首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical ventilation is necessary for patients with acute respiratory failure, but can cause or propagate lung injury. We previously identified cyclooxygenase-2 as a candidate gene in mechanical ventilation-induced lung injury. Our objective was to determine the role of cyclooxygenase-2 in mechanical ventilation-induced lung injury and the effects of cyclooxygenase-2 inhibition on lung inflammation and barrier disruption. Mice were mechanically ventilated at low and high tidal volumes, in the presence or absence of pharmacologic cyclooxygenase-2-specific inhibition with 3-(4-methylsulphonylphenyl)-4-phenyl-5-trifluoromethylisoxazole (CAY10404). Lung injury was assessed using markers of alveolar-capillary leakage and lung inflammation. Cyclooxygenase-2 expression and activity were measured by Western blotting, real-time PCR, and lung/plasma prostanoid analysis, and tissue sections were analyzed for cyclooxygenase-2 staining by immunohistochemistry. High tidal volume ventilation induced lung injury, significantly increasing both lung leakage and lung inflammation relative to control and low tidal volume ventilation. High tidal volume mechanical ventilation significantly induced cyclooxygenase-2 expression and activity, both in the lungs and systemically, compared with control mice and low tidal volume mice. The immunohistochemical analysis of lung sections localized cyclooxygenase-2 expression to monocytes and macrophages in the alveoli. The pharmacologic inhibition of cyclooxygenase-2 with CAY10404 significantly decreased cyclooxygenase activity and attenuated lung injury in mice ventilated at high tidal volume, attenuating barrier disruption, tissue inflammation, and inflammatory cell signaling. This study demonstrates the induction of cyclooxygenase-2 by mechanical ventilation, and suggests that the therapeutic inhibition of cyclooxygenase-2 may attenuate ventilator-induced acute lung injury.  相似文献   

2.
Mechanical ventilation causes ventilator-induced lung injury (VILI), and contributes to acute lung injury/acute respiratory distress syndrome (ALI/ARDS), a disease with high morbidity and mortality among critically ill patients. Carbon monoxide (CO) can confer lung protective effects during mechanical ventilation. This study investigates the time dependency of CO therapy with respect to lung protection in animals subjected to mechanical ventilation. For this purpose, mice were ventilated with a tidal volume of 12 ml/kg body weight for 6 h with air in the absence or presence of CO (250 parts per million). Histological analysis of lung tissue sections was used to determine alveolar wall thickening and the degree of lung damage by VILI score. Bronchoalveolar lavage fluid was analyzed for total cellular influx, neutrophil accumulation, and interleukin-1β release. As the main results, mechanical ventilation induced pulmonary edema, cytokine release, and neutrophil recruitment. In contrast, application of CO for 6 h prevented VILI. Although CO application for 3 h followed by 3-h air ventilation failed to prevent lung injury, a further reduction of CO application time to 1 h in this setting provided sufficient protection. Pre-treatment of animals with inhaled CO for 1 h before ventilation showed no beneficial effect. Delayed application of CO beginning at 3 or 5 h after initiation of ventilation, reduced lung damage, total cell influx, and neutrophil accumulation. In conclusion, administration of CO for 6 h protected against VILI. Identical protective effects were achieved by limiting the administration of CO to the first hour of ventilation. Pre-treatment with CO had no impact on VILI. In contrast, delayed application of CO led to anti-inflammatory effects with time-dependent reduction in tissue protection.  相似文献   

