首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacodynamic parameters of peak serum drug concentration/MIC (peak/MIC) ratio and the area under the curve (AUC)/MIC ratio have been used to characterize in vivo drug exposure and its relationship to bacterial killing for the fluoroquinolones. Our study objectives were to describe the pharmacodynamic relationship between gatifloxacin exposure and outcome as assessed by bacterial density and survival in an immunocompromised murine thigh model of pneumococcal infection and to assess the relationship between drug exposure and these outcomes in an immunocompetent host. ICR mice were rendered neutropenic, and thigh infection was induced by intramuscular administration of 0.1 ml of 10(5) to 10(7) CFU of Streptococcus pneumoniae/ml. Mice received 1 to 5 mg of uranyl nitrate/kg of body weight at day -3 and were randomized to receive 10 to 80 mg of gatifloxacin/kg every 6 to 24 h orally, starting at 2 h postinoculation. Bacterial density studies were completed 24 h after initiation of therapy, and survival was assessed after 4 days of treatment. MICs for clinical isolates (n = 8) ranged from 0.25 to 1.0 microg/ml. Correlations were assessed between the change in bacterial density, as well as survival, and the AUC/MIC ratio, peak/MIC ratio, and the duration of time that serum drug concentration remained above the MIC. The best predictor of bacterial response was the AUC/MIC ratio for both outcome measures. There was greater efficacy, as measured by a decrease in log change in CFU as well as by survival data, in the immunocompetent mice compared to the immunocompromised mice. These data demonstrate (i) the appropriateness of the AUC/MIC ratio as a dynamic predictor of response to pneumococcal infection for the fluoroquinolones, (ii) that gatifloxacin AUC/MIC ratios of 30 to 40 appear to optimize bactericidal activity and survival in this model, and (iii) that immunocompetency of the host plays a role in efficacy.  相似文献   

2.
The association between macrolide resistance mechanisms and clinical outcomes remains understudied. The present study, using an in vitro pharmacodynamic model, assessed clarithromycin (CLR) activity against mef(A)-positive and erm(B)-negative Streptococcus pneumoniae isolates by simulating free-drug concentrations in serum and both total (protein-bound and free) and free drug in epithelial lining fluid (ELF). Five mef(A)-positive and erm(B)-negative strains, one mef(A)-negative and erm(B)-positive strain, and a control [mef(A)-negative and erm(B)-negative] strain of S. pneumoniae were tested. CLR was modeled using a one-compartment model, simulating a dosage of 500 mg, per os, twice a day (in serum, free-drug C(p) maximum of 2 micro g/ml, t(1/2) of 6 h; in ELF, C(ELF(total)) maximum of 35 micro g/ml, t(1/2) of 6 h; C(ELF(free)) maximum of 14 micro g/ml, t(1/2) of 6 h). Starting inocula were 10(6) CFU/ml in Mueller-Hinton broth with 2% lysed horse blood. With sampling at 0, 4, 8, 12, 20, and 24 h, the extent of bacterial killing was assessed. Achieving CLR T/MIC values of > or =90% (AUC(0-24)/MIC ratio, > or =61) resulted in bacterial eradication, while T>MIC values of 40 to 56% (AUC(0-24)/MIC ratios of > or =30.5 to 38) resulted in a 1.2 to 2.0 log(10) CFU/ml decrease at 24 h compared to that for the initial inoculum. CLR T/MIC values of < or =8% (AUC(0-24)/MIC ratio, < or =17.3) resulted in a static effect or bacterial regrowth. The high drug concentrations in ELF that were obtained clinically with CLR may explain the lack of clinical failures with mef(A)-producing S. pneumoniae strains, with MICs up to 8 micro g/ml. However, mef(A) isolates for which MICs are > or =16 micro g/ml along with erm(B) may result in bacteriological failures.  相似文献   

3.
BMS-284756 is a novel quinolone that lacks the six-position fluorine typical of existing compounds. Despite this structural change, BMS-284756 maintains potent antibacterial activity against gram-negative and gram-positive aerobic and anaerobic pathogens. The objective of this study was to define the pharmacodynamic profile of BMS-284756 against Streptococcus pneumoniae. Protein binding in mice was assessed by the ultrafiltration method. For pharmacodynamic studies, neutropenic ICR mice were used, as well as an immunocompetent mouse species, CBA/J, in order to evaluate the impact of white blood cells on infection outcome. Mice were infected with 10(5) to 10(6) CFU per thigh, and therapy was initiated after 2 h. Animals received BMS-284756 orally over a range of 1.25 to 100 mg/kg/day divided into one to four doses. At 0 and 24 h postinfection, thighs were harvested for bacterial density measurement. Survival was assessed during 96 h of therapy and again at 3 days after therapy. Pharmacokinetic studies were also conducted with infected mice. Protein binding was determined to be 80%. The MICs for clinical isolates (n = 8) ranged from 0.03 to 2 micro g/ml. The change in bacterial density and survival was correlated with the pharmacodynamic parameters percentage of time that the drug concentration in serum remains above the MIC, AUC (area under the concentration-time curve)/MIC ratio, and peak/MIC ratio, and the best predictor of response was the AUC/MIC ratio for both outcome measures. Total AUC/MIC ratios of 100 to 200 appear to result in maximal bactericidal effects. While a total AUC/MIC ratio exposure value of 100 (free AUC/MIC ratio, approximately 20) resulted in nearly 100% survival at the conclusion of therapy, a total AUC/MIC ratio of 200 (free AUC/MIC ratio, approximately 40) was required to ensure survival at 3 days posttherapy. These data demonstrate (i) the in vivo bactericidal activity of BMS-284756 against S. pneumoniae, (ii) that protein binding has a profound impact on the in vivo pharmacodynamic assessment of BMS-284756, and (iii) that an AUC/MIC ratio of 200 (free AUC/MIC ratio, approximately 40) appears to best characterize the required dynamic exposure for optimization of bactericidal activity and maximal survival.  相似文献   

