首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
MafB negatively regulates RANKL-mediated osteoclast differentiation   总被引:1,自引:0,他引:1       下载免费PDF全文
Kim K  Kim JH  Lee J  Jin HM  Kook H  Kim KK  Lee SY  Kim N 《Blood》2007,109(8):3253-3259
  相似文献   

4.
5.
Mechanisms involved in bone resorption   总被引:4,自引:0,他引:4  
Udagawa N 《Biogerontology》2002,3(1-2):79-83
Osteoclasts, which are present only in bone, are multinucleated giant cells with the capacity to resorb mineralized tissues. These osteoclasts are derived from hemopoietic progenitors of the monocyte-macrophage lineage. Osteoblasts or bone marrow-derived stromal cells are involved in osteoclastogenesis through a mechanism involving cell-to-cell contact with osteoclast progenitors. Experiments on the osteopetrotic op/op mouse model have established that a product ofosteo blasts, macrophage colony-stimulating factor (M-CSF), regulates differentiation of osteoclast progenitors into osteoclasts. Recent discovery of osteoclast differentiation factor (ODF)/receptor activator of NF-κ Bligand (RANKL) allowed elucidation of the precise mechanism by which osteoblasts regulate osteoclastic bone resorption. Treatment of osteoblasts with bone-resorbing factors up-regulated expression of RANKL mRNA. In contrast, TNF α stimulates osteoclast differentiation in the presence of M-CSF through a mechanism independent of the RANKL system. IL-1 also directly acts on mature osteoclasts as a potentiator of osteoclast activation. In addition, TGF-β super family members, such as bone morphogenetic proteins(BMPs) strikingly enhanced osteoclast differentiation from their progenitors and survival of mature osteoclasts induced by RANKL. These results suggest that BMP-mediated signals cross-communicate with RANKL-mediated ones in inducing osteoclast differentiation and function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
7.
8.
OBJECTIVE: To analyze cellular mechanisms of bone erosion in gout. METHODS: Peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) from patients with gout were analyzed for the presence of osteoclast precursors. Fixed tophus and bone samples were analyzed by immunohistochemistry. Mechanisms of osteoclastogenesis were studied by culturing murine preosteoclast RAW 264.7 cells, bone marrow stromal ST2 cells, and human synovial fibroblasts with monosodium urate monohydrate (MSU) crystals. RESULTS: PBMCs from patients with severe erosive gout had the preferential ability to form osteoclast-like cells in culture with RANKL and monocyte colony-stimulating factor (M-CSF). The number of PBMC-derived tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells strongly correlated with the number of tophi (r = 0.6296, P = 0.630). Patients with severe erosive and tophaceous gout also had higher circulating concentrations of RANKL and M-CSF. Furthermore, greater numbers of TRAP-positive multinucleated cells were cultured from SFMCs derived from gouty knee effusions than from paired PBMCs (P = 0.004). Immunohistochemical analysis demonstrated numerous multinucleated cells expressing osteoclast markers within tophi and at the interface between soft tissue and bone. MSU crystals did not directly promote osteoclast formation from RAW 264.7 cells in vitro. However, MSU crystals inhibited osteoprotegerin gene and protein expression in ST2 cells and human synovial fibroblasts, without significantly altering RANKL gene expression. Conditioned medium from ST2 cells cultured with MSU crystals promoted osteoclast formation from RAW 264.7 cells in the presence of RANKL. CONCLUSION: Chronic tophaceous and erosive gout is characterized by enhanced osteoclast development. These data provide a rationale for the study of osteoclast-targeted therapies for the prevention of bone damage in chronic gout.  相似文献   

9.
Interferons (IFNs) have been shown to negatively regulate osteoclastogenesis. In a proteomic study to assess protein expression during osteoclastogenesis, we discovered that the expression level of Jak1 was significantly decreased during the early stage of osteoclast differentiation from mouse bone marrow macrophages (BMMs) upon stimulation with receptor activator of nuclear factor kappaB ligand (RANKL). RANKL induced Jak1 ubiquitination, and a proteasome inhibitor MG132 efficiently blocked the RANKL-induced degradation of Jak1. The expression level of Jak1 correlated with the susceptibility of osteoclast precursors to the negative regulatory effects of IFN-beta on osteoclastogenesis, since preosteoclasts (pOCs) in which Jak1 expression is significantly reduced could proceed with osteoclastogenesis in the presence of IFN-beta. Forced down-regulation of Jak1 by small interfering RNA (siRNA) resulted in the efficient osteoclast differentiation of BMMs in the presence of inhibitory IFN-beta, while overexpression of Jak1 in pOCs elicited IFN-beta-dependent inhibition of osteoclastogenesis. Furthermore, we found that the IFN-beta-induced inhibition of osteoclastogenesis required STAT3 downstream of Jak1. These data suggest that the regulation of Jak1 expression during osteoclast differentiation might serve as an intrinsic mechanism that determines osteoclast lineage commitment by modulating the negative regulation by IFN-beta.  相似文献   

