首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A putative new endornavirus was isolated from Malabar spinach (Basella alba). The viral dsRNA consisted of 14,027 nt with a single ORF that coded for a polyprotein of 4,508 aa. The genome organization was similar to that of four other endornaviruses. Conserved domains for helicase-1, capsular synthase, UDP-glucose-glycosyltransferase (UGT), and RdRp were detected. Infected plants were phenotypically undistinguishable from healthy ones. The name Basella alba endornavirus is proposed for the virus isolated from Malabar spinach.  相似文献   

2.
We report here the presence of a novel double-stranded RNA (dsRNA) virus in an isolate (R0959) of the fungus Rhizoctonia cerealis, the causal agent of sharp eyespot of wheat in China. Sequence analysis showed that the dsRNA segment is 17,486 bp long and contains a single open reading frame (ORF) with the potential to encode a protein of 5,747 amino acids. The predicted protein contains conserved motifs of putative viral methyltransferase, helicase 1, and RNA-dependent RNA polymerase. Sequence similarity and phylogenetic analysis clearly place it in a distinct species within the genus Endornavirus, family Endornaviridae, and therefore we propose its name to Rhizoctonia cerealis endornavirus 1 (RcEV1). This is the first report of the full-length genomic sequence of a dsRNA mycovirus in R. cerealis.  相似文献   

3.
Park Y  James D  Punja ZK 《Virus research》2005,109(1):71-85
A full-length cDNA clone was developed from a 5.3 kb double-stranded (ds) RNA element present in strain CKP of the plant pathogenic fungus Chalara elegans. The complete nucleotide sequence was 5310 bp in length and sequence analysis revealed that it contained three large putative open reading frames (ORFs). ORF1 was initiated at nucleotide position 329 and encoded a putative coat protein, which shared some homology (35-45% amino acid identity) to other dsRNAs in the family Totiviridae. Both ORF2 and ORF3 were initiated at nucleotide positions 2619 and 4071, respectively, and encoded a putative RNA-dependent RNA polymerase (RdRp). Sequence comparison using deduced amino acid sequences of both ORF2 and ORF3 revealed that all RdRp conserved motifs shared highest homology (41% identity) to that of SsRNA1 of Totiviridae. This dsRNA in C. elegans was designated Chalara elegans RNA Virus 1 (CeRV1). During the development of the full-length cDNA clone of CeRV1, several partial cDNA clones from an additional dsRNA fragment in strain CKP were obtained, which when aligned with each other, produced one linear fragment which was 2336 bp long. Northern blot and sequence analysis of this second clone showed it differed in sequence composition from CeRV1. This dsRNA in C. elegans was designated Chalara elegans RNA Virus 2 (CeRV2). Sequence analysis of CeRV2 showed it contained all conserved motifs and shared some homology (45% amino acid identity) to RdRp regions of Totiviridae. The nucleotide and amino acid sequences of the conserved motifs of the RdRp regions between CeRV1 and CeRV2 showed an identity of 56% and 50%, respectively. These findings suggest that co-infection of two distinct totivirus-like dsRNAs (CeRV1 and CeRV2) in C. elegans, a first report in this fungus. Transmission electron microscopy of strain CKP of C. elegans revealed the presence of putative virus-like particles in the cytoplasm, which were similar both in shape and size to viruses in the Totiviridae.  相似文献   

