首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bilateral arm raising movements have been used in brain rehabilitation for a long time. However, no study has been reported on the effect of these movements on the cerebral cortex. In this study, using functional near infrared spectroscopy (fNIRS), we attempted to investigate cortical activation generated during bilat-eral arm raising movements. Ten normal subjects were recruited for this study. fNIRS was performed using an fNIRS system with 49 channels. Bilateral arm raising movements were performed in sitting position at the rate of 0.5 Hz. We measured values of oxyhemoglobin and total hemoglobin in ifve regions of interest:the primary sensorimotor cortex, premotor cortex, supplementary motor area, prefrontal cortex, and pos-terior parietal cortex. During performance of bilateral arm raising movements, oxyhemoglobin and total hemoglobin values in the primary sensorimotor cortex, premotor cortex, supplementary motor area, and prefrontal cortex were similar, but higher in these regions than those in the prefrontal cortex. We observed activation of the arm somatotopic areas of the primary sensorimotor cortex and premotor cortex in both hemispheres during bilateral arm raising movements. According to this result, bilateral arm raising move-ments appeared to induce large-scale neuronal activation and therefore arm raising movements would be good exercise for recovery of brain functions.  相似文献   

2.
Motor imagery is defined as an act wherein an individual contemplates a mental action of motor execution without apparent action. Mental practice executed by repetitive motor imagery can improve motor performance without simultaneous sensory input or overt output. We aimed to investigate cerebral hemodynamics during motor imagery and motor execution of a self-feeding activity using chopsticks. This study included 21 healthy right-handed volunteers. The self-feeding activity task comprised either motor imagery or motor execution of eating sliced cucumber pickles with chopsticks to examine eight regions of interest: pre-supplementary motor area, supplementary motor area, bilateral prefrontal cortex, premotor area, and sensorimotor cortex. The mean oxyhemoglobin levels were detected using near-infrared spectroscopy to reflect cerebral activation. The mean oxyhemoglobin levels during motor execution were significantly higher in the left sensorimotor cortex than in the supplementary motor area and the left premotor area. Moreover, significantly higher oxyhemoglobin levels were detected in the supplementary motor area and the left premotor area during motor imagery, compared to motor execution. Supplementary motor area and premotor area had important roles in the motor imagery of self-feeding activity. Moreover, the activation levels of the supplementary motor area and the premotor area during motor execution and motor imagery are likely affected by intentional cognitive processes. Levels of cerebral activation differed in some areas during motor execution and motor imagery of a self-feeding activity. This study was approved by the Ethical Review Committee of Nagasaki University(approval No. 18110801) on December 10, 2018.  相似文献   

3.
We used serial positron emission tomography (PET) to study the evolution of functional brain activity within 12 weeks after a first subcortical stroke. Six hemiplegic stroke patients and three normal subjects were scanned twice (PET 1 and PET 2) by using passive elbow movements as an activation paradigm. Increases of regional cerebral blood flow comparing passive movements and rest and differences of regional cerebral blood flow between PET 1 and PET 2 in patients and normal subjects were assessed by using statistical parametric mapping. In controls, activation was found in the contralateral sensorimotor cortex, supplementary motor area, and bilaterally in the inferior parietal cortex with no differences between PET 1 and PET 2. In stroke patients, at PET 1, activation was observed in the bilateral inferior parietal cortex, contralateral sensorimotor cortex, and ipsilateral dorsolateral prefrontal cortex, supplementary motor area, and cingulate cortex. At PET 2, significant increases of regional cerebral blood flow were found in the contralateral sensorimotor cortex and bilateral inferior parietal cortex. A region that was activated at PET 2 only was found in the ipsilateral premotor area. Recovery from hemiplegia is accompanied by changes of brain activation in sensory and motor systems. These alterations of cerebral activity may be critical for the restoration of motor function.  相似文献   

