首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: Many chemotherapeutic drugs have an inherent lack of safety due to interindividual variability of hepatic cytochrome P450 (CYP) 3A4 drug metabolism. This reduction in CYP3A4 in cancer patients is possibly mediated by cytokines associated with tumor-derived inflammation. We sought to examine this link by using an explant sarcoma in a novel transgenic mouse model of human CYP3A4 regulation. EXPERIMENTAL DESIGN: Engelbreth-Holm-Swarm sarcoma cells were injected into the hindlimb of transgenic CYP3A4/lacZ mice. Hepatic expression of the human CYP3A4 transgene was analyzed by direct measurement of the reporter gene product, beta-galactosidase enzyme activity. Hepatic expression of murine Cyp3a was analyzed at the mRNA, protein, and function levels. The acute phase response was assessed by examining cytokines [interleukin-6 (IL-6) and tumor necrosis factor] in serum, liver, or tumor as well as hepatic expression of serum amyloid protein P. RESULTS: Engelbreth-Holm-Swarm sarcoma elicited an acute phase response that coincided with down-regulation of the human CYP3A4 transgene in the liver as well as the mouse orthologue Cyp3a11. The reduction of murine hepatic Cyp3a gene expression in tumor-bearing mice resulted in decreased Cyp3a protein expression and consequently a significant reduction in Cyp3a-mediated metabolism of midazolam. Circulating IL-6 was elevated and IL-6 protein was only detected in tumor tissue but not in hepatic tissue. CONCLUSIONS: The current study provides a mechanistic link between cancer-associated inflammation and impaired drug metabolism in vivo. Targeted therapy to reduce inflammation may provide improved clinical benefit for chemotherapy drugs metabolized by hepatic CYP3A4 by improving their pharmacokinetic profile.  相似文献   

2.
3.
Multidrug resistance (MDR) and more specifically the expression of P-glycoprotein (Pgp) have been studied extensively in vitro. Unfortunately, it appears that the predictive value of MDR recognized in vitro is mostly an incorrect measure to determine the responsiveness of a particular tumour in the clinic. This misunderstood or overvalued role of MDR might explain the failure of strategies to reverse Pgp function by the use of modulators in solid tumours. To obtain more insight in in vivo drug resistance we investigated a panel of 15 human ovarian cancer xenografts consisting of the most common histological subtypes known in ovarian cancer patients. The response rate to cisplatin, cyclophosphamide and doxorubicin in the xenografts resembled the results of phase II trials with these agents in ovarian cancer patients. This resemblance justifies drug resistance studies in this experimental in vivo human tumour system. We determined the expression levels of MDR 1, MRP 1, LRP and topoisomerase IIalpha mRNA by the RNase protection assay and the presence of MRP1 and LRP proteins by immunohistochemistry. The S-phase fraction was investigated as a separate parameter by flow cytometry. In none of the 15 ovarian cancer xenografts was MDR 1 expression detectable. The expression levels of MRP 1 and LRP were low to moderate and resembled the presence of the MRP1 and LRP proteins. There was a weak, inverse relationship between the expression levels of LRP and sensitivity to cisplatin and cyclophosphamide (r = -0.44 and -0.45), but not to doxorubicin. The levels of topoisomerase IIalpha varied among the xenografts (0.73-2.66) and failed to correlate with doxorubicin resistance (r = 0.14). The S-phase fraction, however, showed a relation with the sensitivity to cisplatin (r = 0.66). Among the determinants studied in ovarian cancer in vivo, LRP mRNA and the S-phase fraction were the best predictive factors for drug response and most specifically for the activity of cisplatin.  相似文献   