4.
Rong R  Rao S  Scott SW  Carner GR  Tainter FH 《Virus research》2002,90(1-2):217-224
Complete nucleotide sequences were determined for the four dsRNA segments present in isolate 247 of Discula destructiva from South Carolina. The largest dsRNA (dsRNA 1) was 1787 bp in length with a single open reading frame (ORF) that coded for a putative RNA-dependent RNA polymerase (RdRp). The dsRNA 2 was 1585 bp in length with a single ORF that coded for a putative viral coat protein. Both the dsRNA 3 (1178 bp in length) and dsRNA 4 (308 bp) contained single ORFs. However, neither the nucleotide sequence nor the sequence of the putative translation products, showed any similarity with sequences currently available from GenBank. Although distinct, all 4 dsRNAs showed conserved nucleotides at both the 5′ and 3′ termini. Sequences of the two dsRNAs in an isolate of D. destructiva (331 originating from Idaho) were similar in length to, and shared similarity with, the dsRNA 1 and dsRNA 2 of isolate 247. However, although the putative RdRps of isolates 247 and 331 are closely related, the putative viral coat proteins coded for by the respective dsRNA 2s are distinct. Thus, the dsRNAs in the two fungal isolates appeared to originate from distinct, but related viruses, which we have named D. destructiva virus 1 and D. destructiva virus 2, respectively. Phylogenetic analysis indicated that the two viruses were most closely related to Fusarium solani virus 1 and should be considered members of the genus Partitivirus. Another isolate of D. destructiva (272.1) contains a 12 kb dsRNA in addition to the 4 dsRNAs found in isolate 247. Partial sequence of this 12 kb molecule showed a relationship to other large dsRNA molecules isolated from plants.  相似文献   

5.
We have determined the complete nucleotide sequence (Accession No. AF484251) of the Pepino mosaic virus (PepMV) RNA genome. PepMV is the etiological agent of a new disease which affects tomato crops in Europe and North America. The PepMV genome consists of one single stranded positive sense RNA 6410 nt long that contains five open reading frames (ORFs). ORF 1 is the putative RNA dependent RNA polymerase (RdRp), as it has the characteristic methyltransferase, NTP-binding and polymerase motifs. ORF 2 to 4 form the PepMV triple gene block. ORF 5 codes for the capsid protein. Two short untranslated regions flank the coding regions and there is a poly(A) tail at the 3'end of the genomic RNA. Thus, the genome organization of PepMV is that of a typical member of the genus Potexvirus. The nucleotide sequence obtained shares an overall 99% identity with the genomic RNA of a PepMV isolate from UK which has been partially sequenced. Protein coded by ORF4 is the least conserved between both isolates (95% amino acid identity), whereas proteins coded by ORF3 and ORF5 are identical.  相似文献   

6.
Cao YF  Zhu XW  Xiang Y  Li DQ  Yang JR  Mao QZ  Chen JS 《Virus research》2011,159(1):73-78
Four novel double-stranded RNA segments were detected in a Verticillium dahliae Kleb. strain (V. dahliae isolate 0-21), a causal fungal agent of Verticillium wilt disease of cotton. Each dsRNA genome segment contains a single large open reading frame (ORF) that encodes a distinctive protein with modest levels of sequence similarities to the corresponding putative proteins in the genus Chrysovirus. These include an RNA-dependent RNA polymerase (RdRp), a coat protein, an undefined replication-related protein and an ovarian tumor domain peptidase. Phylogenetic analysis of the four putative proteins unanimously indicated that they are evolutionarily related to viruses in Chrysovirus. The 5'- and 3'-untranslated regions of the four dsRNAs share highly similar internal sequence and contain conserved sequence stretches of UGAUAAAAAA(/U)UG(/U)AAAAA- (in the 5'-UTR) and -UUUACUACU (in the 3'-UTR), indicating that they have a common virus origin. Indeed, isometric virus-like particles (VLPs) with a diameter of approximately 34nm were extracted from the fungal mycelia, and the four dsRNA segments were also detected in the virus-like particle (VLP) fraction. These results suggest that the mycovirus with four different dsRNA genome segments from the fungal isolate 0-21 is a new member of the genus Chrysovirus. We named the virus Verticillium dahliae chrysovirus 1 (VdCV1).  相似文献   