4.
Reach movements are characterized by multiple kinematic variables that can change with age or due to medical conditions such as movement disorders. While the neural control of reach direction is well investigated, the elements of the neural network regulating speed (the nondirectional component of velocity) remain uncertain. Here, we used a custom made magnetic resonance (MR)‐compatible arm movement tracking system to capture the real kinematics of the arm movements while measuring brain activation with functional magnetic resonance imaging to reveal areas in the human brain in which BOLD‐activation covaries with the speed of arm movements. We found significant activation in multiple cortical and subcortical brain regions positively correlated with endpoint (wrist) speed (speed‐related activation), including contralateral premotor cortex (PMC), supplementary motor area (SMA), thalamus (putative VL/VA nuclei), and bilateral putamen. The hand and arm regions of primary sensorimotor cortex (SMC) and a posterior region of thalamus were significantly activated by reach movements but showed a more binary response characteristics (movement present or absent) than with continuously varying speed. Moreover, a subregion of contralateral SMA also showed binary movement activation but no speed‐related BOLD‐activation. Effect size analysis revealed bilateral putamen as the most speed‐specific region among the speed‐related clusters whereas primary SMC showed the strongest specificity for movement versus non‐movement discrimination, independent of speed variations. The results reveal a network of multiple cortical and subcortical brain regions that are involved in speed regulation among which putamen, anterior thalamus, and PMC show highest specificity to speed, suggesting a basal‐ganglia‐thalamo‐cortical loop for speed regulation.  相似文献   

5.
To date, the cortical effect of exercise has not been fully elucidated. Using the functional near infrared spec-troscopy, we attempted to compare the cortical effect between shoulder vibration exercise and shoulder simple exercise. Eight healthy subjects were recruited for this study. Two different exercise tasks (shoul-der vibration exercise using the flexible pole and shoulder simple exercise) were performed using a block paradigm. We measured the values of oxygenated hemoglobin in the four regions of interest: the primary sensory-motor cortex (SM1 total, arm somatotopy, and leg and trunk somatotopy), the premotor cortex, the supplementary motor area, and the prefrontal cortex. During shoulder vibration exercise and shoulder simple exercise, cortical activation was observed in SM1 (total, arm somatotopy, and leg and trunk somato-topy), premotor cortex, supplementary motor area, and prefrontal cortex. Higher oxygenated hemoglobin values were also observed in the areas of arm somatotopy of SM1 compared with those of other regions of interest. However, no significant difference in the arm somatotopy of SM1 was observed between the two exercises. By contrast, in the leg and trunk somatotopy of SM1, shoulder vibration exercise led to a significantly higher oxy-hemoglobin value than shoulder simple exercise. These two exercises may result in cortical activation effects for the motor areas relevant to the shoulder exercise, especially in the arm so-matotopy of SM1. However, shoulder vibration exercise has an additional cortical activation effect for the leg and trunk somatotopy of SM1.  相似文献   

6.
Functional hemispherectomy, a safe and effective therapeutical procedure in medically intractable epilepsy, offers the chance to investigate a strictly unilateral cortical activation in ipsilateral limb movement. We assessed the pattern of cortical activation in a group of patients following functional hemispherectomy. We measured regional cerebral blood flow (rCBF) in 6 patients postoperatively and 6 normal subjects with positron emission tomography using 15[O]H2O as a tracer. Brain activation was achieved by passive elbow movements of the affected arm. Analysis of group results and between-group comparisons were performed with statistical parametric mapping, (SPM96). In normal subjects brain activation was found contralaterally in the cranial sensorimotor cortex and the supplementary motor area and ipsilaterally in the inferior parietal cortex. In patients significant rCBF increases were found in the inferior parietal cortex, caudal sensorimotor cortex and the supplementary motor area ipsilaterally. The activation was weaker than in normal subjects. Compared with normal subjects patients showed additional activation in the premotor cortex, caudal sensorimotor cortex and the inferior parietal cortex of the remaining hemisphere. Less activation compared with normal subjects was found in the cranial sensorimotor cortex and the supplementary motor area. A functional network connecting the inferior parietal cortex, premotor cortex and the supplementary motor area as well as the existence of ipsilateral projections originating from these regions may explain why these areas are predominantly involved in reorganization confined to a single hemisphere. Received: 24 November 2000, Received in revised form: 8 March 2001, Accepted: 10 April 2001  相似文献   