4.
In vivo pharmacodynamic activity of daptomycin   总被引:5,自引:0,他引:5       下载免费PDF全文
Daptomycin is a lipopeptide antibiotic with activity against a wide range of gram-positive bacteria. We used the neutropenic murine thigh model to characterize the pharmacodynamics of daptomycin. ICR/Swiss mice were rendered neutropenic with cyclophosphamide; and the thigh muscles of the mice were infected with strains of Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecium. Animals were treated by subcutaneous injection of daptomycin at doses of 0.20 to 400 mg/kg of body weight/day divided into one, two, four, or eight doses over 24 h. Daptomycin exhibited linear pharmacokinetics, with an area under the concentration-time curve (AUC) from time zero to infinity/dose of 9.4 and a half-life of 0.9 to 1.4 h. The level of protein binding was 90%. Free daptomycin exhibited concentration-dependent killing and produced in vivo postantibiotic effects (PAEs) of 4.8 to 10.8 h. Nonlinear regression analysis was used to determine which pharmacokinetic (PK) or pharmacodynamic (PD) parameter was important for efficacy by using free drug concentrations. The peak concentration/MIC (peak/MIC) ratio and 24-h AUC/MIC ratio were the PK and PD parameters that best correlated with in vivo efficacy (R(2) = 83 to 87% for peak/MIC and R(2) = 86% for the AUC/MIC ratio, whereas R(2) = 47 to 50% for the time that the concentration was greater than the MIC) against standard strains of S. aureus and S. pneumoniae. The peak/MIC ratios required for a bacteriostatic effect ranged from 12 to 36 for S. pneumoniae, 59 to 94 for S. aureus, and 0.14 to 0.25 for E. faecium. The AUC/MIC ratios needed for a bacteriostatic effect ranged from 75 to 237 for S. pneumoniae, 388 to 537 for S. aureus, and 0.94 to 1.67 for E. faecium. The free daptomycin concentrations needed to average from one to two times the MIC over 24 h to produce a bacteriostatic effect and two to four times the MIC over 24 h to produce greater than 99% killing. The long PAE and potent bactericidal activity make daptomycin an attractive option for the treatment of infections caused by gram-positive bacteria.  相似文献   

5.
The objective of this study was to determine the susceptibility breakpoint of a new carbapenem, ertapenem (MK-0826), against Streptococcus pneumoniae strains based on bacterial density and survival studies in a murine thigh infection model. Sixteen S. pneumoniae isolates for which MICs ranged from 0.015 to 4.0 mg/liter were tested with neutropenic ICR mice. Animals were infected with bacteria at 10(5) to 10(6) CFU per thigh and were treated with ertapenem starting at 2 h postinfection for 4 days. Ertapenem was given subcutaneously at 50 mg/kg of body weight every 6 h, which simulates the human pharmacodynamic profile (in particular, the duration of time that the concentration of free drug remains above the MIC of 2 mg/liter). At 0 and 24 h postinfection, thighs were harvested for bacterial density determination. Survival was assessed during 4 days of therapy and 3 days after the therapy. A protein binding study was conducted with mice by use of the ultrafiltration method. Protein binding in mice was approximately 95%, which is comparable to that in humans. The average change in bacterial density ranged from -0.22 to -4.4 log CFU per thigh over 24 h compared to 0-h controls. The extent of microbial eradication was dependent on the MIC for the S. pneumoniae isolate. Substantial bactericidal activities (i.e., killing of approximately 2 log CFU per thigh) were consistently observed against isolates for which MICs were 相似文献   

6.
The new ketolide telithromycin has potent in vitro activity against Streptococcus pneumoniae, including strains resistant to penicillin, macrolides, and fluoroquinolones. The aim of the present study was to define the pharmacodynamic profile of telithromycin against S. pneumoniae strains with various resistance profiles in an in vivo system. Ten S. pneumoniae strains were studied; seven exhibited penicillin resistance, six demonstrated macrolide resistance, and two exhibited gatifloxacin resistance. The telithromycin MICs for all isolates were < or =0.5 microg/ml. Using the murine thigh infection model, CD-1/ICR mice were rendered neutropenic and were then inoculated with 10(5) to 10(6) CFU of S. pneumoniae per thigh. Telithromycin was administered orally at doses ranging from 25 to 800 mg/kg of body weight/day, with the doses administered one, two, three, or four times a day. The activity of telithromycin was assessed by determination of the change in the bacterial density in thigh tissue after 24 h of treatment for each treatment group and the untreated controls. Pharmacokinetic studies of telithromycin were conducted in infected, neutropenic animals. The levels of protein binding by telithromycin in mice ranged from 70 to 95% over the observed range of pharmacokinetic concentrations. By using either the total or the free concentrations of telithromycin, the area under the concentration-time curve (AUC)/MIC ratio was a strong determinant of the response against S. pneumoniae, regardless of the phenotypic resistance profile. The maximal efficacy (the 95% effective dose) against this cohort of S. pneumoniae strains and bacterial inhibition (stasis) of telithromycin were predicted by ratios of the AUC for the free drug concentration/MIC of approximately 1,000 and 200, respectively.  相似文献   