3.
Management of patients with acute lung injury (ALI) rests on achieving a balance between the gas exchanging benefits of mechanical ventilation and the exacerbation of tissue damage in the form of ventilator-induced lung injury (VILI). Optimizing this balance requires an injury cost function relating injury progression to the measurable pressures, flows, and volumes delivered during mechanical ventilation. With this in mind, we mechanically ventilated naive, anesthetized, paralyzed mice for 4 h using either a low or high tidal volume (Vt) with either moderate or zero positive end-expiratory pressure (PEEP). The derecruitability of the lung was assessed every 15 min in terms of the degree of increase in lung elastance occurring over 3 min following a recruitment maneuver. Mice could be safely ventilated for 4 h with either a high Vt or zero PEEP, but when both conditions were applied simultaneously the lung became increasingly unstable, demonstrating worsening injury. We were able to mimic these data using a computational model of dynamic recruitment and derecruitment that simulates the effects of progressively increasing surface tension at the air–liquid interface, suggesting that the VILI in our animal model progressed via a vicious cycle of alveolar leak, degradation of surfactant function, and increasing tissue stress. We thus propose that the task of ventilating the injured lung is usefully understood in terms of the Vt–PEEP plane. Within this plane, non-injurious combinations of Vt and PEEP lie within a “safe region”, the boundaries of which shrink as VILI develops.  相似文献   

4.
PurposeVentilator-induced lung injury (VILI) is a serious complication of mechanical ventilation (MV) that increases morbidity and mortality of patients receiving ventilator treatment. This study aimed to reveal the molecular mechanism of sodium houttuyfonate (SH) on VILI.Materials and MethodsThe male mice VILI model was established by high tidal volume ventilation. The cell model was established by performing cell stretch (CS) experiments on murine respiratory epithelial cells MLE-15. In addition, the JNK activator Anisomycin and JNK inhibitor SP600125 were used on VILI mice and CS-treated cells.ResultsVILI modeling damaged the structural integrity, increased apoptosis and wet-to-dry (W/D) ratio, enhanced the levels of inflammatory factors, reactive oxygen species (ROS) and malonaldehyde (MDA), and activated JNK pathway in lung tissues. SH gavage alleviated lung injury, decreased apoptosis and W/D ratio, and reduced levels of inflammatory factors, ROS and MDA, and p-JNK/JNK expression of lung tissues in VILI mice. However, activation of JNK wiped the protective effect of SH on VILI. Contrary results were found in experiments with JNK inhibitor SP600125.ConclusionSH relieved VILI by inhibiting the ROS-mediated JNK pathway.  相似文献   

5.
The outbreak of severe acute respiratory syndrome (SARS) in 2003 reinforces the potential of lethal pandemics of respiratory viral infections. The underlying mechanisms of SARS are still largely undefined. Long pentraxin PTX3, a humoral mediator of innate immunity, has been reported to have anti-viral effects. We examined the role of PTX3 in coronavirus murine hepatitis virus strain 1 (MHV-1)-induced acute lung injury, a previously reported animal model for SARS. PTX3-deficient mice (129/SvEv/C57BL6/J) and their wild-type (WT) littermates were intranasally infected MHV-1. These mice were also treated with recombinant PTX3. Effects of PTX3 on viral binding and infectivity were determined in vitro. Cytokine expression, severity of lung injury, leukocyte infiltration and inflammatory responses were examined in vivo. In PTX3 WT mice, MHV-1 induced PTX3 expression in the lung and serum in a time-dependent manner. MHV-1 infection led to acute lung injury with greater severity in PTX3-deficient mice than that in WT mice. PTX3 deficiency enhanced early infiltration of neutrophils and macrophages in the lung. PTX3 bound to MHV-1 and MHV-3 and reduced MHV-1 infectivity in vitro. Administration of recombinant PTX3 significantly accelerated viral clearance in the lung, attenuated MHV-1-induced lung injury, and reduced early neutrophil influx and elevation of inflammatory mediators in the lung. Results from this study indicate a protective role of PTX3 in coronaviral infection-induced acute lung injury.  相似文献   

6.
Redox imbalance and ventilator-induced lung injury   总被引:5,自引:0,他引:5  
Mechanical ventilation (MV) is an indispensable therapy in the care of critically ill patients with acute lung injury and the acute respiratory distress syndrome; however, it is also known to further lung injury in certain conditions of mechanical stress, leading to ventilator-induced lung injury (VILI). The mechanisms by which conventional MV exacerbates lung injury and inflammation are of considerable clinical significance. Redox imbalance has been postulated, among other mechanisms, to enhance/perpetuate susceptibility to VILI. A better understanding of these pathologic mechanisms will help not only in alleviating the side effects of mechanical forces but also in the development of new therapeutic strategies. Here, we review the relevance of oxidative stress in VILI from human studies as well as cellular and mouse models of mechanical stress. Potential therapeutic avenues for the treatment of VILI with exogenous administration of antioxidants also are discussed.  相似文献   