10.
Regulatory expression of matrix metalloproteinases (MMPs) and osteoclastogenesis is implicated in the process of joint destruction in rheumatoid arthritis (RA). Although several reports suggested the anti-arthritic effects of ginseng saponins, it has not been investigated whether the most absorbable ginsenoside, compound K (CK), has a joint-protective action. We here investigated the effect of CK (0–5 μM) on TNF-α-induced MMP-1, MMP-3, and MMP-13 and TIMP-1 production from RA fibroblast-like synoviocytes (FLS) and determined the inhibitory effect of CK on osteoclastogenesis from RAW264.7 cells co-cultured with RA-FLS and from human CD14+ monocytes. The effect of CK on NF-κB, nuclear factor of activated T cells c1 (NFATc1), and mitogen-activated protein kinases pathways were evaluated using immunoblotting or specific inhibitors. CK significantly inhibited MMP-1 and MMP-3 productions from RA-FLS in a concentration-dependent manner through suppressing the JNK and ERK pathways. In the co-culture system of TNF-α-stimulated RA-FLS and RAW264.7 cells, CK dose-dependently reduced receptor activator of NF-κB ligand (RANKL) expression in the RA-FLS and inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells. Furthermore, CK significantly inhibited soluble RANKL-induced osteoclastogenesis or osteoclast activity in RAW264.7 cells and human CD14+ monocytes through inhibition of RANKL-induced IκBα degradation and NFATc1 expression. In conclusion, our results increase the understanding of the molecular mechanisms of the joint-protective effects of CK in RA. The characteristic actions of CK provide in vitro evidence for its potential utility in RA therapy.  相似文献   

11.
Macrophage inflammatory protein-1alpha (MIP-1alpha) is a member of the CC chemokines. We have previously reported the use of a whole bone marrow culture system to show that MIP-1alpha stimulates the formation of osteoclast-like multinucleated cells. Here we use rat bone marrow cells deprived of stromal cells, and clones obtained from murine macrophage-like cell line RAW264 to show that MIP-1alpha acts directly on cells in osteoclast lineage. We obtained several types of RAW264 cell clones, one of these clones, designated as RAW264 cell D clone (D clone), showed an extremely high response to receptor activator of NFkappaB ligand (RANKL) and tumor necrosis factor-alpha (TNF-alpha), while the other clone, RAW264 cell N clone (N clone), demonstrated no response to RANKL or TNF-alpha. Although both clones expressed receptor activator NFkappaB (RANK) before being stimulated for differentiation, only the D clone expressed cathepsin K when cells were stimulated to differentiate to osteoclasts. MIP-1alpha stimulated the formation of mononuclear preosteoclast-like cells from rat bone marrow cells deprived of stromal cells. MIP-1alpha also stimulated formation of osteoclast-like multinucleated cells from the D clone, when these cells were stimulated with RANKL and TNF-alpha. These findings provide strong evidence to show that MIP-1alpha acts directly on cells in the osteoclast lineage to stimulate osteoclastogenesis. Furthermore, pretreatment of RAW264 cell D clone with MIP-1alpha significantly induced adhesion properties of these cells to primary osteoblasts, suggesting a crucial role for MIP-1alpha in the regulation of the interaction between osteoclast precursors and osteoblasts in osteoclastogenesis.  相似文献   

12.
13.
Ascorbic acid (AA) plays a key role in the regulation of differentiation and activation of osteoclast (OCL). It was reported that AA might induce the formation of OCL in cocultures of mouse bone marrow cells and ST2 cells, but it is not clear whether AA has a direct impact on the OCL precursors. The purpose of this study was to examine the effect of AA on the differentiation of OCL precursor RAW264.7 cells, cultured with receptor-activated nuclear factor kappaB ligand (RANKL). The results showed that AA remarkably inhibited the cell proliferation at a higher concentration and RANKL alone is sufficient for osteoclastogenesis. The expression of carbonic anhydrase (CAII) mRNA and protein, the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs), and the percentage area of resorption lacunae induced by RANKL were decreased when AA was added to the cultures. The results demonstrate that AA inhibits RANKL-induced differentiation of OCL precursor cells into mature OCL and reduces the formation of bone resorption pits in vitro.  相似文献   