7.
Dalbavancin is a lipoglycopeptide antibiotic with broad-spectrum activity against gram-positive cocci and a markedly prolonged serum elimination half-life. We used the neutropenic murine thigh and lung infection models to characterize the pharmacodynamics of dalbavancin. Single-dose pharmacokinetic studies demonstrated linear kinetics and a prolonged elimination half-life which ranged from 7.6 to 13.1 h over the dose range of 2.5 to 80 mg/kg of body weight. The level of protein binding in mouse serum was 98.4%. The time course of in vivo activity of dalbavancin over the same dose range was examined in neutropenic ICR Swiss mice infected with a strain of either Streptococcus pneumoniae or Staphylococcus aureus by using the thigh infection model. The burden of organisms for S. pneumoniae was markedly reduced over the initial 24 h of study, and organism regrowth was suppressed in a dose-dependent fashion for up to the entire 96 h of study following dalbavancin doses of 2.5 mg/kg or greater. Dalbavancin doses of 20 mg/kg or greater resulted in less killing of S. aureus but were still followed by a prolonged suppression of regrowth. Multiple-dosing-regimen studies with the same organisms were used to determined which of the pharmacodynamic indices (maximum concentration in serum [C(max)]/MIC, area under the concentration-versus-time curve [AUC]/MIC, or the duration of time that levels in serum exceed the MIC) best correlated with treatment efficacy. These studies used a dose range of 3.8 to 480 mg/kg/6 days fractionated into 2, 4, 6, or 12 doses over the 144-h dosing period. Nonlinear regression analysis was used to examine the data fit with each pharmacodynamic index. Dalbavancin administration by the use of large, widely spaced doses was the most efficacious for both organisms. Both the 24-h AUC/MIC and the C(max)/MIC parameters correlated well with the in vivo efficacy of treatment against S. pneumoniae and S. aureus (for 24-h AUC/MIC, R(2) = 78 and 77%, respectively; for C(max)/MIC, R(2) = 90 and 57%, respectively). The free-drug 24-h AUC/MICs required for a bacteriostatic effect were 17 +/- 7 for five S. pneumoniae isolates. A similar treatment endpoint for the treatment against five strains of S. aureus required a larger dalbavancin exposure, with a mean free-drug 24-h AUC/MIC of 265 +/- 143. Beta-lactam resistance did not affect the pharmacodynamic target. The dose-response curves were relatively steep for both species; thus, the pharmacodynamic target needed to achieve organism reductions of 1 or 2 log(10) in the mice were not appreciably larger (1.3- to 1.6-fold). Treatment was similarly efficacious in neutropenic mice and in the lung infection model. The dose-dependent efficacy and prolonged elimination half-life of dalbavancin support the widely spaced regimens used in clinical trials. The free-drug 24-h AUC/MIC targets identified in these studies should be helpful for discerning rational susceptibility breakpoints. The current MIC(90) for the target gram-positive organisms would fall within this value.  相似文献   