4.
5.
The multidrug resistance protein (MRP) family belongs to the ATP-binding cassette superfamily (ABC) of transporters, which are involved in ATP-dependent transport of hydrophobic compounds. One of the MRP family, MRP1, is partially associated with the multidrug resistance phenotype in brain tumors. In this study, we asked whether another MRP family gene, MRP3, could affect drug sensitivity to anticancer agents in human glioma cell lines and clinical glioma specimens. We first produced two antisense transfectants by introduction of antisense MRP3 cDNA into the glioma cell line NHG2, which endogenously expresses MRP3. The two MRP3 antisense transfectants showed 2- to 5-fold increases in drug sensitivity to etoposide and cisplatin compared with NHG2 cells, but their sensitivity to vincristine or nitrosourea was not changed. Two MRP3 cDNA sense transfectants of pig kidney cell lines showed 4- to 6-fold drug resistance to etoposide, but only 1.4- to 1.5-fold to cisplatin. We next compared the mRNA levels of four ABC transporters, multidrug resistance 1 (MDR1), MRP1, MRP2 and MRP3 in clinical samples, including 34 patients with gliomas, by quantitative RT-PCR analysis. In some of the clinical samples, increased expression of MRP1 and MRP3 was apparent in malignant gliomas. In situ hybridization revealed that glioma cells were stained with MRP3 probe. MRP3 may modulate drug sensitivity to certain anticancer agents in human gliomas.  相似文献   

6.
The multidrug resistance protein (MRP) family belongs to the ATP-binding cassette superfamily (ABC) of transporters, which are involved in ATP-dependent transport of hydrophobic compounds. One of the MRP family, MRP1 , is partially associated with the multidrug resistance phe-notype in brain tumors. In this study, we asked whether another MRP family gene, MRP3 , could affect drug sensitivity to anticancer agents in human glioma cell lines and clinical glioma specimens. We first produced two antisense transfectants by introduction of antisense MRP3 cDNA into the glioma cell line NHG2, which endogenously expresses MRP3. The two MRP3 antisense transfectants showed 2- to 5-fold increases in drug sensitivity to etoposide and cisplatin compared with NHG2 cells, but their sensitivity to vincristine or nitrosourea was not changed. Two MRP3 cDNA sense transfectants of pig kidney cell lines showed 4- to 6-fold drug resistance to etoposide, but only 1.4- to 1.5-fold to cisplatin. We next compared the mRNA levels of four ABC transporters, multi-drug resistance 1 ( MDR1 ), MRP1, MRP2 and MRP3 in clinical samples, including 34 patients with gliomas, by quantitative RT-PCR analysis. In some of the clinical samples, increased expression of MRP1 and MRP3 was apparent in malignant gliomas. In situ hybridization revealed that glioma cells were stained with MRP3 probe. MRP3 may modulate drug sensitivity to certain anticancer agents in human gliomas.  相似文献   

7.
8.
Multidrug resistance (MDR) is a major reason for poor treatment results in hepatoblastoma (HB). The objective of this study was to establish a drug resistance model for HB to analyse alternative treatment options in vitro. Both HB cell lines HUH6 and HepT1 were xenotransplanted in NMRI mice (nu/nu) and 2 cycles of cisplatin (CDDP) treatment were administered. Thereafter, xenotransplants were excised and viable tumour cells were re-cultured. 3D cultures of HUH6 and HepT1 cells were generated on a low binding culture surface. Cell viability in response to CDDP/DOXO (doxorubicin) and apoptosis was assessed by MTT-assay and caspase 3 activity, respectively. Efflux of doxorubicin was measured by flow cytometry. Cellular levels of ABC-transporters (MDR1, MRP1, cMOAT and BRCP) were determined by real time rt-PCR. Only HepT1 cells isolated from HB xenografts showed resistance to CDDP, but did not survive repeated passages. Culturing HUH6 and HepT1 cells as spheroids was successful and 3D cultures showed an IC50-drift to higher drug concentrations for CDDP and DOXO compared to 2D cultures. Treatment with CDDP and DOXO led to homogeneous apoptosis in spheroids. Increased doxorubicin efflux in HUH6 spheroids was not influenced by the P-glycoprotein inhibitor tariquidar. Expression levels of MDR1, MRP1, cMOAT and BRCP in 3D cultures were similar to those in 2D cultures and were higher in HepT1 than in HUH6 cells. In conclusion, a 3D cell culture model for multidrug resistance was established for hepatoblastoma. The underlying mechanism involves altered accessibility of the cells for drugs rather than up-regulation of ABC-transporters.  相似文献   