7.
Selection of movement in normal subjects has been shown to involve the premotor, supplementary motor, anterior cingulate, posterior parietal, and dorsolateral prefrontal areas. In Parkinson's disease (PD), the primary pathological change is degeneration of the nigrostriatal dopaminergic projections, and this is associated with difficulty in initiating actions. We wished to investigate the effect of the nigral abnormality in PD on cortical activation during movement. Using C15O2 and positron emission tomography (PET), we studied regional cerebral blood flow in 6 patients with PD and 6 control subjects while they performed motor tasks. Subjects were scanned while at rest, while repeatedly moving a joystick forward, and while freely choosing which of four possible directions to move the joystick. Significant increases in regional cerebral blood flow were determined with covariance analysis. In normal subjects, compared to the rest condition, the free-choice task activated the left primary sensorimotor cortex, left premotor cortex, left putamen, right dorsolateral prefrontal cortex and supplementary motor area, anterior cingulate area, and parietal association areas bilaterally. In the patients with PD, for the free-choice task, compared with the rest condition, there was significant activation in the left sensorimotor and premotor cortices but there was impaired activation of the contralateral putamen, the anterior cingulate, supplementary motor area, and dorsolateral prefrontal cortex. Impaired activation of the medial frontal areas may account for the difficulties PD patients have in initiating movements.  相似文献   

8.
Sailer A  Dichgans J  Gerloff C 《Neurology》2000,55(7):979-985
OBJECTIVE: To assess the influence of normal aging on the cortical physiology of motor behavior. METHODS: The authors studied cortical activation in eight elderly (55 to 76 years of age) and eight younger (18 to 27 years of age) healthy subjects while they performed a simple motor task. A 28-channel EEG was recorded; task-related power changes associated with repetitive, metronome-paced (1 Hz) finger movements were computed as a measure of cortical activation. RESULTS: Distinct, age-dependent activation patterns were expressed in four distinct frequency ranges: low-alpha (10 to 11 Hz), high-alpha (12 to 13 Hz), low-beta (16 to 17 Hz), and high-beta (22 to 23 Hz) bands. The main findings were a greater overall activation and, more specifically, a pronounced bilateral activation of sensorimotor regions in elderly subjects for both alpha bands. Additionally, in the elderly subjects there was increased activation of the mesial frontocentral cortex (supplementary motor area region) in the high-beta band, whereas younger volunteers had a prominent activation of the left lateral premotor and sensorimotor region in this frequency range. CONCLUSIONS: These findings demonstrate that the functional anatomy of the human motor system changes during normal aging. It appears that, for a given motor task, the aging brain recruits additional primary sensorimotor and premotor regions of both hemispheres.  相似文献   

9.
Regional cerebral blood flow (rCBF) was measured with H215O positron emission tomography in 5 patients with acquired hemidystonia (AHD) due to structural lesions of the basal ganglia or posterior thalamus contralateral to the dystonic limb. Patients were scanned at rest and when performing paced joystick movements in freely chosen directions with the dystonic and then the unaffected arm. Findings were compared with those of 5 age-matched controls performing joystick movements with the right arm. At rest, there was decreased activity in ventroanterior thalamus, posterior thalamus, angular gyrus ipsilateral to the lesion, and bilateral frontoorbital cortex. At a similar level of significance, increased resting activity was found in lentiform nucleus, hippocampus, and anterior insula contralateral to the lesion. Using the affected arm, AHD cases showed significant overactivity of contralateral prefrontal, lateral premotor cortex, rostral supplementary motor area, anterior cingulate area 32, bilateral sensorimotor cortex (SMC) and insula, mesial parietal cortex, and ipsilateral cerebellum. There was similar frontal overactivity when the unaffected arm performed the joystick movements, though SMC and insula overactivity was contralateral rather than bilateral. The associated frontal overactivity on movement is consistent with acquired dystonia being a syndrome of thalamofrontal disinhibition due to structural disruption of basal ganglia inhibitory control. Our findings also suggest that cortical activation during movement of the unaffected limb is abnormal in acquired hemidystonia.  相似文献   