8.
Gatifloxacin is a new 8-methoxy fluoroquinolone with enhanced activity against gram-positive cocci. We used the neutropenic murine thigh infection model to characterize the time course of antimicrobial activity of gatifloxacin and determine which pharmacokinetic (PK)-pharmacodynamic (PD) parameter best correlated with efficacy. The thighs of mice were infected with 10(6.5) to 10(7.4) CFU of strains of Staphylococcus aureus, Streptococcus pneumoniae, or Escherichia coli, and the mice were then treated for 24 h with 0.29 to 600 mg of gatifloxacin per kg of body weight per day, with the dose fractionated for dosing every 3, 6, 12, and 24 h. Levels in serum were measured by microbiologic assay. In vivo postantibiotic effects (PAEs) were calculated from serial values of the log(10) numbers of CFU per thigh 2 to 4 h after the administration of doses of 8 and 32 mg/kg. Nonlinear regression analysis was used to determine which PK-PD parameter best correlated with the numbers of CFU per thigh at 24 h. Pharmacokinetic studies revealed peak/dose values of 0.23 to 0.32, area under the concentration-time curve (AUC)/dose values of 0.47 to 0.62, and half-lives of 0.6 to 1.1 h. Gatifloxacin produced in vivo PAEs of 0.2 to 3.1 h for S. pneumoniae and 0.4 to 2.3 h for S. aureus. The 24-h AUC/MIC was the PK-PD parameter that best correlated with efficacy (R(2) = 90 to 94% for the three organisms, whereas R(2) = 70 to 81% for peak level/MIC and R(2) = 48 to 73% for the time that the concentration in serum was greater than the MIC). There was some reduced activity when dosing every 24 h was used due to the short half-life of gatifloxacin in mice. In subsequent studies we used the neutropenic and nonneutropenic murine thigh and lung infection models to determine if the magnitude of the AUC/MIC needed for the efficacy of gatifloxacin varied among pathogens (including resistant strains) and infection sites. The mice were infected with 10(6.5) to 10(7.4) CFU of four isolates of S. aureus (one methicillin resistant) per thigh, nine isolates of S. pneumoniae (two penicillin intermediate, four penicillin resistant, and two ciprofloxacin resistant) per thigh, four isolates of the family Enterobacteriaceae per thigh, a single isolate of Pseudomonas aeruginosa per thigh, and 10(8.3) CFU of Klebsiella pneumoniae per lung. The mice were then treated for 24 h with 0.29 to 600 mg of gatifloxacin per kg every 6 or 12 h. A sigmoid dose-response model was used to estimate the dose (in milligrams per kilogram per 24 h) required to achieve a net bacteriostatic effect over 24 h. MICs ranged from 0.015 to 8 microg/ml. The 24-h AUC/MICs for each static dose (1.7 to 592) varied from 16 to 72. Mean +/- standard deviation 24-h AUC/MICs for isolates of the family Enterobacteriaceae, S. pneumoniae, and S. aureus were 41 +/- 21, 52 +/- 20, and 36 +/- 9, respectively. Methicillin, penicillin, or ciprofloxacin resistance did not alter the magnitude of the AUC/MIC required for efficacy. The 24-h AUC/MICs required to achieve bacteriostatic effects against K. pneumoniae were quite similar in the thigh and lung (70 versus 56 in neutropenic mice and 32 versus 43 in nonneutropenic mice, respectively). The magnitude of the 24-h AUC/MIC of gatifloxacin required for efficacy against multiple pathogens varied only fourfold and was not significantly altered by drug resistance or site of infection.  相似文献   

9.
Cethromycin (ABT-773), a new ketolide, possesses potent in vitro activity against Streptococcus pneumoniae. The objective of this study was to investigate the in vivo bactericidal activity of cethromycin against macrolide-susceptible and -resistant S. pneumoniae in a murine pneumonia model and to describe the pharmacodynamic (PD) profile of cethromycin. Eight (two macrolide susceptible, six macrolide resistant) clinical isolates of S. pneumoniae were investigated. Cyclophosphamide administration rendered ICR mice transiently neutropenic prior to intratracheal inoculation with 0.05 ml of an S. pneumoniae suspension containing 10(7) to 10(8) CFU/ml. Oral cethromycin was initiated 12 to 14 h postinoculation over a dosage range of 0.1 to 800 mg/kg of body weight/day. Lungs from seven to eight mice per treatment and control groups were collected at 0 and 24 h posttherapy to assess bacterial density. The cumulative mortality (n = 12 to 13) was assessed at 120 h (end of therapy) and at 192 h (3 days posttherapy). Recovery of pneumococci from the lungs of infected animals prior to the initiation of therapy ranged from 4.6 to 7.2 log(10) CFU. Growth in untreated control animals over a 24-h study period increased 0.3 to 2.7 log(10) CFU. Cethromycin demonstrated a substantial bactericidal effect, regardless of macrolide susceptibility. Correlation between changes in bacterial density (24 h) and survival over both 120 and 192 h were statistically significant. All three PD parameters demonstrated a significant correlation with changes in log(10) CFU/lung (Spearman's correlation coefficient, P < 0.001); however, the goodness of fit as assessed with the maximum effect (E(max)) model revealed that the maximum concentration of free drug in serum (C(max free))/MIC and the area under the free drug concentration-time curve (AUC(free))/MIC best explained the relationship between drug exposure and reductions in viable bacterial counts. These data reveal that an approximate cethromycin AUC(free)/MIC of 50 or C(max free)/MIC of 1 results in bacteriostatic effects, while higher values (twofold) maximize survival.  相似文献   

10.
In vivo studies have characterized the pharmacodynamic characteristics of the triazole fluconazole. These investigations demonstrated that the ratio of the area under the concentration-time curve from 0 to 24 h to the MIC (24-h AUC/MIC ratio) is the critical pharmacokinetic/pharmacodynamic (PK/PD) parameter associated with treatment efficacy. Further analysis demonstrated that a fluconazole 24-h AUC/MIC ratio of 20 to 25 was predictive of treatment success in both experimental models and clinical trials. We used a neutropenic murine model of disseminated Candida albicans infection to similarly characterize the time course activity of the new triazole ravuconazole. The PK/PD parameters (percent time above the MIC, AUC/MIC ratio, and peak level in serum/MIC ratio) were correlated with in vivo efficacy, as measured by organism number in kidney cultures after 24 and 72 h of therapy. Ravuconazole kinetics and protein binding were performed in neutropenic infected mice. Peak/dose and AUC/dose values ranged from 0.03 to 0.04 and 0.30 to 0.34, respectively. Serum elimination half-life ranged from 3.9 to 4.8 h. Protein binding was 95.8%. Single-dose postantifungal effect studies demonstrated prolonged suppression of organism regrowth after serum ravuconazole levels had fallen below the MIC. Treatment efficacies with the five dosing intervals studied were similar, supporting the argument for the AUC/MIC ratio as the PK/PD parameter predictive of efficacy. Nonlinear regression analysis also suggested that the AUC/MIC ratio was strongly predictive of treatment outcomes (AUC/MIC ratio, R(2) = 91%; peak/MIC ratio, R(2) = 85%; percent time above the MIC, R(2) = 47 to 65%). Similar studies were conducted with seven additional C. albicans isolates with various ravuconazole susceptibilities (MIC, 0.016 to 0.12 micro g/ml) to determine if a similar 24-h AUC/MIC ratio was associated with efficacy. The ravuconazole free-drug AUC/MIC ratios were similar for all of the organisms studied (10 to 36; mean +/- SD = 20.3 +/- 8.2; P = 0.43). These free-drug AUC/MIC ratios are similar to those observed for fluconazole in this model.  相似文献   

