首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.

Objective:

To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE).

Methods:

%GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose–volume histogram (DVH) and patients'' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson''s correlation coefficient (r) and receiver operating characteristics (ROCs).

Results:

Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively.

Conclusions:

There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis.

Advances in knowledge:

Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time.Volumetric modulated arc therapy (VMAT) is a novel delivery method of intensity-modulated radiotherapy (IMRT). It is capable of delivering highly conformal dose distributions through concomitant continuous gantry rotation, dynamic beam modulation and variable dose rate.1,2 Owing to its rotational delivery features, VMAT is more complex than conventional IMRT in both planning and dosimetric evaluations.3,4Quality assurance (QA) for VMAT is relatively new with respect to the established dosimetric verification of fixed-beam IMRT with two-dimensional (2D) arrays. Verifying the whole plan while the gantry is rotating is rather challenging.5,6 Numerous approaches and phantoms have been investigated for the QA of VMAT, including Monte Carlo simulation,7 ScandiDos Delta4® (ScandiDos, Uppsala, Sweden),8 GAFCHROMIC® EBT (International Specialty Products, Wayne, NJ) films,9 MatriXX™ 2D ionization chamber array with a MultiCube™ phantom (IBA Dosimetry Inc., Memphis, TN),10 2D-ARRAT seven29 and Octavius phantom (PTW, Freiburg, Germany), electronic portal imaging device and three-dimensional (3D) diode array ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL).6Until now, no standardized QA procedure and acceptance criteria specific for VMAT have been established. Those performing VMAT QA are typically using QA methods and action levels taken from fixed-beam IMRT QA methods. Phantom dose verification, gamma index with 3% dose difference and 3-mm dose-to-distance criteria are most commonly used by physicists in pre-treatment IMRT and VMAT QA as reported in the AAPM Task Group 119 and some other articles.1113 However, recent studies demonstrated that there is no correlation between the percentage gamma passing rate (%GP) and the magnitude of dose discrepancy between the planned dose and the actual delivered dose for IMRT.14,15 This also raises concern about whether the %GP is correlated with clinical dosimetric difference for VMAT.The main purpose of this study is to investigate comparatively the %GP of 2D and 3D VMAT dosimetric verification with different acceptance criteria, and their correlation and sensitivity with percentage dosimetric errors (%DE) between planned dose–volume histogram (DVH) and patients'' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation).  相似文献   

3.
4.
5.

Objectives

Volumetric-modulated arc therapy (VMAT) is becoming an increasingly utilised modality for treating a variety of anatomical sites. However, the efficacy of single-arc VMAT to treat prostate cancer suspicious for extraprostatic extension was heretofore unknown. In this work, we report our institutional experience with single-arc VMAT and fixed-beam intensity-modulated radiation therapy (IMRT) for prostate cancer patients treated for seminal vesicle and/or lymph node involvement.

Methods

Single-arc VMAT and 7- or 9-field IMRT treatment plans were compared for 10 prostate cancer patients treated for seminal vesicle involvement and/or lymph node involvement. All treatment plans were constructed using the Philips Pinnacle treatment planning system (v.9.0, Fitchburg, WI) and delivered on an Elekta Infinity radiotherapy accelerator (Crawley, UK). Resulting plans were compared using metrics that characterised dosimetry and delivery efficiency.

Results

No statistically significant differences in target coverage, target homogeneity or normal tissue doses were noted between the plans (p>0.05). For prostate patients treated for seminal vesicle involvement, VMAT plans were delivered in 1.4±0.1 min (vs 9.5±2.4 min for fixed-beam IMRT) (p<0.01) and required approximately 20% fewer monitor units (p=0.01). For prostate patients treated for lymph node involvement, VMAT plans were delivered in 1.4±0.1 min (vs 11.7±1.3 min for fixed-beam IMRT) (p<0.01) and required approximately 45% fewer monitor units (p<0.01).

Conclusion

Single-arc VMAT plans were dosimetrically equivalent to fixed-beam IMRT plans with significantly improved delivery efficiency.The evolution and widespread implementation of intensity-modulated radiation therapy (IMRT) has enabled the delivery of highly conformal doses to target structures [1,2]. Recent advances in treatment planning optimisation and accelerator delivery technology have fuelled a growing interest in maintaining IMRT-quality treatment plans while dramatically decreasing the time and monitor unit (MU) requirements for treatment delivery, the benefits of which are well documented [3-5]. Volumetric-modulated arc therapy (VMAT), in which continuous modulation of the multileaf collimator (MLC), dose rate and gantry speed are utilised to deliver highly conformal dose distributions in a short period of time and with fewer MUs, offers such a solution [3]. However, debate has arisen regarding the efficacy and potential benefits of VMAT [5-8], particularly as it relates to the relationship between plan quality and the number of arcs required to deliver IMRT-quality plans. As such, the theoretical advantages of single-arc rotational IMRT have not yet been fully demonstrated clinically.Studies reporting the equivalence of single-arc VMAT and IMRT in the pelvis have concentrated on relatively simple, single-dose targets such as the prostate or prostate bed [4,9], while studies that have examined more complex pelvic target geometries have yielded mixed results. In a retrospective planning study, Guckenberger et al [10] found that VMAT plans including a simultaneously delivered integrate boost could improve target coverage and homogeneity for prostate cancer cases. However, their study was conducted with an early research release of treatment planning software and resulting plans were neither clinically delivered nor verified. More recently, Yoo et al [11] found that fixed-beam IMRT plans were superior to one- and two-arc VMAT when considering target volumes that included the prostate, seminal vesicles and/or pelvic lymph nodes. However, their study was conducted using the Varian Medical Systems (Palo Alto, CA) treatment planning system and delivery technology. There have been no studies to date that have conducted a similar clinical investigation using competing hardware and software configurations. Such studies are prudent given the marked differences between treatment planning and delivery approaches among radiotherapy vendors.In this work, we report on our institutional experience comparing fixed-beam IMRT and single-arc VMAT plans produced using the Philips Pinnacle treatment planning system (v.9.0, Fitchburg, WI) and delivered by the Elekta treatment control system (Crawley, UK) for 10 prostate patients treated for seminal vesicle and/or lymph node involvement. Resulting plans were compared on the basis of quantitative dosimetric metrics and delivery efficiency.  相似文献   

6.

Objective:

In radiotherapy treatments, it is crucial to monitor the performance of linear accelerator (linac) components, including gantry, collimation system and electronic portal imaging device (EPID) during arc deliveries. In this study, a simple EPID-based measurement method is suggested in conjunction with an algorithm to investigate the stability of these systems at various gantry angles with the aim of evaluating machine-related errors in treatments.

Methods:

The EPID sag, gantry sag, changes in source-to-detector distance (SDD), EPID and collimator skewness, EPID tilt and the sag in leaf bank assembly owing to linac rotation were separately investigated by acquisition of 37 EPID images of a simple phantom with 5 ball bearings at various gantry angles. A fast and robust software package was developed for automated analysis of the image data. Nine Elekta AB (Stockholm, Sweden) linacs of different models and number of years in service were investigated.