10.
Tardive dystonia (TD) is a disabling disorder induced by neuroleptics. Internal globus pallidus (GPi) stimulation can dramatically improve TD. The present positron emission tomography and H(2)(15)O study aimed to characterize the abnormalities of brain activation of TD and the impact of GPi stimulation on these abnormalities in five TD patients treated with GPi stimulation and eight controls. Changes of regional cerebral blood flow (rCBF) were determined: (i) at rest; (ii) when moving a joystick with the right hand in three freely chosen directions in on and off bilateral GPi stimulation. A significant increase of rCBF was found in TD patients in off-stimulation condition compared to controls: (1) during motor execution in the prefrontal, premotor lateral, and anterior cingulate cortex; (2) at rest, in the prefrontal and anterior cingulate cortex and the cerebellum. Internal globus pallidus stimulation led to a reduction of rCBF (1) during motor execution, in the primary motor and prefrontal cortex and the cerebellum; (2) at rest, in the primary motor and anterior cingulate cortex and supplementary motor area. The results are as follows: (1) TD is related to an excess of brain activity notably in the prefrontal and premotor areas; (2) GPi stimulation reduces the activation of motor, premotor, and prefrontal cortex as well as cerebellum.  相似文献   

11.
We examined interconnections between a portion of the prefrontal cortex and the premotor areas in the frontal lobe to provide insights into the routes by which the prefrontal cortex gains access to the primary motor cortex and the central control of movement. We placed multiple injections of one retrograde tracer in the arm area of the primary motor cortex to define the premotor areas in the frontal lobe. Then, in the same animal, we placed multiple injections of another retrograde tracer in and around the principal sulcus (Walker's area 46). This double labeling strategy enabled us to determine which premotor areas are interconnected with the prefrontal cortex. There are three major results of this study. First, we found that five of the six premotor areas in the frontal lobe are interconnected with the dorsolateral prefrontal cortex. Second, the major site for interactions between the prefrontal cortex and the premotor areas is the ventral premotor area. Third, the prefrontal cortex is interconnected with only a portion of the arm representation in three premotor areas (supplementary motor area, the caudal cingulate motor area on the ventral bank of the cingulate sulcus, and the dorsal premotor area), whereas it is interconnected with the entire arm representation in the ventral premotor area and the rostral cingulate motor area. These observations indicate that the output of the prefrontal cortex targets specific premotor areas and even subregions within individual premotor areas.  相似文献   

12.
Recent advances in functional neuroimaging techniques permit non-invasive visualization of the human brain functions. In the central mechanism for controlling complex sequential movement, several candidate brain regions have been suggested to participate in a different way by the previous studies. The motor executive areas including the bilateral primary sensorimotor area and supplementary motor area, appear to play an executive role in running motor sequences, regardless of their length, and increase their activity associated with implicit or procedural learning of motor sequence. In contrast, the fronto-parietal network including the bilateral premotor, prefrontal and posterior parietal cortices appears to be related to the length of sequence performed and increases its activity associated with explicit or declarative learning of motor sequence. Although these techniques provide useful information on human physiology and pathophysiology in various brain functions, in order to explore functional relevance of findings it is important to combine functional neuroimaging studies with other modalities of physiological techniques.  相似文献   

13.
Two male patients (a child and an adult) with congenital mirror movement were studied using functional MRI (fMRI) and transcranial magnetic stimulation (TMS). Bilateral primary sensorimotor cortices were activated during unilateral hand gripping on fMRI when the child patient was 8 years old andthe adult was 37 years old. Bilateral motor evoked potentials were induced from the hand and forearm muscles after TMS of each hemisphere. Bilateral motor responses were also induced from the arm muscles in the adult patient. Bilateral motor responses had short and similar latencies. Contralateral motor responses to TMS were smaller than ipsilateral ones in the hand muscles, while contralateral responses were larger than ipsilateral ones in the arm muscles. Contralateral hand motor responses reduced in amplitude or disappeared with increasing age while in the child patient, mirror movements decreased gradually. Our results suggest that bilateral activation of the primary sensorimotor cortices during intended unilateral hand movement and bilateral motor responses to TMS account, at least in part, for the pathophysiology of congenital mirror movement. Reduction of contralateral hand motor responses may be related to the decrease in mirror movements during development.  相似文献   