14.
Osteoclasts are derived from hematopoietic precursor cells belonging to the monocyte/macrophage lineage. Osteoclast development has been reported to be regulated by several molecules such as macrophage colony-stimulating factor (M-CSF), receptor activator of nuclear factor (NF)-kappaB ligand (RANKL), and a decoy receptor of RANKL, osteoprotegerin (OPG). Recently, it was demonstrated that the Notch signaling pathway regulates myeloid differentiation and antagonizes cell fate determination, however, the effect of Notch signaling on the osteoclast lineage has not been reported. In this study, we examined the effect of signaling via Notch receptors on the differentiation into osteoclasts by using cells from the bone marrow, spleen, and peritoneal cavity, and a cloned macrophagelike cell line. Osteoclastogenesis was inhibited by an immobilized Notch ligand, Delta-1. The dish-adherent bone marrow cells precultured with M-CSF expressed both Mac-1 and M-CSF receptors, c-Fms; osteoclastogenesis of these cells was efficiently inhibited. The immobilized Delta-1 also down-regulated the surface c-Fms expression, while the c-Fms gene expression was not changed. Genes for Notch receptors and Notch ligands are expressed in not only hematopoietic cells but also stromal cells that support osteoclast development. Constitutively active Notch1-transfected stromal cells showed increased expression of RANKL and OPG genes, and strong inhibition of M-CSF gene expression, resulting in reduction of their ability to support osteoclast development. Taken together, these findings indicate that Notch signaling affects both osteoclast precursors and stromal cells and thereby negatively regulates osteoclastogenesis.  相似文献   

15.
Lee NK  Choi YG  Baik JY  Han SY  Jeong DW  Bae YS  Kim N  Lee SY 《Blood》2005,106(3):852-859
Signaling by receptor activator of NF-kappaB (nuclear factor-kappaB) ligand (RANKL) is essential for differentiation of bone marrow monocyte-macrophage lineage (BMM) cells into osteoclasts. Here, we show RANKL stimulation of BMM cells transiently increased the intracellular level of reactive oxygen species (ROS) through a signaling cascade involving TNF (tumor necrosis factor) receptor-associated factor (TRAF) 6, Rac1, and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (Nox) 1. A deficiency in TRAF6 or expression of a dominant-interfering mutant of TRAF6 blocks RANKL-mediated ROS production. Application of N-acetylcysteine (NAC) or blocking the activity of Nox, a protein leading to the formation of ROS, with diphenylene iodonium (DPI) inhibits the responses of BMM cells to RANKL, including ROS production, activation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein (MAP) kinase, and extracellular signal-regulated kinase (ERK), and osteoclast differentiation. Moreover, both RANKL-mediated ROS production and osteoclast differentiation were completely blocked in precursors depleted of Nox1 activity by RNA interference or by expressing a dominant-negative mutant of Rac1. Together, these results indicate that ROSs act as an intracellular signal mediator for osteoclast differentiation.  相似文献   

16.
OBJECTIVE: Receptor activator of nuclear factor-kappaB ligand (RANKL) promotes osteoclast differentiation from monocyte precursors by inducing a cohort of genes, including tartrate-resistant acid phosphatase (TRAP) and matrix metalloproteinase-9 (MMP-9). A family of synthetic triterpenoids with antiinflammatory and pro-apoptotic properties was described to modulate differentiation in monocytic cell lineages. We therefore investigated the ability of the potent and bioavailable synthetic triterpenoid TP-222 to inhibit RANKL-induced osteoclast formation and MMP-9 expression from monocytic precursor cells. METHODS: Osteoclast formation was assayed by staining for TRAP-positive multinucleated cells. MMP-9 expression was measured by quantitative RT-PCR, Western blot, immunohistochemistry, and gel zymography. In vivo effects of TP-222 were assessed by daily intraperitoneal injection of 4-week-old mice for 7 days followed by measurement of osteoclast number and MMP-9 expression at the cartilage/bone junction of the epiphyseal growth plate. RESULTS: RANKL promoted and TP-222 (300 nM) inhibited osteoclast formation in cultures of RAW264.7 cells or bone marrow-derived monocytes. RANKL also induced MMP-9 expression in RAW264.7 cells and this was reduced by concurrent or subsequent addition of TP-222. TP-222 treatment significantly reduced the mean number of osteoclasts present at the cartilage/bone interface compared to vehicle-injected control mice. Morphometric analyses of tissue sections showed that TP-222 treatment reduced the amount of immunoreactive MMP-9 present in both mononucleated pre-osteoclasts and osteoclasts. CONCLUSION: Our data demonstrate that TP-222 inhibits osteoclast formation and MMP-9 expression in vitro and in vivo, and suggest that triterpenoids may be useful compounds for modulating bone resorption diseases.  相似文献   