7.
Summary After extraction of double-stranded (ds) RNAs from Vicia faba, dsRNA1 and dsRNA2 of Vicia cryptic virus (VCV), a member of the genus Alphacryptovirus (family Partitiviridae), were detected in six out of seven different cultivars by agarose gel electrophoresis. In attempts to sequence the complete VCV genome, the dsRNA1 and dsRNA2 sequences from a total of five different V. faba cultivars were determined. Analysis of these sequences indicated that V. faba cultivars contain almost indistinguishable VCV sequences. The larger dsRNA1 was 2012 bp in length and contained a major open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp). The smaller dsRNA2 was 1779 bp in length and comprised a single ORF on its plus-strand encoding the coat protein (CP). The sequences of the dsRNA1 and dsRNA2 ORFs shared highest amino acid sequence identities (84 and 56%, respectively) with the corresponding gene products of the alphacryptovirus white clover cryptic virus 1 (WCCV-1). The 5′-terminal untranslated regions of dsRNA1 and dsRNA2 of VCV were highly conserved and were strikingly similar to the corresponding regions of WCCV-1. RdRp amino acid sequence alignments revealed conserved motifs, which correlate with the phylogenetic clustering of the family Partitiviridae.  相似文献   

8.
Five enclosed double-stranded RNA (dsRNA) bands in electrophoresis, probably of viral origin, were found from a single isolate (SurS4) of Gremmeniella abietina var. abietina type A. Analysis of the dsRNAs revealed that they represented three different viruses, named as Gremmeniella abietina mitochondrial RNA virus S2 (GaMRV-S2), Gremmeniella abietina RNA virus MS2 (GaRV-MS2) and Gremmeniella abietina RNA virus L2 (GaRV-L2). The genome of GaMRV-S2 was 2587 base pairs (bp) long and had a very low GC content (31%). Sequence variations occurred at both ends. The genome coded for a putative RNA-dependent RNA polymerase (RdRp) under a mitochondrial translation code. The GaRV-MS2 genome was composed of three dsRNA molecules (1781 bp, 1586 bp and 1186 bp). They coded for a putative RdRp, a coat protein (CP) and a protein with an unknown function, respectively. The GaRV-L2 genome was 5129 bp long and contained two ORFs. The 5′-proximal ORF coded for a putative CP, whereas the 3′-proximal ORF encoded for a putative RdRp. The buoyant density of GaRV-MS2 and GaRV-L2 were 1.37 and 1.42 g/ml, respectively. GaMRV-S2, GaRV-MS2 and GaRV-L2 were closely related to the previously described viruses GaMRV-S1, GaRV-MS1 and GaRV-L1, respectively, and are putative members of the genera Mitovirus, Partitivirus and Totivirus, respectively. This is the first report on the occurrence of viruses of all these different genera in a single fungal isolate.  相似文献   

9.
Yu HJ  Lim D  Lee HS 《Virology》2003,314(1):9-15
A mycovirus, named oyster mushroom spherical virus (OMSV), was isolated from cultivated oyster mushrooms with a severe epidemic of oyster mushroom Die-back disease. OMSV was a 27-nm spherical virus encapsidating a single-stranded RNA (ssRNA) of 5.784 kb with a coat protein of approximately 28.5 kDa. The nucleotide sequence of the virus revealed that its genomic RNA was positive strand, containing 5784 bases with seven open reading frames (ORF). ORF1 had the motifs of RNA-dependent RNA polymerases (RdRp) and helicase. ORF2 encoded a coat protein. ORF3 to 7 could encode putative polypeptides of approximately 12, 12.5, 21, 14.5, and 23 kDa, respectively, but none of them showed significant similarity to any other known polypeptides. The 5' end of the viral RNA was uncapped and the 3' end was polyadenylated with 74 bases. Genomic structure and organization and the derived amino acid sequence of RdRp and helicase domain were similar to those of tymoviruses, a plant virus group.  相似文献   