14.
BACKGROUND: Based on the basal ganglia model, it has been hypothesized that the efficacy of high-frequency stimulation of the subthalamic nucleus (STN) against parkinsonian symptoms relies on the activation of cortical premotor regions. In previous positron emission tomography activation studies, STN high-frequency stimulation was associated with selective activation of midline premotor areas during hand movements but mainly reduced the regional cerebral blood flow in movement-related areas, peculiarly at rest. OBJECTIVE: To investigate with positron emission tomography the role of regional cerebral blood flow reduction in the clinical improvement provided by STN high-frequency stimulation. METHODS: Seven patients with advanced Parkinson disease, who were markedly improved by bilateral STN high-frequency stimulation, underwent positron emission tomography with H2(15)O while the right STN electrode was turned off. The patients were studied at rest and during right-hand movements in 3 electrode conditions: no stimulation, inefficient low-frequency stimulation, and efficient high-frequency stimulation. RESULTS: The main effect of high-frequency stimulation was to reduce regional cerebral blood flow in the left primary sensorimotor cortex, the lateral premotor cortex, the right cerebellum, and the midline premotor areas. The selective activation of the anterior cingulate cortex and the left primary sensorimotor cortex during hand movement under STN high-frequency stimulation was attributed to decreased regional cerebral blood flow at rest, rather than increased activation induced by STN high-frequency stimulation. Akinesia was correlated with the abnormal overactivity in the contralateral primary sensorimotor cortex and the ipsilateral cerebellum. CONCLUSION: High-frequency stimulation of the STN acts through the reduction of abnormal resting overactivity in the motor system, allowing selective cortical activation during movement.  相似文献   

15.
The ease with which humans are able to perform symmetric movements of both hands has traditionally been attributed to the preference of the motor system to activate homologous muscles. Recently, we have shown in right-handers, however, that bimanual index finger adduction and abduction movements in incongruous hand orientations (one palm down/other up) preferentially engaged parietal perception-associated brain areas. Here, we used functional magnetic resonance imaging to investigate the influence of hand orientation in left-handers on cerebral activation during bimanual index finger movements. Performance in incongruous orientation of either hand yielded activations involving right and left motor cortex, supplementary motor area in right superior frontal gyrus (SMA and pre-SMA), bilateral premotor cortex, prefrontal cortex, bilateral somatosensory cortex and anterior parietal cortex along the intraparietal sulcus. In addition, the occipito-temporal cortex corresponding to human area MT (hMT) in either hemisphere was activated in relation to bimanual index finger movements in the incongruous hand orientation as compared with the same movements in the congruous hand orientation or with simply viewing the pacing stimuli. Comparison with the same movement condition in right-handed subjects from a former study support these hMT activations exclusively for left-handed subjects. These results suggest that left-handers use visual motion imagery in guiding incongruous bimanual finger movements.  相似文献   

16.
Compared with complex coordinated orofacial actions, few neuroimaging studies have attempted to determine the shared and distinct neural substrates of supralaryngeal and laryngeal articulatory movements when performed independently. To determine cortical and subcortical regions associated with supralaryngeal motor control, participants produced lip, tongue and jaw movements while undergoing functional magnetic resonance imaging (fMRI). For laryngeal motor activity, participants produced the steady-state/i/vowel. A sparse temporal sampling acquisition method was used to minimize movement-related artifacts. Three main findings were observed. First, the four tasks activated a set of largely overlapping, common brain areas: the sensorimotor and premotor cortices, the right inferior frontal gyrus, the supplementary motor area, the left parietal operculum and the adjacent inferior parietal lobule, the basal ganglia and the cerebellum. Second, differences between tasks were restricted to the bilateral auditory cortices and to the left ventrolateral sensorimotor cortex, with greater signal intensity for vowel vocalization. Finally, a dorso-ventral somatotopic organization of lip, jaw, vocalic/laryngeal, and tongue movements was observed within the primary motor and somatosensory cortices using individual region-of-interest (ROI) analyses. These results provide evidence for a core neural network involved in laryngeal and supralaryngeal motor control and further refine the sensorimotor somatotopic organization of orofacial articulators.  相似文献   