Results:

The average EPID sag was within 2 mm for all tested linacs. Some machines showed >1-mm gantry sag. Changes in the SDD values were within 1.3 cm. EPID skewness and tilt values were <1° in all machines. The maximum sag in multileaf collimator leaf bank assemblies was around 1 mm. A meaningful correlation was found between the age of the linacs and their mechanical performance.

Conclusions and Advances in knowledge:

The method and software developed in this study provide a simple tool for effective investigation of the behaviour of Elekta linac components with gantry rotation. Such a comprehensive study has been performed for the first time on Elekta machines.Rotation of the treatment beam around the patient is one of the common features in radiotherapy. However, it is known that the gravity effect on several tons of radiation shielding, beam generation and shaping systems, and other components in the gantry head introduces deviations to the gantry rotation pattern from an ideal circle.15 Gravity can also induce sagging of the beam collimation system.3,6,7 Rotation of the gantry during treatment delivery can lead to additional multileaf collimator (MLC) errors (systematic shifts) owing to the displacement of the leaf bank assembly.79 Moreover, linear accelerator (linac) rotation can affect gantry-mounted accessories such as the electronic portal imaging device (EPID), since the EPID-supporting arm is not mechanically perfect and rigidly attached. With the growing application of EPIDs in pre- and post-treatment dosimetry verification,1015 real-time dosimetry verification16,17 and real-time tumour tracking for intrafraction motion management in modern radiotherapy,1820 it is essential to characterize and account for the mechanical system imperfections of linacs.There have been several studies in the literature on investigation of the EPID/gantry/collimator excursions during arc deliveries, which have been discussed in previous articles.4,7,21 Our former studies were focused on using EPID-based methods for evaluation of the performance of Varian linacs (Varian® Medical Systems, Palo Alto, CA). In this work, investigation is extended to the behaviour of components of Elekta linacs (Elekta AB, Stockholm, Sweden) at various gantry angles with some additional details. The aim of this study is to use a simple phantom design and collect the required data for investigation of: (a) gantry sag; (b) EPID sag, skewness and tilt; and (c) MLC bank assembly sag in Elekta machines at different gantry angles. Fast, accurate methods and algorithms are developed for automated data analysis and quantification of the system characteristics. Finally, based on the results acquired for several linacs, a generalized pattern (map) is derived for each of the above components with a sufficiently low level of uncertainty. Parameterizations of this map enable generic corrections to be applied during data acquisition and processing, which could be applicable to all Elekta EPIDs used for dosimetry or patient positioning.  相似文献   

7.

Objectives

The purpose of this prospective study was to evaluate the accuracy of in-phase and out-of-phase imaging to assess hepatic iron concentration in patients with haematological malignancies and chronic liver disease.

Methods

MRI-based hepatic iron concentration (M-HIC, μmol g–1) was used as a reference standard. 42 patients suspected of having iron overload and 12 control subjects underwent 1.5 T in- and out-of-phase and M-HIC liver imaging. Two methods, semi-quantitative visual grading made by two independent readers and quantitative relative signal intensity (rSI) grading from the signal intensity differences of in-phase and out-of-phase images, were used. Statistical analyses were performed using the Spearman and Kruskal–Wallis tests, receiver operator curves and κ coefficients.

Results

The correlations between M-HIC and visual gradings of Reader 1 (r=0.9534, p<0.0001) and Reader 2 (r=0.9456, p<0.0001) were higher than the correlations of the rSI method (r=0.7719, p<0.0001). There was excellent agreement between the readers (weighted κ=0.9619). Both visual grading and rSI were similar in detecting liver iron overload: rSI had 84.85% sensitivity and 100% specificity; visual grading had 85% sensitivity and 100% specificity. The differences between the grades of visual grading were significant (p<0.0001) and the method was able to distinguish different degrees of iron overload at the threshold of 151 μmol g–1 with 100% positive predictive value and negative predictive value.

Conclusion

Detection and grading of liver iron can be performed reliably with in-phase and out-of-phase imaging. Liver fat is a potential pitfall, which limits the use of rSI.Iron overload is a clinically recognised condition with variety of aetiologies and clinical manifestations [1-4]. Liver iron concentration correlates closely with the total body iron stores [5]. The excess iron accumulates mainly in the liver and the progressive accumulation of toxic iron can lead to organ failure if untreated [2,4]. Several diseases causing iron overload, such as transfusion-dependent anaemia, haematological malignancies, thalassaemia, haemochromatosis and chronic liver disease, result in a large number of patients with a potentially treatable iron overload [1,2,4].Several quantitative MRI methods for iron overload measurement by multiple sequences have been established, such as proportional signal intensity (SI) methods and proton transverse relaxation rates (R2, R2*) [4,6,7]. A gradient echo liver-to-muscle SI-based algorithm [8] has been widely validated and used for quantitative liver iron measurement [8-11]. MRI-based hepatic iron concentration (M-HIC, μmol g–1 liver dry weight) with corresponding R2* [9] can be calculated with this method which is a directly proportional linear iron indicator, virtually independent of the fat fraction, as the echo times are taken in-phase [8,9]. This method showed a high accuracy in calibrations with the biochemical analysis of liver biopsies (3–375 μmol g–1) of 174 patients. The mean difference of 0.8 μmol g–1 (95% confidence interval of –6.3 to 7.9) between this method and the biochemical analysis is quite similar [8] to the intra-individual variability found in histological samples [12].The quantitative MRI methods are based on progressive SI decay, with the longer echo times due to relaxing properties of iron. Interestingly, this iron-induced effect is seen in MR images with multiple echoes [4,6-11], but also in dual-echo images, namely in-phase and out-of-phase imaging [13,14]. In-phase and out-of-phase imaging has become a routine part of liver MRI, performed initially for liver fat detection [6,13,15]. Quite recently some investigators have noticed an alternative approach of the sequence to detect liver iron overload due to the more pronounced SI decrease on in-phase images with the longer echo time [13,14]. Yet, to our knowledge, this is the first prospective study evaluating the accuracy of in-phase and out-of-phase imaging to assess hepatic iron concentration.The purpose of the study was to evaluate the capability and accuracy of dual-echo in-phase and out-of-phase imaging to assess hepatic iron concentration at 1.5 T in patients with haematological malignancies and chronic liver disease. MRI-based hepatic iron concentration (M-HIC, μmol g–1) was used as a reference standard [8,9].  相似文献   

8.

Objective

The aim of this study was to identify the risk factors associated with the prognosis of a subchondral insufficiency fracture of the femoral head (SIF).

Methods

Between June 2002 and July 2009, 25 patients diagnosed with SIF were included in this study. Sequential radiographs were evaluated for the progression of collapse. Clinical profiles, including age, body mass index, follow-up period and Singh’s index, were documented. The morphological characteristics of the low-intensity band on T1 weighted MRI were also examined with regards to four factors: band length, band thickness, the length of the weight-bearing portion and the band length ratio (defined as the proportion of the band length to the weight-bearing portion of the femoral head in the slice through the femoral head centre).