10.
Two double-stranded RNA (dsRNA) segments of a virus with a bipartite genome identified in fig (Ficus carica L.) and denoted Fig cryptic virus (FCV) were cloned and sequenced. Viral dsRNAs are 1696 bp (RNA-1) and 1415 bp (RNA-2) in size. RNA-1 contains a single ORF (1419 nt) potentially encoding a 54 kDa protein and comprising the conserved amino acid motifs of the RNA-dependent RNA polymerase (RdRp) domain of species of the genus Alphacryptovirus. Its full-length amino acid sequence has the highest identity with Raphanus sativus cryptic virus 2 (RsCV-2) (36%), Beet cryptic virus 3 (BCV-3) (36%) and Fragaria chiloensis cryptic virus (FCCV) (34%). RNA-2 has also a single ORF (1014 nt) coding for a polypeptide with a predicted molecular mass of 38 kDa, identified as the viral coat protein (CP). In a phylogenetic tree constructed with the amino acid sequences of the RdRp domain, FCV clusters in a clade comprising BCV-3 and a number of tentative species of the genus Alphacryptovirus. FCV is not mechanically transmissible. It was detected in fig orchards of six Mediterranean countries (Albania, Algeria, Italy, Lebanon, Syria and Tunisia) where it does not seem to induce a visible disease.  相似文献   

11.
The complete nucleotide sequence, 4975 bp, of the double-stranded RNA (dsRNA) mycovirus infecting the sclerotial parasite Coniothyrium minitans (CmRV) was determined. Sequence analysis revealed the occurrence of two overlapping open reading frames (ORFs): the 5'-proximal large ORF (ORF1; nucleotide positions 62-2389) encodes a putative coat protein (CP) with a predicted molecular mass of 80344 Da, and the 3'-proximal ORF (ORF2, nucleotide positions 2386-4875) encodes a putative RNA dependent RNA Polymerase (RdRp) with a predicted molecular mass of 82551 Da. The tetranucleotide AUGA at nucleotide positions 2386-2389 includes the predicted start codon of ORF2, which overlaps with the stop codon for ORF1. Based on genome organization and sequence analysis encoded proteins, the virus infecting C. minitans strain Chy-1, designated C. minitans RNA virus (CmRV), belongs to the family Totiviridae. Pairwise sequence comparisons of the deduced amino acid sequences encoded by CmRV as well as phylogentic analysis indicated that it is more closely related to the totiviruses that infect filamentous fungi than to those infecting protozoa, yeast and smut fungi. The role of CmRV in the abnormal phenotype associated with a variant of C. minitans is discussed.  相似文献   

12.
Summary.  The complete nucleotide (nt) sequence of a Singapore isolate of broad bean wilt fabavirus from Megakepasma erythrochlamys L., designated BBWV-ME, was determined. Its bipartite genome consisted of two positive-sense single-stranded ribonucleic acids (RNA). RNA1 (5951 nt in length) encoded a putative protease cofactor, nucleotide triphosphate (NTP)-binding domain (helicase), viral genome-linked protein (VPg), protease and RNA-dependent RNA polymerase (RdRp). RNA2 (3607 nt in length) encoded a putative movement protein (MP) and coat proteins (CP). Genome organization of BBWV-ME was similar to other viruses in the Comoviridae family. Phylogenetic analyses showed that fabaviruses were more closely related to the comoviruses than the nepoviruses. Received February 23, 2000 Accepted July 18, 2000  相似文献   

13.
14.
A double-stranded (ds) RNA (2411 bp) from a strain V18 of the violet root rot basidiomycetous fungus, Helicobasidium mompa was sequenced. Using the fungal mitochondrial genetic code in which UGA codes for tryptophan, the positive strand of V18 dsRNA was found to contain a long open-reading frame with the potential to encode a protein of 700 amino acids (molecular mass 79,805 Da), including conserved motifs characteristic of RNA-dependent RNA polymerase (RDRP). This putative RDRP was shown to be related to putative RDRPs of several fungal mitochondrial viruses. It is proposed that V18 dsRNA is assigned to the genus Mitovirus in the family Narnaviridae and designated as H. mompa mitovirus 1-18 (HmMV1-18). Like other mitoviruses, HmMV1-18 RNA can be folded into potentially stable stem-loop structures at both the 5'- and 3'-termini, and both terminal sequences have inverted complementarity with the potential to form panhandle structure. BLAST analysis indicates that the RDRP encoded by HmMV1-18 is more closely related to those encoded by mitochondrial viruses of some ascomycetes than to that of the unassigned RsM2-1A1 dsRNA in the basidiomycetous Rhizoctonia solani. HmMV1-18 is the first member of the genus Mitovirus from basidiomycete fungi.  相似文献   