17.
The contribution of the ipsilateral (nonaffected) hemisphere to recovery of motor function after stroke is controversial. Under the assumption that functionally relevant areas within the ipsilateral motor system should be tightly coupled to the demand we used fMRI and acoustically paced movements of the right index finger at six different frequencies to define the role of these regions for recovery after stroke. Eight well‐recovered patients with a chronic striatocapsular infarction of the left hemisphere were compared with eight age‐matched participants. As expected the hemodynamic response increased linearly with the frequency of the finger movements at the level of the left supplementary motor cortex (SMA) and the left primary sensorimotor cortex (SMC) in both groups. In contrast, a linear increase of the hemodynamic response with higher tapping frequencies in the right premotor cortex (PMC) and the right SMC was only seen in the patient group. These results support the model of an enhanced bihemispheric recruitment of preexisting motor representations in patients after subcortical stroke. Since all patients had excellent motor recovery contralesional SMC activation appears to be efficient and resembles the widespread, bilateral activation observed in healthy participants performing complex movements, instead of reflecting maladaptive plasticity. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Regional cerebral blood flow was measured using H215O and positron emission tomography in a group of 6 patients with idiopathic torsion dystonia and in a group of 6 control subjects. Subjects were scanned while at rest and when performing paced joystick movements in freely chosen directions with the right hand. Patients with idiopathic torsion dystonia showed significant overactivity in the contralateral lateral premotor cortex, rostral supplementary motor area, Brodmann area 8, anterior cingulate area 32, ipsilateral dorsolateral prefrontal cortex, and bilateral lentiform nucleus. Significant underactivity was found in the caudal supplementary motor area, bilateral sensorimotor cortex, posterior cingulate, and mesial parietal cortex. These results are consistent with inappropriate overactivity of striatofrontal projections and impaired activity of motor executive areas in idiopathic torsion dystonia and may explain the simultaneous dystonic posturing and bradykinesia evident in these patients.  相似文献   

19.
Motor skill acquisition is associated with the development of automaticity and induces neuroplastic changes in the brain. Using functional magnetic resonance imaging (fMRI), the present study traced learning-related activation changes during the acquisition of a new complex bimanual skill, requiring a difficult spatio-temporal relationship between the limbs, i.e., cyclical flexion-extension movements of both hands with a phase offset of 90 degrees. Subjects were scanned during initial learning and after the coordination pattern was established. Kinematics of the movements were accurately registered and showed that the new skill was acquired well. Learning-related decreases in activation were found in right dorsolateral prefrontal cortex (DLPFC), right premotor, bilateral superior parietal cortex, and left cerebellar lobule VI. Conversely, learning-related increases in activation were observed in bilateral primary motor cortex, bilateral superior temporal gyrus, bilateral cingulate motor cortex (CMC), left premotor cortex, cerebellar dentate nuclei/lobule III/IV/Crus I, putamen/globus pallidus and thalamus. Accordingly, bimanual skill learning was associated with a shift in activation among cortico-subcortical regions, providing further evidence for the existence of differential cortico-subcortical circuits preferentially involved during the early and advanced stages of learning. The observed activation changes account for the transition from highly attention-demanding task performance, involving processing of sensory information and corrective action planning, to automatic performance based on memory representations and forward control.  相似文献   

20.
Akinesia is associated with supplementary motor area (SMA) dysfunction in Parkinson's disease. We looked for a similar association in patients with schizophrenia. Using functional magnetic resonance imaging (fMRI), we compared motor activation in 6 akinetic neuroleptic-treated schizophrenic patients and 6 normal subjects. Schizophrenic patients had a defective activation in the SMA, left primary sensorimotor cortex, bilateral lateral premotor and inferior parietal cortices, whereas the right primary sensorimotor cortex and a mesial frontal area were hyperactive. SMA was hypoactive in akinetic schizophrenic patients, emphasizing the role of this area in motor slowness. Other abnormal signals likely reflect schizophrenia-related abnormal intracortical connections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号