Results

Radiographically, a progression of collapse was observed in 15 of 25 (60.0%) patients. The band length in patients with progression of collapse [22.5 mm; 95% confidence interval (CI) 17.7, 27.3] was significantly larger than in patients without a progression of collapse (13.4 mm; 95% CI 7.6, 19.3; p<0.05). The band length ratio in patients with progression of collapse (59.8%; 95% CI 50.8, 68.9) was also significantly higher than in patients without a progression of collapse (40.9%; 95% CI 29.8, 52.0; p<0.05). No significant differences were present in the other values.

Conclusion

These results indicate that the band length and the band length ratio might be predictive for the progression of collapse in SIF.Subchondral insufficiency fractures of the femoral head (SIF) often occur in osteoporotic elderly patients [1-9]. Patients usually suffer from acute hip pain without any obvious antecedent trauma. Radiologically, a subchondral fracture is seen primarily in the superolateral portion of the femoral head [4,5,10]. T1 weighted MRI reveal a very low-intensity band in the subchondral area of the femoral head, which tends to be irregular, disconnected and convex to the articular surface [2,4,5,7,9,11]. This low-intensity band in SIF was histologically proven to correspond with the fracture line and associated repair tissue [5,9]. Some cases of SIF resolve after conservative treatment [5,11-14]; other cases progress until collapse, thereby requiring surgical treatment [4-10,15]. The prognosis of SIF patients remains unclear.The current study investigated the risk factors that influence the prognosis of SIF based on the progression to collapse.  相似文献   

9.

Objective:

To compare the dosimetric results and treatment delivery efficiency among RapidArc® (Varian Medical Systems, Palo Alto, CA), 7-field intensity-modulated radiotherapy (7-f IMRT) and 9-field IMRT (9-f IMRT) with hypofractionated simultaneous integrated boost to the prostate.

Methods:

RapidArc, 7-f IMRT and 9-f IMRT plans were created for 21 consecutive patients treated for high-risk prostate cancer using the Eclipse™ treatment planning system (Varian Medical Systems). All plans were designed to deliver 70.0 Gy in 28 fractions to the prostate planning target volume (PTV) while simultaneously delivering 50.4 Gy in 28 fractions to the pelvic nodal PTV. Target coverage and sparing of organs at risk (OARs) were compared across techniques. The total number of monitor units (MUs) and the treatment time were used to assess treatment delivery efficiency.

Results:

RapidArc resulted in slightly superior conformity and homogeneity of prostate PTV, whereas all plans were comparable with respect to dose to the nodal PTV. Although OARs sparing for RapidArc and 7-f IMRT plans were almost equivalent, 9-f IMRT achieved better sparing of the rectum and bladder than RapidArc and 7-f IMRT. RapidArc provided the highest treatment delivery efficiency with the lowest MUs and shortest treatment time.

Conclusion:

RapidArc resulted in similar OAR sparing to 7-f IMRT, whereas 9-f IMRT provided the best OAR sparing. Treatment delivery efficiency is significantly higher for RapidArc.

Advances in knowledge:

This study validated the feasibility and limitations of RapidArc in the treatment of high-risk prostate cancer with complex pelvic target volumes.Radiotherapy has played an important role in the treatment of locally advanced prostate cancer. Several randomised controlled trials have demonstrated that high-dose radiotherapy improves prostate-specific antigen control, and a recently published meta-analysis [1] showed that high-dose radiotherapy is superior to conventional-dose radiotherapy in preventing biochemical or clinical failure and prostate cancer-specific death. However, dose escalation has been limited by toxicity in conventional techniques. Therefore, prostate cancer is one of the most common tumour sites treated with intensity-modulated radiation therapy (IMRT), which enables the delivery of highly conformal dose distribution to the target while reducing the dose to critical organs. IMRT also has the ability to produce inhomogeneous dose distribution, which allows for simultaneous differential dose delivery to multiple tumour targets (simultaneous integrated boost). Despite the obvious benefits of IMRT, there are some disadvantages. The potential downsides of IMRT include the increased time required for radiotherapy delivery and increased monitor units (MUs) needed compared with conventional three-dimensional conformal radiation therapy.Volumetric-modulated arc therapy (VMAT) is a relatively new rotational radiation therapy technique based on the idea of delivering IMRT with continuous dynamic modulation of the dose rate, field aperture and gantry speed. Compared with IMRT, the potential benefit of VMAT is the increase in delivery efficiency, including a shorter treatment time and a lower number of MUs.Several recent studies have compared VMAT with IMRT for prostate radiotherapy [213]. Although shortened treatment time is a common finding, there are inconsistencies in the dosimetric outcome. Many studies considering relatively simple target volumes that included prostate only or prostate with seminal vesicles found that VMAT achieved equal or better normal tissue sparing over IMRT [2,3,5,6,810,12]. However, very few studies have focused on more complex pelvic target volumes, including the prostate, seminal vesicles and pelvic lymph nodes [4,7,11,13]. Some of these studies found largely equivalent sparing of organs at risk (OARs) between VMAT and IMRT [7,13]. However, other planning studies have reported contradictory results. Yoo et al [4] noted superior OARs sparing with IMRT to VMAT. Myrehaug et al [11] found VMAT to have no consistent dosimetric advantage over IMRT. Thus, those studies have yielded mixed results. Our study aims to expand such studies to quantitatively evaluate VMAT for prostate cancer cases with complex pelvic target volumes and simultaneous integrated boost techniques.RapidArc® is one of the VMAT techniques implementing the progressive resolution optimisation algorithm in the Eclipse™ planning system by Varian Medical Systems (Palo Alto, CA). In the present study, we compare the performance of RapidArc, 7-field IMRT (7-f IMRT) and 9-field IMRT (9-f IMRT) with hypofractionated simultaneous integrated boost to the prostate for patients with high-risk prostate cancer. This study focused on the evaluation of the dosimetric results and treatment delivery efficiency.  相似文献   

10.

Objective:

To test the feasibility of volumetric modulated arc therapy (VMAT) in breast cancer and to compare it with three-dimensional conformal radiotherapy (3D-CRT) as conventional tangential field radiotheraphy (conTFRT).

Methods:

12 patients (Stage I, 8: 6 left breast cancer and 2 right breast cancer; Stage II, 4: 2 on each side). Three plans were calculated for each case after breast-conserving surgery. Breast was treated with 50 Gy in four patients with supraclavicular lymph node inclusion, and in eight patients without the node inclusion. Multiple indices and dose parameters were measured.

Results:

V95% was not achieved by any modality. Heterogeneity index: 0.16 (VMAT), 0.13 [intensity-modulated radiotherapy (IMRT)] and 0.14 (conTFRT). Conformity index: 1.06 (VMAT), 1.15 (IMRT) and 1.69 (conTFRT). For both indices, IMRT was more effective than VMAT (p=0.009, p=0.002). Dmean and V20 for ipsilateral lung were lower for IMRT than VMAT (p=0.0001, p=0.003). Dmean, V2 and V5 of contralateral lung were lower for IMRT than VMAT (p>0.0001, p=0.005). Mean dose and V5 to the heart were lower for IMRT than for VMAT (p=0.015, p=0.002).

