CO(2)-evoked unit activity at either recording location. These results indicated that cannabinoid receptor agonists acted, at least in part, at CB1 receptors in the anterior eye to reduce corneal stimulation-evoked trigeminal brainstem neural activity. Corneal nociceptor-evoked activity at the Vi/Vc transition was reduced significantly by topical WIN-2, while activity at the Vc/C1 junction region displayed only minor decreases. These findings were consistent with the hypothesis that CB1 receptors affect the activity of corneal-responsive neurons that preferentially contribute to homeostasis of the anterior eye and/or reflexive aspects of nociception rather than the sensory-discriminative aspects of corneal nociception.  相似文献   

14.
Management of acute pain remains a significant clinical problem. In preclinical studies, CB2 cannabinoid receptor-selective agonists inhibit nociception without producing central nervous system side effects. The CB2 receptor-selective agonist AM1241 produces antinociceptive effects that are antagonized by CB2, but not CB1, receptor-selective antagonists, suggesting that activation of CB2 receptors results in antinociception. However, it has not been possible to definitively demonstrate that these effects are mediated by CB2 receptors, because we have lacked the pharmacological tools to confirm the in vivo receptor selectivity of the antagonists used. Further, recent evidence for cannabinoid-like receptors beyond CB1 and CB2 raises the possibility that AM1241 exerts its antinociceptive effects at uncharacterized CB2-like receptors that are also inhibited by AM630. The experiments reported here further test the hypothesis that CB2 receptor activation inhibits nociception. They evaluated the antinociceptive actions of AM1241 and the less-selective CB2 receptor agonist WIN55,212-2 in wild-type (CB2+/+) mice and in mice with genetic disruption of the CB2 receptor (CB2-/- mice). AM1241 inhibited thermal nociception in CB2+/+ mice, but had no effect in CB2-/- littermates. WIN55,212-2 produced equivalent antinociception in CB1+/+ and CB1-/- mice, while its antinociceptive effects were reduced in CB2-/- compared to CB2+/+ mice. The effects of morphine were not altered in CB2-/- compared to CB2+/+ mice. These data strongly suggest that AM1241 produces antinociception in vivo by activating CB2 cannabinoid receptors. Further, they confirm the potential therapeutic relevance of CB2 cannabinoid receptors for the treatment of acute pain.  相似文献   

15.
There is continuing interest in elucidating the actions of drugs of abuse on the immune system and on infection. The present study investigated the effects of the cannabinoid (CB) receptor agonist aminoalkylindole, (+)-WIN 55,212-2 [(4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1ij]quinolin-6-one], on fever produced after injection of lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, the best known and most frequently used experimental model. Intraperitoneal injection of LPS (50 mug/kg) induced a biphasic fever, with the first peak at 180 min and the second at 300 min postinjection. Pretreatment with a nonhypothermic dose of the cannabinoid receptor agonist WIN 55,212-2 (0.5-1.5 mg/kg i.p.) antagonized the LPS-induced fever. However, pretreatment with the inactive enantiomer WIN 55,212-3 [1.5 mg/kg i.p.; S-(-)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthanlenyl)methanone mesylate] did not. The inhibitory effect of WIN 55,212-2 on LPS-induced fever was reversed by SR141716 [N-(piperdin-1-yl)-5-(4-chloropheny)-1-(2,4-dichloropheny)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride], a selective CB1 receptor antagonist, but not by SR144528 (N-[(1S)-endo-1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl]5-(4-choro-3-methylphenyl)-1-(4-methylbenzyl)pyrazole-3-carboxamide), a selective antagonist at the CB2 receptor. The present results show that cannabinoids interact with systemic bacterial LPS injection and indicate a role of the CB1 receptor subtype in the pathogenesis of LPS fever.  相似文献   