15.
Two double-stranded RNAs (dsRNA) likely representing the genome of a novel alphapartitivirus which we provisionally named Erysiphe palczewskii alphapartitivirus 1 (EpV1) were recovered from the powdery mildew fungus E. palczewskii infecting Sophora japonica in Jingzhou, Hubei province of China. The two dsRNAs, 1955 (dsRNA1) and 1917 (dsRNA2) bp in size, respectively, each contains a single open reading frame (ORF) encoding a 585- and 528-aa protein, respectively. The 585-aa protein contains a conserved RNA-dependent RNA polymerase (RdRp) domain and shows significant homology to RdRps of approved or putative partitiviruses, particularly those belonging to the genus Alphapartitivirus. However, it shares an aa sequence identity lower than 80% with its closest relative, the RdRp of the putative alphapartitivirus Grapevine partitivirus, and lower than 60% with the RdRps of other partitiviruses. In a phylogenetic tree constructed with RdRp aa sequences of selected partitiviruses, the putative virus EpV1 clustered with Grapevine partitivirus and formed a well-supported monophyletic clade with known or putative alphapartitiviruses.  相似文献   

16.
Yokoi T  Yamashita S  Hibi T 《Virology》2003,311(2):394-399
Sclerophthora macrospora virus A (SmV A) found in S. macrospora, the pathogenic fungus responsible for downy mildew of gramineous plants, is a small icosahedral virus containing three segments (RNAs 1, 2, and 3) of the positive-strand ssRNA genome. In the present study we report the complete nucleotide sequence of the SmV A genome. The viral genome RNA 1 consists of 2928 nucleotides (nt) and has two open reading frames (ORFs 1a and 1b). ORF 1a contains the motifs of RNA-directed RNA polymerase (RdRp). The function of ORF 1b is unknown. RNA 2 consists of 1981 nt and single ORF (ORF 2). ORF 2 encodes a capsid protein. RNA 3 consists of 977 nt but not any ORFs, suggesting it as a satellite RNA. The deduced amino acid sequence of ORF 1a shows some similarity to those of RdRp of certain positive-strand RNA viruses, especially to the members of the family Nodaviridae, and that of ORF 2 to CP of the members in the family Tombusviridae. The nucleotide sequence of RNA 3 shows a 40-nucleotide length of partial similarity to S. macrospora virus B (SmV B) RNA. The capsid of SmV A is composed of two capsid proteins, CP 1 (p43) and CP 2 (p39), both encoded in ORF 2. CP 2 is apparently derived from CP 1 via proteolytic cleavage at the N-terminus. The genome organization of SmV A is characteristic and distinct from those of other known fungal RNA viruses, including SmV B. These results suggest that SmV A should be classified into a new group of mycoviruses.  相似文献   

17.
Kim JW  Choi EY  Lee JI 《Virus genes》2005,31(2):175-183
The complete sequences of three double-stranded (ds) RNAs (referred to F1, F2 and F3) of Penicillium stoloniferum virus F (PsV-F) were established. The F1 dsRNA was 1677 bp in length, and it contained one open reading frame (ORF) of 538 amino acids (molecular weight of 63 kDa, referred to P63), The F2 dsRNA was 1500 by in length, and also it contained one ORF of 420 amino acids (molecular weight of 46 kDa, referred to P46). The F3 dsRNA was 677 bp in length, but contained a small ORF with unknown function. A sequence motif of (5′-CGTAAAA-3′) was found only at the 5′ termini of the F1 and F2 dsRNAs, and a sequence motif of (5′-TAAAAAAAAA-3′) was found at the 3′ termini of all three dsRNA segments. The predicted amino acid sequence of F1 showed 38–48% sequence homology with the putative dsRNA-dependent RNA polymerases (RdRp) of dsRNA viruses, but the predicted amino acid of F2 showed no homology. Phylogenetic analysis using the RdRp sequences of the various Partitiviruses and Alphacryptoviruses revealed that PsV-F clustered well with Partitiviruses, but showed remote relationship with PsV-S. Near full-length and positive-sense single-stranded (ss) RNAs derived from the Fl, F2 and F3 dsRNAs were detected from the PsV-infected host cell. The expressed proteins of P63 and P46 showed a positive reaction against PsV-F antiserum, indicating P63 and P46 as RdRp and capsid protein, respectively. These results suggest that PsV-F can be a member of Partitivirus, but it is quite distinct from PsV-S electrophoretically, serologically and genetically, though both viruses coexist in the same cell.  相似文献   