Conclusion:

The hypothesis of equivalence of VMAT to IMRT was not confirmed for planning target volume parameter or dose distribution to organs at risk. VMAT was inferior to IMRT and 3D-CRT with regard to dose distribution to organs at risk, especially at the low dose level.

Advances in knowledge:

New technology VMAT is not superior to IMRT or conventional radiotherapy in breast cancer in any aspect.In Western countries, one in every eight females is diagnosed with breast cancer. Breast-conserving surgery with post-operative radiotherapy (RT) is the primary therapeutic strategy for Stages I and II of breast cancer. Systemic therapy is also part of the primary therapeutic strategy in most patients with Stage I and II breast cancer. RT substantially reduces the rate of local relapse and improves long-term survival [1]. However, RT is suggested to be associated with morbidity of the heart [2,3], lung [4,5], subcutaneous tissue and skin [6] and a risk of secondary malignancies [79].A large body of available data regarding the potential toxicity of RT was published between 1980 and the end of 1990 [1]. Special clinical interest has been focused on acute and mostly transient lung and skin toxicity, axillary problems and late cardiac events, in addition to the risk of secondary malignancies. This period was characterised by RT delivery using a fluoroscopic technique with two-dimensional planning followed by three-dimensional (3D) conformal techniques with two conventional tangential field radiotherapy (conTFRT) fields. conTFRT encompassed the whole breast, skin, minor ipsilateral lung volume, a part of the axillary region at Level 1 and a part of the heart in the case of left-sided cancer [1012]. These areas have been sites for local toxicity, because RT principles, and thus homogeneous photon flux across treatment fields, remained unchanged.Intensity-modulated radiotherapy (IMRT) has been implemented in the past decade, permitting variation of fluence modulation across fields and allowing optimal dose administration according to an individual''s anatomy. IMRT results in improved avoidance of critical structures such as the heart, skin, axillary region and lung, while facilitating necessary tumour volume coverage [13,14]. Clinical data on IMRT show an improvement in dose homogeneity within the irradiated breast and sparing of the heart and lung [1417]. However, a disadvantage of IMRT over conTFRT is the long treatment duration owing to the higher number of fields and monitor units (MUs) involved. In addition, although IMRT reduces the volume of the heart and ipsilateral lung that receive high doses, it is associated with an increase in overall low-dose radiation. Despite the available clinical data, the wider use and specific indications for IMRT for breast cancer have not been established.In volumetric modulated arc therapy (VMAT), technical extension of conventional fixed-field IMRT, an optimised dose distribution is possible with a single gantry rotation. Studies have shown that VMAT reduces the number of MUs and treatment delivery time [1822], with similar or better planning target volume (PTV) coverage and sparing of organs at risk (OARs) than IMRT. Reports on VMAT for breast cancer are few and mainly concern planning comparisons [20,2328] and very preliminary clinical data [29].The RapidArc® system (Varian Medical Systems, Palo Alto, CA) has recently been introduced in our department. Accordingly, we have begun examining the potential of RapidArc VMAT for breast cancer treatment in a prospective clinical setting to adequately evaluate dosimetric parameters, treatment planning and clinical implications as well the disadvantages.The present study aimed to compare the use of RapidArc VMAT with IMRT and conTFRT for breast cancer therapy. We hypothesised that the use of RapidArc under routine clinical circumstances would be equivalent to or better than IMRT and conTFRT in terms of PTV coverage and OAR sparing, while reducing both treatment time and MUs.  相似文献   

11.

Objectives

The purpose of this study was to correlate findings on small vessel vascularity between computerised findings and Newman''s scaling using power Doppler ultrasonography (PDU) imaging and its predictive value in patients with plantar fasciitis.

Methods

PDU was performed on 44 patients (age range 30–66 years; mean age 48 years) with plantar fasciitis and 46 healthy subjects (age range 18–61 years; mean age 36 years). The vascularity was quantified using ultrasound images by a customised software program and graded by Newman''s grading scale. Vascular index (VI) was calculated from the software program as the ratio of the number of colour pixels to the total number of pixels within a standardised selected area of proximal plantar fascia. The 46 healthy subjects were examined on 2 occasions 7–10 days apart, and 18 of them were assessed by 2 examiners. Statistical analyses were performed using intraclass correlation coefficient and linear regression analysis.

Results

Good correlation was found between the averaged VI ratios and Newman''s qualitative scale (ρ = 0.70; p<0.001). Intratester and intertester reliability were 0.89 and 0.61, respectively. Furthermore, higher VI was correlated with less reduction in pain after physiotherapeutic intervention.

Conclusions

The computerised VI not only has a high level of concordance with the Newman grading scale but is also reliable in reflecting the vascularity of proximal plantar fascia, and can predict pain reduction after intervention. This index can be used to characterise the changes in vascularity of patients with plantar fasciitis, and it may also be helpful for evaluating treatment and monitoring the progress after intervention in future studies.Plantar fasciitis is the most common cause of heel pain, and about 2 000 000 patients in the USA receive treatment every year because of this condition [1]. Besides mechanical loading, vascular disturbance with consequent metabolic impairment and hypoxia is thought to play an important role [2]. Indeed, fibrovascular hyperplasia and vascular proliferation were observed from microscopic specimens obtained from operative resection [3-5]. Walther et al [6] were the first group to evaluate plantar fascia vascularity non-invasively using power Doppler ultrasonography (PDU).PDU is one of the colour flow imaging techniques that encodes the amplitude of the power spectral density of the Doppler signals [7]. This method has been used to assess soft-tissue vascularity and treatment efficacy with a variety of musculoskeletal and related problems. Changes in vascularity in synovial tissues in patients with rheumatoid arthritis [8-11], osteoarthritis [12,13], tendinopathy [6,14-21] and plantar fasciitis [6] have been reported. Modulation in vascularity was observed in patients with tendinopathy after a course of intervention [14-21]. Most of these studies used the Newman''s grading scale to grade the tissue vascularity [19-21]. This qualitative grading for the PDU images had high correlation with the histopathological grading of vascularity of the synovial membrane in patients with arthritis [11]. Nevertheless, Newman''s grading system may not be objective and sensitive enough to differentiate subtle vascularity changes.Recently, computerised methods were used to quantify tissue vascularity with ultrasonography. Tissue vascularity was quantified by computing a vascular index (VI), which is calculated as the ratio of the number of colour pixels to the total number of pixels within the region of interest in patients with soft-tissue problems [8,9,11,17]. Note that most of these studies were conducted using colour Doppler ultrasonography. In this connection, PDU is superior to frequency-based colour Doppler ultrasonography, especially in tissues with low blood flow, such as the plantar fascia [6,22,23]. Ying et al [24] reported the feasibility of computerised quantification of vascularity in thyroid tissues with PDU. We were interested in evaluating whether the computerised quantification of vascularity could be applied on musculoskeletal tissue, such as the plantar fascia. Therefore, the purpose of the present study was to correlate the computerised VI and Newman''s qualitative grading scale in quantifying plantar fascia vascularity using PDU, to evaluate the intra- and intertester reliability of the computerised quantitative method and its predictive ability of recovery in patients with plantar fasciitis. Proximal plantar fascia, which is the most commonly affected area in individuals with plantar fasciitis, according to clinical examination [25,26] and previous B-mode ultrasonography [26-28], was chosen as the target testing area.  相似文献   

12.