16.
The cannabinoid agonist, HU210 has been evaluated in vivo in nociceptive and inflammatory pain models in the rat. The ED50 for the anti-nociceptive (increasing mechanical withdrawal threshold) effect was 0.1 mg/kg-1 i.p., and for anti-hypersensitivity and anti-inflammatory activity was 5 g/kg-1 i.p. (in the carrageenan model). The selective CB1 antagonist, AM281 (0.5 microg/kg-1 i.p.) reversed effects of HU210 (10 and 30 microg/kg-1 i.p.) in both nociceptive and inflammatory models of hypersensitivity. The selective CB2 antagonist, SR144528 (1 mg/kg-1 i.p.) antagonised effects of HU210 (30 microg/kg-1 i.p.) in the carrageenan induced inflammatory hypersensitivity. The CB2 agonist, 1-(2,3-Dichlorobenzoyl)-5-methoxy-2-methyl-(2-(morpholin-4-yl)ethyl)-1H-indole (GW405833) inhibited the hypersensitivity and was anti-inflammatory in vivo. These effects were blocked by SR144528. These findings suggest that CB1 receptors are involved in nociceptive pain and that both CB1 and CB2 receptors are involved in inflammatory hypersensitivity. Future studies will investigate effects on identified inflammatory cells within the inflamed tissue to further elucidate the role of cannabinoid receptors.  相似文献   

17.
Lysophosphatidic acid (LPA), an initiator of neuropathic pain, causes allodynia. However, few studies have evaluated the pharmacological profile of LPA‐induced pain. In this study, a LPA‐induced pain model was developed and pharmacologically characterized with clinically relevant drugs used for neuropathic pain, including antiepileptics, non‐steroidal anti‐inflammatory agents, analgesics, local anaesthetics/antiarrhythmics and antidepressants. Gabapentin (1–30 mg/kg, p.o.) significantly reversed LPA‐induced allodynia, but neither indomethacin (30 mg/kg, p.o.) nor morphine (0.3–3 mg/kg, s.c.) did, which indicates that LPA‐induced pain consists mostly of neuropathic rather than inflammatory pain. Both pregabalin (0.3–10 mg/kg, p.o.) and ω‐CgTX MVIIA (0.01–0.03 μg/mouse, i.t.) completely reversed LPA‐induced allodynia in a dose‐dependent manner. Lidocaine (1–30 mg/kg, s.c.), mexiletine (1–30 mg/kg, p.o.) and carbamazepine (10–100 mg/kg, p.o.) significantly ameliorated LPA‐induced allodynia dose dependently. Milnacipran (30 mg/kg, i.p.) produced no significant analgesic effect in LPA‐induced allodynia. In LPA‐injected mice, expression of the α2δ1 subunit of the voltage‐gated calcium channel (VGCC) was increased in the dorsal root ganglion (DRG) and spinal dorsal horn. Furthermore, the VGCC current was potentiated in both the DRG from LPA‐injected mice and LPA (1 μM)‐treated DRG from saline‐injected mice, and the potentiated VGCC current was amended by treatment with gabapentin (100 μM). The LPA‐induced pain model described here mimics aspects of the neuropathic pain state, including the sensitization of VGCC, and may be useful for the early assessment of drug candidates to treat neuropathic pain.  相似文献   

18.
Recent studies have shown that topiramate, a structurally novel anticonvulsant, exerts antinociceptive activity in animal models of neuropathic, acute somatic, and visceral pain. This study was aimed to examine: (i) the effects of systemically and locally peripherally administered topiramate in the rat inflammatory pain model and (ii) the potential role and site(s) of gamma‐aminobutyric acid (GABA), opioid, and adrenergic receptors in topiramate’s antihyperalgesia. Rats received intraplantar (i.pl.) injections of the pro‐inflammatory compound carrageenan. A paw pressure test was used to determine: (i) the effect of systemic and local peripheral topiramate on carrageenan‐induced hyperalgesia and (ii) the effects of systemic and local peripheral bicuculline (selective GABAA receptor antagonist), naloxone (nonselective opioid receptor antagonist), and yohimbine (selective α2‐adrenergic receptor antagonist) on topiramate‐induced antihyperalgesia. Systemic topiramate (40–160 mg/kg; p.o.) produced a significant dose‐dependent reduction in the paw inflammatory hyperalgesia induced by carrageenan. The antihyperalgesic effect of systemic topiramate was significantly decreased by systemic bicuculline (0.5–1 mg/kg; i.p.), naloxone (2–5 mg/kg; i.p.), and yohimbine (1–3 mg/kg; i.p.). Local peripheral topiramate (0.03–0.34 mg/paw; i.pl.) also produced significant dose‐dependent antihyperalgesia, which was significantly depressed by local peripheral yohimbine (0.05–0.2 mg/paw; i.pl.) but not by local peripheral bicuculline (0.15 mg/paw; i.pl.) or naloxone (0.1 mg/paw; i.pl.). The results suggest that topiramate produces systemic and local peripheral antihyperalgesia in an inflammatory pain model, which is, at least partially, mediated by central GABAA and opioid receptors and by peripheral and most probably central α2‐adrenergic receptors. These findings contribute to better understanding of topiramate’s action in pain states involving inflammation.  相似文献   