7.
Mechanical ventilation has become an indispensable therapeutic modality for patients with respiratory failure. However, a serious potential complication of MV is the newly recognized ventilator-induced acute lung injury. There is strong evidence suggesting that matrix metalloproteinases (MMPs) play an important role in the development of acute lung injury. Another factor to be considered is extracellular matrix metalloproteinase inducer (EMMPRIN). EMMPRIN is responsible for inducing fibroblasts to produce/secrete MMPs. In this report we sought to determine: (1) the role played by MMPs and EMMPRIN in the development of ventilator-induced lung injury (VILI) in an in vivo rat model of high volume ventilation; and (2) whether the synthetic MMP inhibitor Prinomastat (AG3340) could prevent this type of lung injury. We have demonstrated that high volume ventilation caused acute lung injury. This was accompanied by an upregulation of gelatinase A, gelatinase B, MT1-MMP, and EMMPRIN mRNA demonstrated by in situ hybridization. Pretreatment with the MMP inhibitor Prinomastat attenuated the lung injury caused by high volume ventilation. Our results suggest that MMPs play an important role in the development of VILI in rat lungs and that the MMP-inhibitor Prinomastat is effective in attenuating this type of lung injury.  相似文献   

8.
Mechanical ventilation, often required to maintain normal gas exchange in critically ill patients, may itself cause lung injury. Lung-protective ventilatory strategies with low tidal volume have been a major success in the management of acute respiratory distress syndrome (ARDS). Volutrauma causes mechanical injury and induces an acute inflammatory response. Our objective was to determine whether neutrophil elastase (NE), a potent proteolytic enzyme in neutrophils, would contribute to ventilator-induced lung injury. NE-deficient (NE-/-) and wild-type mice were mechanically ventilated at set tidal volumes (10, 20, and 30 ml/kg) with 0 cm H2O of positive end-expiratory pressure for 3 hours. Lung physiology and markers of lung injury were measured. Neutrophils from wild-type and NE-/- mice were also used for in vitro studies of neutrophil migration, intercellular adhesion molecule (ICAM)-1 cleavage, and endothelial cell injury. Surprisingly, in the absence of NE, mice were not protected, but developed worse ventilator-induced lung injury despite having lower numbers of neutrophils in alveolar spaces. The possible explanation for this finding is that NE cleaves ICAM-1, allowing neutrophils to egress from the endothelium. In the absence of NE, impaired neutrophil egression and prolonged contact between neutrophils and endothelial cells leads to tissue injury and increased permeability. NE is required for neutrophil egression from the vasculature into the alveolar space, and interfering with this process leads to neutrophil-related endothelial cell injury.  相似文献   

9.
Although platelets induce lung inflammation, leading to acute lung injury (ALI), the extent of platelet-endothelial cell (EC) interactions remains poorly understood. Here, in a ventilation-stress model of lung inflammation, we show that platelet-EC interactions are important. We obtained freshly isolated lung endothelial cells (FLECs) from isolated, blood-perfused rat lungs exposed to ventilation at low tidal volume (LV) or stress-inducing high tidal volume (HV). Immunofluorescence and immunoprecipitation studies revealed HV-induced increases in cell-surface von Willebrand factor (vWf) expression on FLEC. This increased expression was inhibited by platelet removal from the lung perfusion and by including a P-selectin-blocking antibody in the lung perfusion. The expression was also blocked in lungs from P-selectin knockout (P sel(-/-)) mice perfused with autologous blood, but not with heterologous wild-type blood containing P-selectin-expressing platelets. These findings indicate that in ventilation stress, platelets transfer vWf to the EC surface and that platelet P-selectin plays a critical role in this transfer. Further evidence for such intercellular transfers was the HV-induced FLEC expressions of platelet glycoprotein 1b and of platelet P-selectin. We conclude that in ventilation stress, platelets deposit leukocyte- and platelet-binding proteins on the EC surface, thereby establishing the proinflammatory phenotype of the vascular lining.  相似文献   