17.
Liu XH  Kirschenbaum A  Yao S  Levine AC 《Endocrinology》2005,146(4):1991-1998
The osteoprotegerin (OPG)/receptor activator of nuclear factor-kappaB ligand (RANKL)/receptor activator of nuclear factor-kappaB (RANK) system is the dominant and final mediator of osteoclastogenesis. Abnormalities of this system have been implicated in the pathogenesis of many skeletal diseases. Cyclooxygenase (COX)-2 and prostaglandin (PG)E(2), a major eicosanoid product of the COX-2-catalyzed pathway, play key roles in normal bone tissue remodeling. PGE(2) exerts its actions by binding and activating the E series of prostaglandin (EP) receptor. Activation of EP(2) and EP(4) receptors is associated with PGE(2)-induced osteoclast differentiation. IL-6, a major proinflammatory cytokine, has also been reported to induce osteoclast differentiation. Although interactions between the COX-2/PGE(2) and IL-6 systems have been described in bone cells, the mechanisms underlying these cooperative signaling pathways and the possible involvement of the OPG/RANKL/RANK system have not been fully elucidated. We demonstrate that COX-2, PGE(2), and IL-6 stimulate osteoblast growth and osteoclast differentiation. Effects on osteoclast differentiation, particularly with IL-6, were most marked when osteoclast precursor cells were grown in coculture with osteoblasts, indicating a possible role of the RANK/RANKL/OPG system. COX-2 and PGE(2) stimulated osteoclastogenesis through inhibition of OPG secretion, stimulation of RANKL production by osteoblasts, and up-regulation of RANK expression in osteoclasts. PGE(2) stimulated IL-6 secretion by bone cells, whereas COX-2 inhibitors decreased this same parameter. IL-6, in turn, increased PGE(2) secretion, COX-2, and EP receptor subtype expression in bone cells. Finally, IL-6 was the mediator of PGE(2)-induced suppression of OPG production by osteoblasts. These findings provide evidence for cross-talk between the PGE(2) and IL-6 signaling enhance osteoclast differentiation via effects on the OPG/RANKL/RANK system in bone cells.  相似文献   

18.
RANKL诱导破骨细胞前体细胞分化成熟   总被引:1,自引:0,他引:1  
目的 用核因子-κB受体活化因子配体(RANKL)诱导破骨细胞前体细胞分化成熟,建立获取成熟破骨细胞的方法.方法 用破骨细胞前体细胞RAW264.7细胞为模型,RANKL诱导培养4~9 d,抗酒石酸酸性磷酸酶(TRAP)染色观察TRAP阳性多核细胞形成,罗丹明-鬼笔环肽荧光染色观察纤维性肌动蛋白(F-actin)环,DAPI染色观察细胞核,甲苯胺蓝染色观察牛骨片表面的吸收陷窝情况.结果 RANKL可诱导RAW264.7细胞形成TRAP染色阳性的多核细胞,形成F-actin环,骨片吸收陷窝明显.结论 RANKL可诱导RAW264.7细胞向成熟破骨细胞分化,该诱导模型可用于破骨细胞分化研究.  相似文献   

19.
Han SY  Lee NK  Kim KH  Jang IW  Yim M  Kim JH  Lee WJ  Lee SY 《Blood》2005,106(4):1240-1245
Regulation of osteoclast differentiation is key to understanding the pathogenesis and to developing treatments for bone diseases such as osteoporosis. To gain insight into the mechanism of the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-specific induction of the osteoclast differentiation program, we took a suppression-subtractive hybridization screening approach to identify genes specifically induced via the RANKL-Rac1 signaling pathway. Among identified targets, we show that RANKL selectively induces cyclooxygenase (COX) 2 expression via Rac1 that results in turn in production of prostaglandin E2 (PGE2) in RAW 264.7 cells. By using transient transfection assays, we found that the -233/-206 region of the COX-2 promoter gene was critical for RANKL-induced promoter activity. This RANKL-responsive region contained an NF-kappaB site that, when mutated, completely abolished the induction of NF-kappaB DNA-binding activity by RANKL. Blockade of COX-2 by celecoxib inhibits differentiation of bone marrow-derived monocyte/macrophage precursor cells (BMMs) into tartrate-resistant acid phosphatase-positive (TRAP+) osteoclastic cells. This inhibition can be rescued by the addition of exogenous PGE2, suggesting that COX-2-dependent PGE2 induction by RANKL in osteoclast precursors is required for osteoclast differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号