Objective:

This study compared the dosimetry of volumetric-arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) with a dynamic multileaf collimator using the Monte Carlo algorithm in the treatment of prostate cancer with and without simultaneous integrated boost (SIB) at different energy levels.

Methods:

The data of 15 biopsy-proven prostate cancer patients were evaluated. The prescribed dose was 78 Gy to the planning target volume (PTV78) including the prostate and seminal vesicles and 86 Gy (PTV86) in 39 fractions to the intraprostatic lesion, which was delineated by MRI or MR-spectroscopy.

Results:

PTV dose homogeneity was better for IMRT than VMAT at all energy levels for both PTV78 and PTV86. Lower rectum doses (V30V50) were significantly higher with SIB compared with PTV78 plans in both IMRT and VMAT plans at all energy levels. The bladder doses at high dose level (V60V80) were significantly higher in IMRT plans with SIB at all energy levels compared with PTV78 plans, but no significant difference was observed in VMAT plans. VMAT plans resulted in a significant decrease in the mean monitor units (MUs) for 6, 10, and 15 MV energy levels both in plans with and those without SIB.

Conclusion:

Dose escalation to intraprostatic lesions with 86 Gy is safe without causing serious increase in organs at risk (OARs) doses. VMAT is advantageous in sparing OARs and requiring less MU than IMRT.

Advances in knowledge:

VMAT with SIB to intraprostatic lesion is a feasible method in treating prostate cancer. Additionally, no dosimetric advantage of higher energy is observed.Randomized trials have shown a gain in biochemical relapse-free survival using dose escalation for prostate cancer.1 However, isolated local failure is still reported in nearly one-third of patients, even with higher radiotherapy (RT) doses.1 Local recurrence is of clinical importance because a relationship has been suggested between local control, distant metastasis and survival.2 It has also been demonstrated that intraprostatic failure mainly originates at the initial tumour location as a result of intrinsic resistance of a fraction of the tumour clones, which implies that selective dose escalation to the dominant intraprostatic lesion using simultaneous integrated boost (SIB) might be beneficial.3With new RT techniques, such as intensity-modulated RT (IMRT) and volumetric-arc therapy (VMAT), SIB could be delivered without increasing acute toxicity.47 Several recent studies have performed dosimetric comparison of IMRT and VMAT plans in prostate cancer;810 however, dosimetric evaluation of IMRT and VMAT plans delivering SIB is rare. In these studies, target volume and organs at risk (OARs) doses may vary with different treatment planning systems. Another aspect not often addressed in these planning studies is the photon energy level.4,8,9,11 Although higher energy photons have the potential advantage of reduced attenuation with depth, this may in turn increase the risk of secondary malignancies because of the presence of neutrons generated in the accelerator head at treatment energies >8 MV.12Functional imaging techniques can clearly demonstrate tumour within the prostate. MRI, MR spectroscopy (MRS) and positron emission tomography are capable of demonstrating intraprostatic lesions (IPLs).13 The advent of combined MRI with MRS or dynamic contrast enhanced (DCE)-MRI improves the detection rate of tumours within the prostate.1315The aim of the present study was to make dosimetric comparisons of VMAT and 7-field IMRT with dynamic multileaf collimators (MLCs) using the Monte Carlo algorithm with XVMC code in the treatment of prostate cancer with or without SIB, which can provide improved dose calculation accuracy and has been implemented successfully in the clinical setting.16,17 Additionally, the impact of three photon energies on target volumes, OARs and normal tissue was evaluated in IMRT and VMAT plans.  相似文献   

13.

Objectives

The purpose of this study was to describe the MRI features of the benign pancreatic neoplasm serous oligocystic adenoma (SOA) that differ from those of mucinous cystic neoplasm (MCN), a neoplasm with the potential for malignant degeneration.

Methods

Seven patients with SOA (seven women; mean age 36.6 years) and eight patients with MCN (eight women: mean age 39.9 years) were included. Several imaging features were reviewed: mass size, location, shape, wall thickness, cyst configuration (Type I, unilocular; Type II, multiple clustered cyst; Type III, cyst with internal septation) and signal intensity of the lesion with heterogeneity.

Results

SOA lesions were smaller (3.4 cm) than those of MCN (9.3 cm) (p=0.023). The commonest lesion shape was lobulated (85.7%) for SOA, but oval (50.0%) or lobulated (37.5%) for MCN (p=0.015). The most common cyst configuration was Type II (85.7%) for SOA and Type III (75.0%) for MCN (p=0.008). Heterogeneity of each locule in T1 weighted images was visible in all cases of MCN, but in no case for SOA (p=0.004).

Conclusion

SOA could be differentiated from MCN by identifying the imaging features of lobulated contour with multiple clustered cyst configurations and homogeneity of each locule in T1 weighted MR images.Serous oligocystic adenoma (SOA) is a recently described rare, benign pancreatic neoplasm and a morphological variant of serous microcystic adenoma, because it contains six or fewer cysts and the cysts are large (>2 cm) [1,2]. Pathologically, SOA is a benign pancreatic neoplasm composed of a few relatively large cysts uniformly lined with glycogen-rich cuboidal epithelial cells [3]. According to the World Health Organization classification, SOA is a subgroup of pancreatic serous cystic tumours and the term SOA is a synonym for macrocystic serous cystadenoma [3,4].The CT and MRI features of SOA of the pancreas are documented [2]. On CT and MRI, SOA typically appears as a small unilocular or bilocular cyst (<5 cm) with a thin wall (<2 mm) that lacks mural nodules or calcifications [2]. Because the cystic spaces are >2 cm, SOA images can be mistaken for mucinous cystic neoplasm (MCN), pseudocyst or intraductal papillary mucinous tumour [2,5-7]. It is very difficult to differentiate SOA from MCN by clinical and radiological features [2,6,8,9]. SOA does not require resection unless it causes symptoms, but MCN should be resected because of a potential for malignant degeneration [5,7,8]. Endoscopic ultrasound and cyst fluid aspiration have a role in distinguishing mucinous and serous lesions, but it is an invasive procedure with a risk of complications such as pancreatitis [10]. Therefore, it is clinically valuable to determine characteristic imaging findings that can distinguish SOA from MCN.Recently, Kim et al [6] and Cohen-Scali et al [5] described characteristic CT findings that can be used to differentiate SOA from MCN. MRI can demonstrate septa within a lesion with greater sensitivity than CT; therefore, MRI provides a better evaluation of tissue characteristics than CT [1,11]. However, few studies have described the MRI features of SOA [1,2]. The purpose of this study was to describe the differences in the MRI features of SOA and MCN in the pancreas.  相似文献   

14.