10.
Both hyperoxia and mechanical ventilation can independently cause lung injury. In combination, these insults produce accelerated and severe lung injury. We recently reported that pre-exposure to hyperoxia for 12 hours, followed by ventilation with large tidal volumes, induced significant lung injury and epithelial cell apoptosis compared with either stimulus alone. We also reported that such injury and apoptosis are inhibited by antioxidant treatment. In this study, we hypothesized that apoptosis signal-regulating kinase-1 (ASK-1), a redox-sensitive, mitogen-activated protein kinase kinase kinase, plays a role in lung injury and apoptosis in this model. To determine the role of ASK-1 in lung injury, the release of inflammatory mediators and apoptosis, attributable to 12 hours of hyperoxia, were followed by large tidal volume mechanical ventilation with hyperoxia. Wild-type and ASK-1 knockout mice were subjected to hyperoxia (Fi(O(2)) = 0.9) for 12 hours before 4 hours of large tidal mechanical ventilation (tidal volume = 25 μl/g) with hyperoxia, and were compared with nonventilated control mice. Lung injury, apoptosis, and cytokine release were measured. The deletion of ASK-1 significantly inhibited lung injury and apoptosis, but did not affect the release of inflammatory mediators, compared with the wild-type mice. ASK-1 is an important regulator of lung injury and apoptosis in this model. Further study is needed to determine the mechanism of lung injury and apoptosis by ASK-1 and its downstream mediators in the lung.  相似文献   

11.
The pentraxin superfamily is a group of evolutionarily conserved proteins that play important roles in the immune system. The long pentraxin PTX3 protein was originally described as able to be induced by pro-inflammatory stimuli in a variety of cell types. In this study, we evaluated the phenotype of Ptx3−/− mice subjected to ischemia followed by reperfusion of the superior mesenteric artery. In reperfused wild-type mice, there was significant local and remote injury as demonstrated by increases in vascular permeability, neutrophil influx, nuclear factor-κB activation, and production of CXCL1 and tumor necrosis factor-α. PTX3 levels were elevated in both serum and intestine after reperfusion. In Ptx3−/− mice, local and remote tissue injury was inhibited, and there were decreased nuclear factor-κB translocation and cytokine production. Intestinal architecture was preserved, and there were decreased neutrophil influx and significant prevention of lethality in Ptx3−/− mice as well. PTX3 given intravenously before reperfusion reversed the protection observed in Ptx3−/− mice in a dose-dependent manner, and PTX3 administration significantly worsened tissue injury and lethality in wild-type mice. In conclusion, our studies demonstrate a major role for PTX3 in determining acute reperfusion-associated inflammation, tissue injury, and lethality and suggest the soluble form of this molecule is active in this system. Therapeutic blockade of PTX3 action may be useful in the control of the injuries associated with severe ischemia and reperfusion syndromes.The long pentraxin 3 (PTX3) is a member of the pentraxin superfamily, a group of highly conserved proteins characterized by multimeric, usually pentameric structures that stack to form decamers. PTX3 was originally identified as a tumor necrosis factor (TNF)-α-stimulated gene in fibroblasts1 and as a pentraxin family gene from endothelial cells stimulated with interleukin (IL)-1.2 PTX3 is released by a range of cell types, including myeloid dendritic cells, endothelial cells, epithelial cells, mononuclear phagocytes, smooth muscle cells, adipocytes, fibroblasts, synovial cells, and chondrocytes, in response to diverse inflammatory signals, including cytokines, lipopolysaccharide, lipoarabinomannans, and other TLR agonists.3,4 The exact molecular pathways underlying the actions of PTX3 in vivo are not entirely known but several mechanisms have been suggested to explain the actions of the protein, including: i) direct binding to pathogens, thus, functioning as a soluble pattern recognition receptor5; ii) binding and limiting the function of C1q6; and iii) binding to apoptotic cells and modifying their uptake by phagocytic cells.7 A putative PTX3 receptor has also been suggested3 but has not yet been reported.A few studies have now demonstrated that the concentration of PTX3 is elevated in serum of patients undergoing an ischemic event; the level of PTX3 in serum was increased in patients with unstable angina,8 it was an early indicator of myocardial infarction,9 and it predicted 3-month mortality after an acute myocardial event.10 In experimental animals, there is rapid expression of PTX3 after reperfusion of the ischemic superior mesenteric artery.11 More importantly, overexpression of PTX3, as observed in transgenic mice harboring extra copies of PTX3, was accompanied by an enhancement of lethality and tissue injury after intestinal ischemia and reperfusion (I/R).11 Increased injury and lethality were associated with an exacerbated inflammatory response and production of pro-inflammatory cytokines, including TNF-α. Importantly, administration of a soluble TNFR1 prevented the exacerbated lethality suggesting that overexpression of PTX3 induced exacerbated reperfusion-induced tissue injury and lethality by modulating the production of TNF-α.11 The present study was designed to investigate whether endogenous production of PTX3 would have a disease-modifying effect on reperfusion injury, as described previously in animals overexpressing the protein. We also investigated whether the soluble form of PTX3 was relevant in mediating tissue inflammation and injury in this system. To this end, we evaluated tissue inflammation and injury, systemic production of cytokines, and lethality in wild-type and PTX3-deficient (Ptx3−/−) mice subjected to I/R of the superior mesenteric artery. We then tested whether exogenous administration of PTX3 could alter the tissue injury in Ptx3−/− mice and in wild-type mice.  相似文献   