11.
Previous in vivo studies have characterized the pharmacodynamic characteristics of two triazole compounds, fluconazole and ravuconazole. These investigations demonstrated that the 24-h area under the concentration-time curve (AUC)/MIC ratio is the critical pharmacokinetic-pharmacodynamic (PK-PD) parameter associated with treatment efficacy. Further analysis demonstrated that a free-drug triazole 24-h AUC/MIC ratio of 20 to 25 was predictive of treatment success in both experimental models and clinical trials. We used a neutropenic murine model of disseminated Candida albicans infection to similarly characterize the time course activity of the new triazole, posaconazole. The PK-PD parameters (percent time above MIC, AUC/MIC ratio, and peak serum drug level/MIC ratio) were correlated with in vivo efficacy, as measured by organism number in kidney cultures after 48 h of therapy. Kinetics and protein binding following oral posaconazole dosing were performed in neutropenic infected mice. Peak levels and AUC from 0 h to infinity values were nonlinear over the 16-fold dose range studied. Serum drug elimination half-life ranged from 12.0 to 17.7 h. Protein binding was 99%. Single dose postantifungal effect studies demonstrated prolonged suppression of organism regrowth after serum posaconazole levels had fallen below the MIC. Treatment efficacy with the four dosing intervals studied was similar, supporting the AUC/MIC ratio as the PK-PD parameter predictive of efficacy. Nonlinear regression analysis also suggested that the AUC/MIC ratio was strongly predictive of treatment outcomes (AUC/MIC ratio R(2) = 83%; peak serum drug/MIC ratio R(2) = 85%; time that serum levels of posaconazole remained above the MIC R(2) = 65%). Similar studies were conducted with 11 additional C. albicans isolates with various posaconazole susceptibilities (MIC, 0.015 to 0.12 micro g/ml) to determine if a similar 24-h AUC/MIC ratio was associated with efficacy. The posaconazole free-drug AUC/MIC ratios were similar for all of the organisms studied (6.12 to 26.7, mean +/- SD = 16.9 +/- 7.8, P value, 0.42). These free-drug AUC/MIC ratios are similar to those observed for other triazoles in this model.  相似文献   

12.
In vivo studies have described the pharmacodynamic (PD) characteristics of several triazoles. These investigations have demonstrated that the 24-h area under the concentration-time curve (AUC)/MIC ratio is the critical pharmacokinetic (PK)-PD parameter associated with treatment efficacy. Further analyses from these in vivo studies have demonstrated that a triazole free drug 24-h AUC/MIC of 20 to 25 is predictive of treatment success. We used a neutropenic murine model of disseminated Candida albicans infection to similarly characterize the PK-PD of the new triazole voriconazole. PK and PD parameters (percentage of time that the concentration remains above the MIC [T > MIC], AUC/MIC ratio, and peak level in serum/MIC ratio) were correlated with in vivo efficacy, as measured by the organism number in kidney cultures after 24 h of therapy. Voriconazole kinetics and protein binding were studied in infected neutropenic mice. Peak level/dose and AUC/dose values ranged from 0.1 to 0.2 and 0.1 to 0.7, respectively. The serum elimination half-life ranged from 0.7 to 2.9 h. The level of protein binding in mouse serum was 78%. Treatment efficacy with the four dosing intervals studied was similar, supporting the AUC/MIC ratio as the PK-PD parameter predictive of efficacy. Nonlinear regression analysis also suggested that the AUC/MIC ratio was strongly predictive of treatment outcomes (R(2) for AUC/MIC ratio = 82%, R(2) for peak level/MIC ratio = 63%, R(2) for T > MIC = 75%). Similar studies were conducted with nine additional C. albicans isolates with various voriconazole susceptibilities (MICs, 0.007 to 0.25 micro g/ml) to determine if a similar 24-h AUC/MIC ratio was associated with efficacy. The voriconazole free drug AUC/MIC ratios were similar for all of the organisms studied (range, 11 to 58; mean +/- standard deviation, 24 +/- 17 [P = 0.45]). These AUC/MIC ratios observed for free drug are similar to those observed for other triazoles in this model.  相似文献   