Objectives

The aim of this article was to prospectively evaluate the accuracy and radiation dose of 320-detector row dynamic volume CT (DVCT) for the detection of coronary artery disease (CAD) in a high-risk population.

Methods

60 patients with a high risk of CAD underwent DVCT without preceding heart rate control and also underwent invasive coronary angiography (ICA), which served as the standard reference.

Results

On a per segment analysis, overall sensitivity was 95.3%, specificity was 97.6%, positive predictive value was 90.6%, negative predictive value was 98.8% and Youden index was 0.93. In both heart rate subgroups, diagnostic accuracy for the assessment of coronary artery stenosis was similar. The accuracy of the subgroup with an Agatston score ≥100 was lower than that for patients with an Agatston score <100. However, the difference between DVCT and ICA results was not significant (p=0.08). The mean estimated effective dose of CT was 12.5±9.4 mSv. In those patients with heart rates less than 70 beats per minute (bpm), the mean radiation exposure of DVCT was 5.2±0.9 mSv. The effective radiation dose was significantly lower than that of ICA (14.1±5.9 mSv) (p<0.001). When the heart rate was >70 bpm, a significantly higher dose was delivered to patients with DVCT (22.6±5.2 mSv, p<0.001) than with ICA (15.0±5.3 mSv, p<0.001).

Conclusion

DVCT reliably provides high diagnostic accuracy without heart rate/rhythm control. However, from a dosimetric point of view, it is recommended that heart rate should be controlled to <70 bpm to decrease radiation dose.The small diameter of the coronary segments, their complex three-dimensional geometry and their rapid movement throughout the cardiac cycle represent the major challenges for artefact-free coronary CT angiography (CTA). With each scanner generation, motion artefacts re-appear as a major cause of image quality degradation during coronary CTA [1-10]. Coronary CTA studies of each coronary artery with four-multidetector CT (MDCT) at a gantry rotation time of 500 ms had significantly decreased image quality with increasing mean heart rates [3]. Using 16-MDCT at a gantry rotation time of 420 ms, Hoffmann et al [2] found a significant negative correlation between overall image quality and mean heart rate. Even using 64-section CT, with its gantry rotation speed of 330 ms, elevated and irregular heart beats were found to cause relevant degradation of image quality [1,4,9,11]. Using dual-source CT (DSCT) with an increased temporal resolution of 83 ms, there was no significant correlation between mean heart rate and the overall image quality for any coronary segment or for any individual coronary artery. Nonetheless, irregular heart rates still slightly affect the image quality of non-invasive coronary angiography, even with DSCT [10,12].The 320-detector row dynamic volume CT (DVCT) is characterised by 320 slice detectors with a thickness of 0.5 mm and gantry rotation time of 350 ms. With a wide coverage of 16 cm in the z-axis, the whole heart can be covered within one cardiac cycle. Theoretically, DVCT makes it possible to scan patients with an irregular heart rate without “stair-step” artefacts. At the same time, DVCT avoids the overlapping rotations of helical CT, and the application of prospective echocardiogram (ECG) gating has become more feasible. Recent studies of DVCT have mainly been based on a low heart rate [13-17]. Few studies have investigated the diagnostic accuracy in higher heart rates and arrhythmia. Our purpose was to systematically evaluate the diagnostic accuracy and exposure dose of DVCT in a high-risk population with high and irregular heart rates.  相似文献   

15.

Objective

To compare reader ratings of the clinical diagnostic quality of 50 and 100 μm computed radiography (CR) systems with screen–film mammography (SFM) in operative specimens.

Methods

Mammograms of 57 fresh operative breast specimens were analysed by 10 readers. Exposures were made with identical position and compression with three mammographic systems (Fuji 100CR, 50CR and SFM). Images were anonymised and readers blinded to the CR system used. A five-point comparative scoring system (−2 to +2) was used to assess seven quality criteria and overall diagnostic value. Statistical analysis was subsequently performed of reader ratings (n=16 925).

Results

For most quality criteria, both CR systems were rated as equivalent to or better than SFM. The CR systems were significantly better at demonstrating skin edge and background tissue (p<1×10−5). Microcalcification was best demonstrated on the CR50 system (p<1×10−5). The overall diagnostic value of both CR systems was rated as being as good as or better than SFM (p<1×10−5).

Conclusion

In this clinical setting, the overall diagnostic performance of both CR systems was as good as or better than SFM, with the CR50 system performing better than the CR100.There are currently three technologies widely available for diagnostic mammography: screen–film mammography (SFM) and two forms of large-field digital mammography [1]. The use of the term full-field digital mammography (FFDM) varies in the published literature and has been applied to both computed radiography (CR) and direct digital radiography (DR). Small-field digital mammography (SFDM) is mainly used for imaging during stereotactic biopsy [2].The advantages of digital mammography over SFM include: improved sensitivity in dense breast tissue, reduced radiation dose, the ability to manipulate images for review, and digital storage and retrieval methods [3]. CR was the earliest digital system in use. Imaging cassettes contain a re-useable photostimulable phosphor, replacing the traditional screen–film cassettes, and are then transferred to a laser reader. DR has an in-built detector and reader. Digital mammography has a lower spatial resolution than SFM, but has a very high contrast resolution. This allows the overall resolution of digital mammography to be at least equivalent to SFM [4-8], even when viewing calcification smaller than the pixel size [9]. Some CR systems have not met the quality standards of a number of governing bodies for mammography, including the European Network of Reference Assessment Centres (EUREF) and the NHS Breast Screening Programme (NHSBSP) [10,11]. This is related to the resolution achievable with 100 µm cassettes [12]. It is now known that CR systems using 50 µm cassettes can provide improved resolution, at an acceptable mean glandular dose, and have been approved for screening by the NHSBSP [13-15].Phantom studies indicate that the resolution and performance of DR are greater than those of CR [16,17], but have limitations. Although there are many clinical studies comparing the performance of DR and SFM [4-7,9,18-26], there are fewer that compare CR with SFM or DR [8,25,27-32]. We sought a method to compare the clinical diagnostic quality of two types of CR technology with that of SFM. We chose to study surgical specimens of breast tissue, which, although not absolutely comparable to in vivo mammography, allows realistic testing of image quality. In addition, multiple exposures can be obtained in reproducible conditions without irradiating the patient.  相似文献   

16.

Objective

The aim of this study was to find out on an unselected patient group whether crossing vessels have an influence on the width of the renal pelvis and what independent predictors of these target variables exist.

Methods

In this cross-sectional study, 1072 patients with arterially contrasted CT scans were included. The 2132 kidneys were supplied by 2736 arteries.

Results

On the right side, there were 293 additional and accessory arteries in 286 patients, and on the left side there were 304 in 271 patients. 154 renal pelves were more than 15 mm wide. The greatest independent factor for hydronephrosis on one side was hydronephrosis on the contralateral side (p<0.0001 each). Independent predictors for the width of the renal pelvis on the right side were the width of the renal pelvis on the left, female gender, increasing age and height; for the left side, predictors were the width of the renal pelvis on the right, concrements, parapelvic cysts and great rotation of the upper pole of the kidney to dorsal. Crossing vessels had no influence on the development of hydronephrosis. Only anterior crossing vessels on the right side are associated with widening of the renal pelvis by 1 mm, without making it possible to identify the vessel as an independent factor in multivariate regression models.