12.
 目的:研究表皮生长因子受体(epidermal growth factor receptor, EGFR)-p38丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)信号通路在机械通气肺损伤(ventilator-induced lung injury, VILI)大鼠肺组织高迁移率族盒蛋白1 (high mobility group box 1 protein, HMGB1)表达中的作用。方法:健康SD大鼠32只随机分为4组:对照组(A组)不行机械通气,保留自主呼吸;小潮气量通气组(B组)潮气量(VT)为8 mL/kg;大潮气量通气组(C组)VT为40 mL/kg;大潮气量通气+EGFR拮抗剂AG-1478组为D组。机械通气4 h后处死动物,测定支气管肺泡灌洗液中总蛋白水平、白细胞计数以及肺湿干重比值(W/D)和髓过氧化物酶(MPO)活性,采用HE染色观察肺组织病理学改变,Western blotting方法检测肺组织磷酸化EGFR、磷酸化p38和HMGB1蛋白表达,RT-PCR方法检测EGFR mRNA的表达。结果:通气4 h后,与A组比较,C组肺组织病理学改变明显,总蛋白水平、白细胞计数、肺W/D、MPO活性、EGFR mRNA表达和磷酸化水平、p38磷酸化水平以及HMGB1蛋白表达均显著增加(P<0.05);与C组比较,D组上述各项指标的变化均显著降低(P<0.05)。结论:大潮气量机械通气可引起大鼠急性肺损伤,其机制可能与通过EGFR-p38 MAPK信号通路介导HMGB1蛋白的表达有关。  相似文献   