19.
Previous studies have shown that mice primed with Corynebacterium parvum produce higher levels of inflammatory cytokines than unprimed mice upon challenge with lipopolysaccharide (LPS). Herein, we describe experiments in which two cannabinoid (CB) agonists, WIN 55212-2 [(R)-(+)-[2, 3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]1, 4-benzoxazin-6-yl](1-naphthyl)methanone) and HU-210 [(-)-11-hydroxy-delta(8) tetrahydrocannabinol-dimethylheptyl], were examined for their effects on LPS-induced cytokines in C. parvum-primed and unprimed mice. These agonists have been reported to bind selectively to the CB2 and CB1 receptor subtypes, respectively. WIN 55212-2 (3.1-50 mg/kg i.p.) and HU-210 (0.05-0.4 mg/kg i.p.) decreased serum tumor necrosis factor-alpha and interleukin-12 (IL-12) and increased IL-10 when administered to mice before LPS. The drugs also protected C. parvum mice (but not unprimed mice) against the lethal effects of LPS. The protection afforded to C. parvum mice could not be attributed to the higher levels of IL-10 present in these mice after agonist treatment. The WIN 55212-2- and HU-210-mediated changes in the responsiveness of mice to LPS were antagonized by SR141716A [N-(piperdin-1-yl)-5-(4-chloropheny)-1-(2, 4-dichloropheny)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride], a selective CB1 receptor antagonist, but not by SR144528 [N-[(1S)-endo-1,3,3-trimethylbicyclo[2.2. 1]heptan-2-yl]5-(4-choro-3-methylphenyl)-1-(4-methylbenzyl)p yrazole-3 -carboxamide], a selective antagonist at the CB2 receptor. Therefore, both CB agonists modulated LPS responses through the CB1 receptor. Surprisingly, SR141716A itself modulated cytokine responses in a manner identical with that of WIN 55212-2 and HU-210 when administered alone to mice. The agonist-like effects of SR141716A, which were more striking in unprimed than in primed mice, suggested that the antagonist also could function as a partial agonist at the CB1 receptor. Our findings indicate a role for the CB1 receptor subtype in cytokine modulation by CB ligands.  相似文献   

20.
3-[2-Cyano-3-(trifluoromethyl)phenoxy]phenyl-4,4,4-trifluoro-1-butanesulfonate (BAY 59-3074) is a novel, selective cannabinoid CB(1)/CB(2) receptor ligand (K(i) = 55.4, 48.3, and 45.5 nM at rat and human cannabinoid CB(1) and human CB(2) receptors, respectively), with partial agonist properties at these receptors in guanosine 5-[gamma(35)S]-thiophosphate triethyl-ammonium salt ([(35)S]GTPgammaS) binding assays. In rats, generalization of BAY 59-3074 to the cue induced by the cannabinoid CB(1) receptor agonist (-)-(R)-3-(2-hydroxymethylindanyl-4-oxy)phenyl-4,4,4-trifluoro-1-butanesulfonate (BAY 38-7271) in a drug discrimination procedure, as well as its hypothermic and analgesic effects in a hot plate assay, were blocked by the cannabinoid CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR 141716A). BAY 59-3074 (0.3-3 mg/kg, p.o.) induced antihyperalgesic and antiallodynic effects against thermal or mechanical stimuli in rat models of chronic neuropathic (chronic constriction injury, spared nerve injury, tibial nerve injury, and spinal nerve ligation models) and inflammatory pain (carrageenan and complete Freund's adjuvant models). Antiallodynic efficacy of BAY 59-3074 (1 mg/kg, p.o.) in the spared nerve injury model was maintained after 2 weeks of daily administration. However, tolerance developed rapidly (within 5 days) for cannabinoid-related side effects, which occur at doses above 1 mg/kg (e.g., hypothermia). Uptitration from 1 to 32 mg/kg p.o. (doubling of daily dose every 4th day) prevented the occurrence of such side effects, whereas antihyperalgesic and antiallodynic efficacy was maintained/increased. No withdrawal symptoms were seen after abrupt withdrawal following 14 daily applications of 1 to 10 mg/kg p.o. It is concluded that BAY 59-3074 may offer a valuable therapeutic approach to treat diverse chronic pain conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号