Conclusion

The width of the renal pelvis on the contralateral side is the strongest independent predictor for hydronephrosis and the width of the renal pelvis. There is no link between crossing vessels and the width of the renal pelvis.Obstructions of the ureteropelvic junction (UPJ) can be caused by intrinsic or extrinsic factors [1]. Although there are no studies of this to date, crossing the UPJ by an aberrant crossing vessel is considered the most important [2] of the extrinsic factors [3]. Crossing vessels, which are thought to cause from 40% to over 50% of the extrinsic UPJ obstructions in adults [4, 5], are located ventral more often than dorsal to the UPJ. These are usually normal vessels of the lower pole segment [4, 69], which can be divided into additional renal arteries arising from the aorta, and accessoric renal arteries arising from branches of the aorta [10, 11]. The primary surgical therapy of choice is endoscopic endopyelotomy [12]. The success rate of 89–90% [12, 13] is thought to be noticeably poorer in patients with crossing vessels [12, 13]; however, this is not undisputed [14, 15]. Be that as it may, to prevent bleeding complications it is necessary to be familiar with the vascular situation around the UPJ prior to the procedure [3, 1618]. CT angiography is used for this purpose, as it is highly accurate, quick to perform and shows all relevant anatomical structures in relation to one another [3, 19, 20]. The objective of this study was to determine whether or not there are vascular morphological patterns or other factors that influence the width of the renal collecting system, regardless of the definitions of hydronephrosis.  相似文献   

17.

Objective

The quantitative parameters in the contrast-enhanced ultrasonography time–intensity curve of hepatocellular carcinoma (HCC) were studied to explore their possible implication for histological grading of HCC.

Methods

A total of 130 HCC patients (115 males and 15 females; age: 48.13±11.00 years) were studied using contrast-enhanced ultrasonography time–intensity curve and histological pathology. The quantification software Sonoliver® (TomTec Imaging Systems, Unterschleissheim, Germany) was applied to derive time–intensity curves of regions of interest in the interior of HCCs and in reference. Quantitative parameters of 115 patients were successfully obtained, including maximum of intensity (IMAX), rise time (RT), time to peak (TTP), rise slope (RS) and washout time (WT). Histological grading of HCC was performed using haematoxylin–eosin staining, and monoclonal antibodies specific for smooth muscle actin were used to observe unpaired arteries (UAs).

Results

There were significant differences among WTs in the three differentiated HCC groups (p<0.05). However, there were no significant differences among RT, TTP, RS and IMAX in the differentiated HCC groups. Moreover, the number of UAs in the differentiated HCC groups showed no statistical significance.

Conclusion

WT plays an important role in predicting well, moderately and poorly differentiated HCC.The majority of hepatocellular carcinomas (HCCs) develop through multistep hepatocarcinogenesis [1]. Various types of hepatocellular nodules are seen in cirrhotic livers. The International Working Party of the World Congress of Gastroenterology classifies hepatocellular nodules into six types: regenerative nodules, low-grade dysplastic nodules, high-grade dysplastic nodules, well-differentiated HCC, moderately differentiated HCC and poorly differentiated HCC. The histopathological grades and types constitute well-established prognostic factors [2]. Thus, early diagnosis and confirmation of the type of hepatocellular nodules present and cellular differentiation before treatment are important.Although definite differentiation among HCC by imaging is usually impossible, the relationship between tumour cellular differentiation and image findings has been studied using contrast-enhanced (CE) CT, CEMRI and CE ultrasonography (CEUS). Tumour pathological differentiation correlates well with image findings [,3−8].Dynamic CEUS during the past decade has noticeably improved the detection and characterisation of focal liver lesions [9]. A previous study showed that CEUS and spiral CT provided a similar diagnostic accuracy in the characterisation of focal liver lesion [10]. The appearance of HCC on CEUS has also been described well. Current low-mechanical-index techniques for CEUS using second-generation microbubble agents have advantages in characterising HCC, including real-time demonstration of continuous haemodynamic changes in both the liver and hepatocellular nodules. Some studies postulated that variations of enhancement patterns may be related to the pathological function of HCC [,5−8]. Moderately differentiated HCCs generally show classic enhancement features, with presence of hypervascularity in the arterial phase and washout during the portal phase, whereas well and poorly differentiated tumours account for most atypical variations in the arterial phase and portal venous phase [7].Reports assessing hepatocellular nodules have been based on visual analysis, despite the disadvantages of interobserver variability and low reproducibility of results. Although quantitative analysis CEUS perfusion provides more objective, reliable and reproducible results [11], the time–intensity curve (TIC) of CEUS has been obtained by quantification software for offline analysis [,12−14], from which a series of semi-quantitative perfusion parameters is extracted and analysed. An analysis of the parameters of TIC in HCC has proven the correlation of CEUS with unpaired arteries (UAs) in HCC [14]. In the present study, we compare the quantitative parameters in CEUS and UAs in different pathological gradings of HCCs to explore their possible implication for histological grading of HCC.  相似文献   

18.

Objective:

To describe the pattern and predictors of volumetric change of parotid glands during intensity modulated radiotherapy (IMRT) for oropharyngeal cancer.

Methods:

A cohort of patients undergoing weekly CT scans during dose-painted IMRT was considered. The parotid glands were contoured at the time of treatment planning (baseline) and on all subsequent scans. For a given patient, the parotid glands were labelled as higher (H) and lower (L), based on the mean dose at planning. The volume of each gland was determined for each scan and the percent change from baseline computed. Data were fit to both linear and quadratic functions. The role of selected covariates was assessed with both logistic regression and pair-wise comparison between the sides. The analyses were performed considering the whole treatment duration or each separate half.

Results:

85 patients, 170 glands and 565 scans were analysed. For all parotids except one, the quadratic function provided a better fit than the linear one. Moreover, according to both the logistic regression and pair-wise comparison, the cumulative mean dose of radiation is independently correlated with the parotid shrinkage during the first but not the second half of the treatment. Conversely, age and weight loss are predictors of relative parotid shrinkage during the entire course of the treatment.

Conclusion:

Parotid gland shrinkage during IMRT is not linear. Age, weight loss and radiation dose independently predict parotid shrinkage during a course of IMRT.