13.
OBJECTIVE: To conduct a comprehensive pharmacodynamic analysis of moxifloxacin and levofloxacin against Streptococcus pneumoniae in an in vitro infection model. METHODS: In dose escalation studies, single doses with peak concentrations equivalent to 1 x, 2 x, 4 x, 8 x, 16 x and 32 x MIC against two isolates of S. pneumoniae were studied over 24 h. Traditional pharmacodynamic indices, including peak concentration divided by MIC (peak/MIC), time of concentration above MIC (T > MIC) and AUC24/MIC, were estimated for all regimens. As a continuous index of fluoroquinolone exposure, AUC0-t/MIC was also calculated, as AUC from time 0 to 1, 2 and 6 h divided by MIC. Correlations between pharmacodynamic indices and antibacterial effects were examined using linear and non-linear methods. In validation experiments, the pharmacodynamic model was used to predict bacterial kill curves, produced by simulated clinical doses of moxifloxacin and levofloxacin against two other S. pneumoniae isolates. RESULTS: Peak/MIC was most predictive of early bacterial kill, whereas T > MIC was significantly associated with final bacterial counts at 24 h. Antibacterial effects were bacteriostatic when T > MIC was 48% and bactericidal when values exceeded 55%. AUC0-t/MIC was strongly associated with bacterial kill throughout the dosing interval. Bactericidal activity and bacterial eradication were associated with AUC0-t/MICs of 28 and 135, respectively. AUC0-t/MIC was also highly predictive of bacterial kill curves produced by simulated clinical doses of moxifloxacin and levofloxacin (precision 0.36 log10 cfu/mL, bias 0.02 log10 cfu/mL). CONCLUSION: This study demonstrated the novel application of AUC0-t/MIC as a continuous index of antibiotic activity, and provided extensive characterization of fluoroquinolone pharmacodynamics against S. pneumoniae.  相似文献   

14.
In vivo pharmacodynamic parameters have been characterized for a variety of antibacterial agents. These parameters have been studied in correlation with in vivo outcomes in order to determine (i) which dosing parameter is predictive of outcome and (ii) the magnitude of that parameter associated with efficacy. Very little is known of the pharmacodynamics of antifungal agents. We used a neutropenic murine model of disseminated candidiasis to correlate the pharmacodynamic parameters (percentage of time above the MIC, area under the concentration-time curve [AUC]/MIC and peak level/MIC) for flucytosine (5-FC) in vivo with efficacy as measured by organism number in homogenized kidney cultures after 24 h of therapy. The pharmacokinetics of 5-FC in infected mice were linear. Serum half-lives ranged from 0.36 to 0.43 h. Infection was achieved by intravenous inoculation of 10(6) CFU of yeast cells per ml via the lateral tail vein of neutropenic mice. Groups of mice were treated with fourfold escalating total doses of 5-FC ranging from 1.56 to 400 mg/kg of body weight/day divided into one, two, four, or eight doses over 24 h. Increasing doses produced minimal concentration-dependent killing ranging from 0 to 0.9 log(10) CFU/kidneys. 5-FC did, however, produce a dose-dependent suppression of growth after levels in serum had fallen below the MIC. The fungistatic dose increased from 6 to 8 mg/kg with dosing every 3 and 6 h to 70 mg/kg at with dosing every 24 h. Nonlinear regression analysis was used to determine which pharmacodynamic parameter best correlated with efficacy. Time above the MIC was the parameter best predictive of outcome, while AUC/MIC was only slightly less predictive (time above MIC, R(2) = 85%; AUC/MIC, R(2) = 77%; peak level/MIC, R(2) = 53%). Maximal efficacy was observed when levels exceeded the MIC for only 20 to 25% of the dosing interval. If one considers drug kinetics in humans, these results suggest reevaluation of current dosing regimens.  相似文献   

15.
Garenoxacin is a new des-F(6)-quinolone with broad-spectrum activity against both gram-positive cocci and gram-negative bacilli. We used the neutropenic murine thigh infection model to characterize the time course of antimicrobial activity of garenoxacin and determine which pharmacokinetic-pharmacodynamic (PK-PD) parameter best correlated with efficacy. Serum drug levels following three fourfold-escalating single-dose levels of garenoxacin were measured by microbiologic assay. In vivo postantibiotic effects (PAEs) were determined after doses of 16 and 64 mg/kg of body weight. Mice had 10(6.5) to 10(6.7) CFU of Streptococcus pneumoniae strain ATCC 10813 or Staphylococcus aureus strain ATCC 33591 per thigh when they were treated for 24 h with garenoxacin at a dose of 4 to 128 mg/kg/day fractionated for 3-, 6-, 12-, and 24-hour dosing regimens. Nonlinear regression analysis was used to determine which PK-PD parameter best correlated with the measurement of CFU/thigh at 24 h. Pharmacokinetic studies yielded peak/dose values of 0.2 to 0.3, area under the concentration-time curve (AUC)/dose values of 0.1 to 0.5, and half-lives of 0.7 to 1.6 h. Garenoxacin produced in vivo PAEs of 1.4 to 8.2 h with S. pneumoniae ATCC 10813, 7.6 to >12.4 h with S. aureus ATCC 25923, and 0 to 1.5 h with Klebsiella pneumoniae ATCC 43816. The 24-h AUC/MIC ratio was the PK-PD parameter that best correlated with efficacy (R2=71 to 90% for the two organisms compared with 43 to 56% for the peak/MIC ratio and 47 to 75% for percent time above the MIC [% T>MIC]). In subsequent studies we used the neutropenic murine thigh infection model to determine if the magnitude of the AUC/MIC ratio needed for efficacy of garenoxacin varied among pathogens (including resistant strains). Mice had 10(5.9) to 10(7.2) CFU of 6 strains of S. aureus (2 methicillin resistant), 11 strains of S. pneumoniae (5 penicillin susceptible, 1 penicillin intermediate, and 5 penicillin resistant, and of the resistant strains, 3 were also ciprofloxacin resistant), and 4 gram-negative strains per thigh when treated for 24 h with 1 to 64 mg of garenoxacin per kg every 12 h. A sigmoid dose-response model was used to estimate the doses (mg/kg/24 h) required to achieve a net bacteriostatic effect over 24 h. MICs ranged from 0.008 to 4 microg/ml. The free drug 24-h AUC/MIC ratios for each static dose (2.8 to 128 mg/kg/day) varied from 8.2 to 145. The mean 24-h AUC/MIC ratios +/- standard deviations for S. pneumoniae, S. aureus, and gram-negative strains were 33 +/- 18, 81 +/- 37, and 33 +/- 30, respectively. Methicillin, penicillin, or ciprofloxacin resistance did not alter the magnitude of the AUC/MIC ratio required for efficacy.  相似文献   