13.
Deletion of integrin alphav beta6 has been associated with significant protection in experiments where lung injury was induced by bleomycin, lipophilic polysaccharides, and high tidal volume ventilation. This has led to the suggestion that antibody blockade of this integrin is a novel therapy for acute lung injury. We questioned whether beta6 gene deletion would also protect against Pseudomonas aeruginosa-induced acute lung injury. Wild-type and littermate beta6-null mice, as well as recombinant soluble TGF-beta receptor type II-Fc (rsTGF-betaRII-Fc) and anti-alphav beta6 treated wild-type mice, were instilled with live P. aeruginosa. Four or 8 h after bacterial instillation, the mice were euthanized, and either bronchoalveolar lavage fluid or lung homogenates were obtained. Deletion of the beta6 gene resulted in an overall increase in inflammatory cells in the lungs. Bacterial numbers from the lung homogenates of infected beta6-null mice were significantly decreased compared to the numbers in the wild-type mice (1.6 x 10(6) CFU versus 4.2 x 10(6) CFU [P < 0.01]). There were no significant differences in P. aeruginosa-mediated increases in lung endothelial permeability between wild-type and beta6-null mice. Similarly, pretreatment with the alphav beta6 antibody or with rsTGF-betaRII-Fc did not significantly affect the P. aeruginosa-induced lung injury or rate of survival compared to pretreatment with control immunoglobulin G. We conclude that deletion or inhibition of the integrin alphav beta6 did not protect animals from P. aeruginosa-induced lung injury. However, these therapies also did not increase the lung injury, suggesting that host defense was not compromised by this promising new therapy.  相似文献   

14.
 目的:中性粒细胞明胶酶相关脂质运载蛋白(NGAL)是25 kD大小的脂质运载蛋白超家族一员。我们通过观察NGAL在小鼠呼吸机所致肺损伤(VILI)模型中不同机械通气策略对其表达的影响,探讨NGAL是否为VILI新的生物标志物。方法:采用不同的机械通气策略作用于小鼠,构建不同的急性肺损伤模型。利用实时定量RT-PCR观察小鼠肺组织NGAL mRNA的变化;利用Western blotting检测NGAL蛋白在肺组织、血清和支气管肺泡灌洗液(BALF)中的变化;采用免疫组化检测NGAL蛋白在损伤性通气肺组织中的空间定位。结果:不同的通气策略都能引起小鼠NGAL的表达升高,在损伤性通气策略组升高显著,高吸气末峰压组和大潮气量通气组NGAL mRNA和蛋白的表达明显升高,并且在肺组织的上皮细胞、血管内皮细胞和浸润的中性粒细胞中均有表达,提示NGAL是对机械刺激敏感的传感蛋白,可能参与了VILI的发病机制。结论:NGAL可能是一种新的、能早期判断VALI的生物标志物。监测血清和BALF中的NGAL水平有可能成为诊断VILI高危病人的有效工具。  相似文献   

15.
Management of ALI/ARDS involves supportive ventilation at low tidal volumes (V t) to minimize the rate at which ventilator induced lung injury (VILI) develops while the lungs heal. However, we currently have few details to guide the minimization of VILI in the ALI/ARDS patient. The goal of the present study was to determine how VILI progresses with time as a function of the manner in which the lung is ventilated in mice. We found that the progression of VILI caused by over-ventilating the lung at a positive end-expiratory pressure of zero is accompanied by progressive increases in lung stiffness as well as the rate at which the lung derecruits over time. We were able to accurately recapitulate these findings in a computational model that attributes changes in the dynamics of recruitment and derecruitment to two populations of lung units. One population closes over a time scale of minutes following a recruitment maneuver and the second closes in a matter of seconds or less, with the relative sizes of the two populations changing as VILI develops. This computational model serves as a basis from which to link the progression of VILI to changes in lung mechanical function.  相似文献   

16.
17.
目的探讨p38信号通路在丙泊酚抑制呼吸机所致肺损伤(VILI)大鼠肺组织表达高迁移率族蛋白B1(HMGB1)中的作用。方法将32只健康SD大鼠随机分为4组,每组8只。对照组(A组)不行机械通气,保留自主呼吸;常规通气组(B组)潮气量(VT)为8ml/kg;大潮气量通气组(C组)VT为30ml/kg;大潮气量通气+丙泊酚组(D组)VT为30ml/kg,同时静脉注射丙泊酚8mg/(kg.h)。机械通气4h后处死动物,测定支气管肺泡灌洗液(BALF)中总蛋白水平、白细胞计数以及肺湿干重比值(W/D)和中性粒细胞髓过氧化物酶(MPO)活性。采用Western blot方法检测肺组织HMGB1蛋白含量以及p38的激酶活性,采用RT-PCR方法检测HMGB1 mRNA的表达。应用单因素方差分析进行不同组别间的比较。结果通气4h后,与A组相比,C组总蛋白水平(1.58±0.46)g/L、白细胞计数(112.05±21.33)×107/L、肺W/D比值(8.25±0.92)、MPO活性(3.08±0.85)U/g、HMGB1蛋白(0.43±0.13)和mRNA(0.30±0.08)表达以及p38激酶活性(0.52±0.11)均明显增加(P〈0.05);与C组相比,D组上述各项指标的变化均明显降低(P〈0.05)。结论丙泊酚可改善VILI肺内炎症反应,可能与通过p38信号通路抑制HMGB1蛋白和mRNA的表达有关。  相似文献   