Advances in knowledge:

The present study adds to the pathophysiology of parotid shrinkage during radiotherapy.Fractionated radiotherapy is based on the assumption that the dose distribution obtained at planning is delivered during each treatment session. However, both set-up errors and tissue deformation can modify the dose that is administered. Shifts in the location of isodose levels compared with planning become critical for techniques that are highly conformal to the target(s), such as IMRT, justifying the interest in image guidance and adaptive radiotherapy [1]. Because of the sharp dose gradient around the target(s), subtle changes in the relative position or in the volume of organs at risk may alter the planned dose that the volume of an organ receives, as has been shown for the parotid glands [26].In a study by Ricchetti et al [7], we found that the parotid glands are the regions of interest that undergo the largest absolute and relative changes in volume during treatments. Although at least 16 articles have documented a significant percent reduction in the volume of the parotid gland during the course of fractionated radiotherapy [2,3,720], there are still several unanswered questions. It is unclear why some parotid glands shrink to about 50–60% during treatment, while others show only minimal changes. Studies that have investigated predictors of shrinkage have suggested weight loss during treatment, patient age and dose of radiation to the parotid as potential factors [2,9,1619]. However, results are inconsistent [3,8,10,14]. Some studies have suggested that dosimetrically spared parotid glands undergo only minimal volume changes during treatment [16,18], whereas others describe a similar behaviour regardless of the radiation dose [7,8,10]. Furthermore, it is unclear whether the daily percent volume change is constant [8,10,16,19] or variable [7,10,13] during the course of treatment. A variable daily percent change in the volume may indicate that there are predictive factors specific to certain portions of the fractionated radiation schedule. In the present article, we attempt to clarify these points.  相似文献   

19.

Objectives

Our aim was to compare retrospectively hepatic venous and delayed phase images for the detection of tumour washout during multiphasic multidetector row CT (MDCT) of the liver in patients with hepatocellular carcinoma (HCC).

Methods

30 cirrhotic patients underwent multiphasic MDCT in the 90 days before liver transplantation. MDCT was performed before contrast medium administration and during hepatic arterial hepatic venous and delayed phases, images were obtained at 12, 55 and 120 s after trigger threshold. Two radiologists qualitatively evaluated images for lesion attenuation. Tumour washout was evaluated subjectively and objectively. Tumour-to-liver contrast (TLC) was measured for all pathologically proven HCCs.

Results

48 HCCs were detected at MDCT. 46 of the 48 tumours (96%) appeared as either hyper- or isoattenuating during the hepatic arterial phase subjective washout was present in 15 HCCs (33%) during the hepatic venous phase and in 35 (76%) during the delayed phase (p<0.001, McNemar’s test). Objective washout was present in 30 of the 46 HCCs (65%) during the hepatic venous phase and in 42 of the HCCs (91%) during the delayed phase (p=0.001). The delayed phase yielded significantly higher mean TLC absolute values compared with the hepatic venous phase (−16.1±10.8 HU vs −10.5±10.2 HU; p<0.001).

Conclusions

The delayed phase is superior to the hepatic venous phase for detection of tumour washout of pathologically proven HCC in cirrhotic patients.Multiphasic contrast-enhanced multidetector row CT (MDCT) plays a pivotal role in the diagnostic work-up of cirrhotic patients, who are at increased risk of developing hepatocellular carcinoma (HCC) [1]. Increased enhancement of the tumour compared with the surrounding liver parenchyma during the hepatic arterial phase is the cornerstone for the diagnosis of HCC at multiphasic MDCT [1,2]. However, a variety of entities—dysplastic nodules [3], confluent hepatic fibrosis [4], non-tumourous arterioportal shunts [5] and haemangioma [6]—can also manifest with increased arterial enhancement and thus mimic HCC, particularly if they are smaller than 2 cm in diameter.Tumour washout, i.e. hypoattenuation relative to the adjacent hepatic parenchyma during the hepatic venous or delayed phase, has been recognised as a strong predictor of HCC [7,8]. This sign has been included, along with the presence of hypervascularity, in the latest American Association for the Study of Liver Diseases (AASLD) guidelines for the diagnosis of HCC at multiphasic MDCT, MRI or contrast-enhanced ultrasonography [1]. Although it is well known that tumour enhancement is best visualised during the late hepatic arterial phase [9,10], there is no consensus regarding the correct timing for the detection of tumour washout at multiphasic MDCT of the liver. Most commonly, the hepatic arterial phase is followed by the hepatic venous phase, acquired 60–70 s after injection of contrast material [9-12]. In addition, a delayed phase, acquired from 2–10 min after contrast material injection, can follow the hepatic venous phase [13-20] or can occur alone after the hepatic arterial phase [21-23]. Regardless of the phase sequence chosen, to the best of our knowledge, no study has yet compared the hepatic venous and delayed phases for the detection of tumour washout in patients with HCC. The purpose of our study was to compare retrospectively the hepatic venous and delayed phases for the detection of tumour washout during multiphasic MDCT of the liver in patients with HCC who underwent liver transplantation.  相似文献   

20.

Objectives

The use of ultrasound to guide peripheral nerve blocks is now a well-established technique in regional anaesthesia. However, despite reports of ultrasound guided epidural access via the paramedian approach, there are limited data on the use of ultrasound for central neuraxial blocks, which may be due to a poor understanding of spinal sonoanatomy. The aim of this study was to define the sonoanatomy of the lumbar spine relevant for central neuraxial blocks via the paramedian approach.

Methods

The sonoanatomy of the lumbar spine relevant for central neuraxial blocks via the paramedian approach was defined using a “water-based spine phantom”, young volunteers and anatomical slices rendered from the Visible Human Project data set.

Results

The water-based spine phantom was a simple model to study the sonoanatomy of the osseous elements of the lumbar spine. Each osseous element of the lumbar spine, in the spine phantom, produced a “signature pattern” on the paramedian sagittal scans, which was comparable to its sonographic appearance in vivo. In the volunteers, despite the narrow acoustic window, the ultrasound visibility of the neuraxial structures at the L3/L4 and L4/L5 lumbar intervertebral spaces was good, and we were able to delineate the sonoanatomy relevant for ultrasound-guided central neuraxial blocks via the paramedian approach.

Conclusion

Using a simple water-based spine phantom, volunteer scans and anatomical slices from the Visible Human Project (cadaver) we have described the sonoanatomy relevant for ultrasound-guided central neuraxial blocks via the paramedian approach in the lumbar region.Ultrasound is frequently used to guide central venous cannulation [1] and peripheral nerve blocks [2,3]. However, published data suggest that it is rarely used for imaging the spine or for central neuraxial blocks (CNBs; epidural and spinal injections) [4], which is surprising considering that there are data suggesting that an ultrasound examination prior to epidural access (pre-puncture scan, preview scan or scout scan) improves technical [5-7] and clinical [7,8] outcomes and also the learning curve of obstetric epidural anaesthesia [9]. Despite these encouraging results, we believe that there are very few anaesthetists who currently perform a preview scan prior to epidural catheterisation [5,7] or real-time ultrasound-guided (USG) CNBs [6,10]. This is quite interesting considering that emergency physicians are able to interpret ultrasound images of the spine [11] and are performing lumbar puncture using ultrasound in the accident and emergency department [11,12]. Reasons for this paucity of data or a lack of interest in USG CNBs in regional anaesthesia are not clear, but the authors believe it may be due to a lack of understanding of spinal sonoanatomy. The aim of this study was to describe the sonoanatomy relevant for USG CNBs via the paramedian approach in the lumbar region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号