16.
TD-1792 is a novel glycopeptide-cephalosporin heterodimer investigational antibiotic that displays potent bactericidal effects against clinically relevant Gram-positive organisms in vitro. The present studies evaluated the in vivo pharmacokinetics (PK) and pharmacodynamics (PD) of TD-1792 in the neutropenic murine thigh infection animal model. TD-1792, dosed subcutaneously (SC), produced dose-dependent reduction in the thigh bacterial burden of several organisms, including methicillin-susceptible and -resistant strains of Staphylococcus aureus and Staphylococcus epidermidis (MSSA, MRSA, MSSE, MRSE, respectively), penicillin-susceptible strains of Streptococcus pneumoniae (PSSP), Streptococcus pyogenes, and vancomycin-intermediate-susceptible Staphylococcus aureus (VISA). In single-dose efficacy studies, the 1-log(10) CFU kill effective dose (ED(1-log kill)) estimates for TD-1792 ranged from 0.049 to 2.55 mg/kg of body weight administered SC, and the bacterial burden was reduced by up to 3 log(10) CFU/g from pretreatment values. Against S. aureus ATCC 33591 (MRSA), the total 24-h log(10) stasis dose (ED(stasis)) and ED(1-logkill) doses for TD-1792 were 0.53 and 1.11 mg/kg/24 h, respectively, compared to 23.4 and 54.6 mg/kg/24 h for vancomycin, indicating that TD-1762 is 44- to 49-fold more potent than vancomycin. PK-PD analysis of data from single-dose and dose-fractionation studies for MRSA (ATCC 33591) demonstrated that the total-drug 24-h area under the concentration-time curve-to-MIC ratio (AUC/MIC ratio) was the best predictor of efficacy (r(2) = 0.826) compared to total-drug maximum plasma concentration of drug-to-MIC ratio (Cmax/MIC ratio; r(2) = 0.715) and percent time that the total-drug plasma drug concentration remains above the MIC (%Time>MIC; r(2) = 0.749). The magnitudes of the total-drug AUC/MIC ratios associated with net bacterial stasis, a 1-log(10) CFU reduction from baseline and near maximal effect, were 21.1, 37.2, and 51.8, respectively. PK-PD targets based on such data represent useful inputs for analyses to support dose selection decisions for clinical studies of patients.  相似文献   

17.
In vivo pharmacodynamics of a new oxazolidinone (linezolid)   总被引:4,自引:0,他引:4       下载免费PDF全文
Linezolid is a new oxazolidinone with activity against gram-positive cocci. We determined the in vivo activity of linezolid against four strains of Staphylococcus aureus (two methicillin-susceptible S. aureus [MSSA] strains and two methicillin-resistant S. aureus strains) and one penicillin-susceptible Streptococcus pneumoniae (PSSP) strain, two penicillin-intermediate S. pneumoniae strains, and five penicillin-resistant S. pneumoniae strains. The mice had 10(6.3) to 10(7.7) CFU/thigh before therapy and were then treated for 24 h with 5 to 1,280 mg of linezolid/kg divided into 1, 2, 4, 8, or 16 doses. The killing activities after 4 h of therapy ranged from 2.4 to 5.0 log(10) CFU/thigh against S. pneumoniae and 1.35 to 2.2 log(10) CFU/thigh against S. aureus. Increasing doses produced minimal concentration-dependent killing; doses of 20 and 80 mg/kg produced no in vivo postantibiotic effects (PAEs) with PSSP and modest PAEs (3.4 and 3.2 h) with MSSA. Pharmacokinetic studies at doses of 20 and 80 mg/kg by high-pressure liquid chromatography analysis exhibited peak dose values of 0.68 and 0.71 and elimination half-lives of 1.02 and 1.00 h. Linezolid MICs ranged from 0.5 to 1.0 micro g/ml for S. pneumoniae and from 1.0 to 4.0 micro g/ml for S. aureus. A sigmoid dose-response model was used to estimate the dose required to achieve a net bacteriostatic effect over 24 h. Static doses against S. pneumoniae ranged from 22.2 to 97.1 mg/kg/24 h and from 133 to 167 mg/kg/24 h for S. aureus. The 24-h area under the concentration-time curve (AUC)/MIC ratio was the major parameter determining the efficacy of linezolid against PSSP (R(2) = 82% for AUC/MIC versus 57% for T>MIC and 59% for the peak level in serum/MIC [peak/MIC]). It was difficult to determine the most relevant pharmacokinetic/pharmacodynamic parameter with S. aureus, although the outcomes correlated slightly better with the 24-h AUC/MIC ratio (R(2) = 75%) than with the other parameters (T>MIC R(2) = 75% and peak/MIC R(2) = 65%). The 24-h AUC/MIC ratio required for a bacteriostatic effect with linezolid varied from 22 to 97 (mean = 48) for pneumococci and from 39 to 167 (mean = 83) for staphylococci. Based upon a pharmacokinetic goal of a 24-h AUC/MIC of 50 to 100, a dosage regimen of 600 mg given either intravenously or orally twice daily would achieve success against organisms with MICs as high as 2 to 4 micro g/ml.  相似文献   