9.
10.
Pancreatic ductal adenocarcinoma is among the top 10 causes of death from cancer in industrialized countries. In comparison with other gastrointestinal malignancies, pancreatic cancer is one of the tumors most resistant to chemotherapy. An important mechanism of tumor multidrug resistance is increased drug efflux mediated by several transporters of the ABC superfamily. Especially BCRP (ABCG2), MDR1 P-glycoprotein (ABCB1) and members of the MRP (ABCC) family are important in mediating drug resistance. The MRP family consists of 9 members (MRP1-MRP9) with MRP1-MRP6 being best characterized with respect to protein localization and substrate selectivity. Here, we quantified the mRNA expression of BCRP and of all MRP family members in normal human pancreas and pancreatic carcinoma and analyzed the mRNA level of the transporters most abundantly expressed in pancreatic tissue, BCRP, MRP1, MRP3, MRP4 and MRP5, in 37 tissue samples. In addition, we determined the localization of the 4 MRP proteins in normal human pancreas and in pancreatic carcinoma. The expression of BCRP, MRP1 and MRP4 mRNA did not correlate with tumor stage or grading. On the other hand, the expression of MRP3 mRNA was upregulated in pancreatic carcinoma samples and was correlated with tumor grading. The MRP5 mRNA level was significantly higher in pancreatic carcinoma tissue compared to normal pancreatic tissue. These data suggest that MRP3 and MRP5 are involved in drug resistance of pancreatic tumors and that quantitative analysis of their expression may contribute to predict the benefit of chemotherapy in patients with pancreatic cancer.  相似文献   

11.
This study highlights the usefulness of laser scanning confocal microscopy in the examination of subcellular disposition of anthracyclines in tumour cell lines. The distribution of anthracycline compounds has been studied in two pairs of parental and multidrug resistant (MDR) cell lines. For the parental EMT6 mouse mammary tumour cell line EMT6/P treated with doxorubicin (DOX) the anthracycline fluorescence was shown to be predominantly nuclear but with some particulate cytoplasmic fluorescence and very low levels of plasma membrane staining. In the same experiments much fainter fluorescence was seen for the EMT6/AR1.0 MDR subline which hyperexpresses P-glycoprotein. The loss of nuclear fluorescence was comparatively greater than loss of cytoplasmic fluorescence. For the human large cell lung cancer line COR-L23/P cellular DOX disposition was markedly nuclear with nuclear membrane staining and diffuse cytoplasmic fluorescence. For the MDR line COR-L23/R, which lacks P-glycoprotein expression, DOX fluorescence was reduced in the nucleus compared with the parental line, but an intense area of perinuclear staining was seen consistent with localisation to the Golgi apparatus. The morpholinyl-substituted analogue MR-DOX achieved very similar subcellular distribution in both parental and MDR lines, consistent with its retention of activity in the latter. The presence of verapamil during anthracycline exposure increased the intensity of fluorescence in the MDR lines, particularly in the nucleus. Relatively little effect was seen in the parental lines. Confocal microscopy provides high resolution images of the subcellular distribution of anthracyclines in parent and MDR cell lines. Differences in drug disposition in various cell lines may provide insights into the mechanism of multidrug resistance and suggest strategies for its therapeutic circumvention.  相似文献   

12.
13.
Systemic inflammation is associated with adverse prognosis cancer but its aetiology remains unclear. We investigated the expression of proinflammatory cytokines within normal mucosa from healthy controls and tumour tissue in cancer patients and related these levels with markers of systemic inflammation and with the presence of a tumour inflammatory infiltrate. Tissue was collected from 56 patients with gastro-oesophageal cancer and from 12 healthy controls. Tissue cytokine mRNA concentrations were measured by real-time PCR and tissue protein concentrations by cytometric bead array. The degree of chronic inflammatory cell infiltrate was recorded. Serum cytokine and acute phase protein concentrations (including C-reactive protein (CRP)) were measured by enzyme-linked immunosorbent assay. Proinflammatory cytokines were significantly overexpressed (interleukin (IL)-1beta, IL-6, IL-8 and tumour necrosis factor-alpha) both at mRNA and protein levels in the cancer specimens compared with mucosa from controls. Interleukin-1beta was expressed in greatest (10-100-fold) concentration and protein levels correlated significantly with systemic inflammation (CRP) (P = 0.05, r = 0.31). A chronic inflammatory infiltrate was observed in 75% of the cancer specimens and was associated with systemic inflammation (CRP: P = 0.01). However, the presence of chronic inflammation per se was not associated with altered cytokine expression within the tumour. Both a chronic inflammatory infiltrate and systemic inflammation (CRP) were associated with reduced survival (P = 0.05 and P = 0.03, respectively). Tumour chronic inflammatory infiltrate and tumour tissue IL-1beta overexpression are potential independent factors influencing systemic inflammation in oesophagogastric cancer patients.  相似文献   