18.
The complete genome sequence of grapevine Bulgarian latent virus (GBLV) has been determined. RNA-1 (7,452 nt in length) contains a single ORF of 6,285 nt, encoding a polyprotein with conserved motifs characteristic of the viral protease cofactor (Prot-cofact), the NTP-binding protein (NTP), the cysteine-like protease (Cyst-Prot) and the RNA-dependent RNA polymerase (RdRp) of members of the order Picornavirales and show high aa sequence identity with blackcurrant reversion virus (BRV, 64%). RNA-2 (5,821 nt) contains a single ORF of 4,500 nt, encoding a polyprotein in which the conserved motifs of the movement protein (MP) and coat protein (CP) have been identified. The GBLV CP aa sequence shows highest homology with that of blueberry leaf mottle virus (BLMoV, 68%). Both RNAs have a poly(A) tail and a NCR at the 3' and 5' termini, respectively. The results of this study confirm the classification of GBLV as a member of a distinct species in subgroup C of the genus Nepovirus.  相似文献   

19.
Summary. Two double stranded (ds) RNA molecule patterns, probably of viral origin, were sequenced from Gremmeniella abietina var. abietina type A. The genome of Gremmeniella abietina RNA virus L1 (GaRV-L1) from isolate HR2 was 5133bp and contained two open reading frames (ORFs). The 5-proximal ORF coded for a putative coat protein (CP) and the 3-proximal ORF encoded putative RNA-dependent RNA polymerase (RdRp). GaRV-L1 had sequence similarities with a previously described totivirus (Helminthosporium victoriae 190S virus) and two unclassified members of family Totiviridae (Sphaeropsis sapinea RNA virus 1 and Sphaeropsis sapinea RNA virus 2). The genome of Gremmeniella abietina RNA virus MS1 (GaRV-MS1) from isolate C5 was composed of three dsRNA molecules coding for a putative RdRp (dsRNA1), a putative CP (dsRNA2) and protein of unknown function (dsRNA3). The lengths of these dsRNA molecules were 1782, 1586 and 1181bp, respectively. Sequence comparisons indicated that the GaRV-MS1 dsRNA pattern comprises a putative virus that is highly similar to Discula destructiva virus 1, Discula destructiva virus 2 and Fusarium solani virus 1 of the family Partitiviridae.  相似文献   

20.
The complete nucleotide sequence of a novel single-stranded RNA virus infecting the glassy-winged sharpshooter, Homalodisca coagulata, has been determined. In silico analysis of H. coagulata virus-1 (HoCV-1) revealed a 9321-nt polyadenylated genome encoding two large open reading frames (ORF1 and ORF2) separated by a 182-nt intergenic region (IGR). The deduced amino acid sequence of the 5'-proximal ORF (ORF1, nt 420-5807) exhibited conserved core motifs characteristic of the helicases, cysteine proteases, and RNA-dependent RNA polymerases of other insect-infecting picorna-like viruses. A structural model created using Mfold exposed a series of stem loop (SL) structures immediately preceding the second ORF which are analogous to an internal ribosome entry site (IRES), suggesting that ORF2 begins with a noncognate GCA triplet rather than the canonical AUG. This 3' ORF2 (5990-8740) showed significant similarity to the structural proteins of members of the family Dicistroviridae, particularly those belonging to the genus Cripavirus. Evidence demonstrating relatedness of these viruses regarding genome organization, amino acid sequence similarity, and putative replication strategy substantiate inclusion of HoCV-1 into this taxonomic position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号