18.
The pharmacodynamics of ciprofloxacin were explored in an in-vitro continuous bacterial culture model of infection, by simulating two oral dosing regimens; 0.5 g 12-hourly (bd) and 1 g 24-hourly (od). Three strains of Escherichia coli (ciprofloxacin MICs 0.03, 0.5 and 2 mg/L); two strains of Pseudomonas aeruginosa (MICs 0.09 and 1.5 mg/L), two strains of Staphylococcus aureus (MICs 0.12 and 1 mg/L) and two strains of Streptococcus pneumoniae (MICs 0.5 and 2 mg/L) were used. Three pharmacodynamic parameters, T > MIC, C(max)/MIC and AUC/MIC (T = time, C(max) = peak serum concentration, AUC = area under the curve), were compared with area under the bacterial-kill curve (AUBKC) (after transformation of the AUBKC) using a simple E(max) or sigmoidal E(max) model. AUBKC was taken to be the main antibacterial effect measure. The models were compared by inspection of residuals and Akaike information criterion. E(max) models adequately described the relationship between AUC/MIC and AUBKC and between C(max)/MIC and AUBKC, but not between T> MIC and AUBKC. All three pharmacodynamic parameters are related to each other but multiple regression analysis indicated that AUC/MIC was the best individual predictor of AUBKC. Despite this, comparison of od and bd regimens indicates some advantage to od in terms of early antibacterial effect. Serum concentration-time curve shape has some importance in determining antibacterial effect. These data indicate that for ciprofloxacin AUC/MIC ratio is not the sole determinant of antibacterial effect.  相似文献   

19.
The present study investigated the pharmacokinetic/pharmacodynamic (PK/PD) relationships of a prototype biotin carboxylase (BC) inhibitor, PD-0162819, against Haemophilus influenzae 3113 in static concentration time-kill (SCTK) and one-compartment chemostat in vitro infection models. H. influenzae 3113 was exposed to PD-0162819 concentrations of 0.5 to 16× the MIC (MIC = 0.125 μg/ml) and area-under-the-curve (AUC)/MIC ratios of 1 to 1,100 in SCTK and chemostat experiments, respectively. Serial samples were collected over 24 h. For efficacy driver analysis, a sigmoid maximum-effect (E(max)) model was fitted to the relationship between bacterial density changes over 24 h and corresponding PK/PD indices. A semimechanistic PK/PD model describing the time course of bacterial growth and death was developed. The AUC/MIC ratio best explained efficacy (r(2) = 0.95) compared to the peak drug concentration (C(max))/MIC ratio (r(2) = 0.76) and time above the MIC (T>MIC) (r(2) = 0.88). Static effects and 99.9% killing were achieved at AUC/MIC values of 500 and 600, respectively. For time course analysis, the net bacterial growth rate constant, maximum bacterial density, and maximum kill rate constant were similar in SCTK and chemostat studies, but PD-0162819 was more potent in SCTK than in the chemostat (50% effective concentration [EC(50)] = 0.046 versus 0.34 μg/ml). In conclusion, basic PK/PD relationships for PD-0162819 were established using in vitro dynamic systems. Although the bacterial growth parameters and maximum drug effects were similar in SCTK and the chemostat system, PD-0162819 appeared to be more potent in SCTK, illustrating the importance of understanding the differences in preclinical models. Additional studies are needed to determine the in vivo relevance of these results.  相似文献   

20.
The relationship between antibacterial effect, resistance, and concentration/MIC parameters with S. pneumoniae was studied. Thirty duplicate bacterial concentration-time-kill curve (TKC) experiments were performed with an in vitro model. TKC with levofloxacin (LVX), Ofloxacin (OFX), and ciprofloxacin (CIP) were studied against six S. pneumoniae isolates. Experiments simulated variable peak serum concentrations, but clinically relevant half-lives and dosing intervals. TKC were performed in Mueller-Hinton Broth supplemented with horse blood (SMHB) at 10(7) CFU/ml. Susceptibility was assessed on colonies recovered post TKC. Multiple regression tested association of pharmacodynamic variables with antimicrobial effect, and logistic regression with resistance post TKC. Only drug (r(2) = 0.27; p < 0.0001) and AUC/MIC(24) (r(2) = 0.15; p < 0.001) were significant variables predictive of antibacterial effect. LVX AUC/MIC(24) of 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号