18.
Acetylcholine (ACh) acting through muscarinic receptors is thought to be involved in the control of breathing, notably in central and peripheral chemosensory afferents and in regulations related to sleep-wake states. By using whole-body plethysmography, we compared baseline breathing at rest and ventilatory responses to acute exposure (5 min) to moderate hypoxia (10% O(2)) and hypercapnia (3 and 5% CO(2)) in mice lacking either the M(1) or the M(3) muscarinic receptor, and in wild-type matched controls. M(1) knockout mice showed normal minute ventilation (V(E)) but elevated tidal volume (V(T)) at rest, and normal chemosensory ventilatory responses to hypoxia and hypercapnia. M(3) knockout mice had elevated V(E) and V(T) at rest, a reduced V(T) response slope to hypercapnia, and blunted V(E) and frequency responses to hypoxia. The results suggest that M(1) and M(3) muscarinic receptors play significant roles in the regulation of tidal volume at rest and that the afferent pathway originating from peripheral chemoreceptors involves M(3) receptors.  相似文献   

19.
目的 研究百日咳综合征患儿潮气呼吸肺功能的变化情况,探讨其临床指导意义。方法 收集2018年3月~9月在我科住院的百日咳综合征患儿115例作为观察组,同龄健康儿童50例作为对照组,对两组儿童进行潮气呼吸肺功能测定。结果 观察组患儿每公斤体重潮气量(VT/kg)、吸呼比(TI/TE)、达峰时间比(TPTEF/TE)、达峰容积比(VPEF/VE)分别为(8.39±1.21)ml/kg,(0.69±0.10)%,(21.01±5.09)%,(22.30±4.61)%,低于对照组的(9.05±1.01)ml/kg,(0.82±0.12)%,(39.68±10.21)%,(39.31±9.96)%,呼吸频率(RR)为(28.76±5.77)次/min,高于对照组的(24.56±5.45)次/min,差异具有统计学意义(P<0.05)。结论 百日咳综合征患儿大小气道通气功能均有损害,表现在安静状态下的肺功能检查差异,由此可以了解损伤程度,并指导临床治疗及用药,以及评估疗效和预后都有一定意义。  相似文献   

20.
In this feasibility study, Fourier domain optical coherence tomography (FDOCT) is used for visualizing the 3-D structure of fixated lung parenchyma and to capture real-time cross sectional images of the subpleural alveolar mechanics in a ventilated and perfused isolated rabbit lung. The compact and modular setup of the FDOCT system allows us to image the first 500 microm of subpleural lung parenchyma with a 3-D resolution of 16 x 16 x 8 microm (in air). During mechanical ventilation, real-time cross sectional FDOCT images visualize the inflation and deflation of alveoli and alveolar sacks (acini) in successive images of end-inspiratory and end-expiratory phase. The FDOCT imaging shows the relation of local alveolar mechanics to the setting of tidal volume (VT), peak airway pressure, and positive end-expiratory pressure (PEEP). Application of PEEP leads to persistent recruitment of alveoli and acini in the end-expiratory phase, compared to ventilation without PEEP where alveolar collapse and reinflation are observed. The imaging of alveolar mechanics by FDOCT will help to determine the amount of mechanical stress put on the alveolar walls during tidal ventilation, which is a key factor in understanding the development of ventilator induced lung injury (VILI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号