14.
15.
16.
We have established ten transplantable human soft-tissue sarcoma (STS) xenografts grown as subcutaneous tumours in the nude mouse. Nine xenografts originated from patients that needed chemotherapy in the course of their disease. The xenografts were tested for their sensitivity to maximum tolerated doses of five anti-cancer agents. Growth of treated tumours was expressed as a percentage of control tumour growth and a growth inhibition > 75% was measured for doxorubicin in 20% of the STS xenografts, for cyclophosphamide in 30%, for ifosfamide in 20%, for vincristine in 20%, whereas etoposide was not effective in the STS xenografts. In three out of ten STS xenografts MDR1 mRNA was detectable, but this was not related to the resistance against doxorubicin, vincristine or etoposide. Topoisomerase IIalpha mRNA expression levels did not reflect sensitivity to doxorubicin or etoposide. In all STS tissues, however, these levels were lower than topoisomerase IIalpha mRNA in a drug-sensitive human ovarian cancer xenograft. Glutathione concentrations and the activities of glutathione S-transferase, glutathione peroxidase and glutathione reductase were not related to resistance against the alkylating agents or doxorubicin. Of interest, in all STS tissues, glutathione S-transferase pi was the predominant isoenzyme present. In conclusion, chemosensitivity of the STS xenografts reflects clinical response rates in phase II trials on the same compounds in adult STS patients. Relatively low levels of topoisomerase IIalpha mRNA may partly account for intrinsic resistance against, for example, doxorubicin. Additional factors must contribute to moderate responsiveness to alkylating agents.  相似文献   

17.
18.
应用逆转录PCR结合同位素定量分析,对32例儿童白血病患者的多源耐药基因表达水平进行了研究。结果显示,初发病人的表达均较低,复发病人表达较高,缓解期病人表达程度介于两者之间,为探讨多源耐药基因表达水平与临床化疗之间的相关性及逆转克服多源耐药性药物的应用,提供了一定的理论依据。  相似文献   

19.
20.
The development of a diagnostic method for predicting the therapeutic efficacy or toxicity of anticancer drugs is a critical issue. We carried out a gene expression analysis to identify genes whose expression profiles were correlated with the sensitivity of 30 human tumor xenografts to 5-fluorouracil (5-FU)-based drugs (tegafur + uracil [UFT], tegafur + gimeracil + oteracil [S-1], 5'-deoxy-5-fluorouridine [5'-DFUR], and N4-pentyloxycarbonyl-5'-deoxy-5-fluorocytidine [capecitabine]), as well as three other drugs (cisplatin [CDDP], irinotecan hydrochloride [CPT-11], and paclitaxel) that have different modes of action. In the present study, we focused especially on the fluoropyrimidines. The efficacy of all anticancer drugs was assayed using human tumor xenografts in nude mice. The mRNA expression profile of each of these xenografts was analyzed using a Human Focus array. Correlation analysis between the gene expression profiles and the chemosensitivities of seven drugs identified 39 genes whose expression levels were correlated significantly with multidrug sensitivity, and we suggest that the angiogenic pathway plays a pivotal role in resistance to fluoropyrimidines. Furthermore, many genes showing specific correlations with each drug were also identified. Among the candidate genes associated with 5-FU resistance, the dihydropyrimidine dehydrogenase mRNA expression profiles of the tumors showed a significant negative correlation with chemosensitivity to all of the 5-FU based drugs except for S-1. Therefore, the administration of S-1 might be an effective strategy for the treatment of high dihydropyrimidine dehydrogenase-expressing tumors. The results of the present study may enhance the prediction of tumor response to anticancer drugs and contribute to the development of tailor-made chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号