首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory.  相似文献   

2.
Clinical and neuroimaging observations of the cortical network implicated in tactile attention have identified foci in parietal somatosensory, posterior parietal, and superior frontal locations. Tasks involving intentional hand-arm movements activate similar or nearby parietal and frontal foci. Visual spatial attention tasks and deliberate visuomotor behavior also activate overlapping posterior parietal and frontal foci. Studies in the visual and somatosensory systems thus support a proposal that attention to the spatial location of an object engages cortical regions responsible for the same coordinate referents used for guiding purposeful motor behavior. Tactile attention also biases processing in the somatosensory cortex through amplification of responses to relevant features of selected stimuli. Psychophysical studies demonstrate retention gradients for tactile stimuli like those reported for visual and auditory stimuli, and suggest analogous neural mechanisms for working memory across modalities. Neuroimaging studies in humans using memory tasks, and anatomic studies in monkeys support the idea that tactile information relayed from the somatosensory cortex is directed ventrally through the insula to the frontal cortex for short-term retention and to structures of the medial temporal lobe for long-term encoding. At the level of single neurons, tactile (such as visual and auditory) short-term memory appears as a persistent response during delay intervals between sampled stimuli.  相似文献   

3.
Although it is well established that multiple frontal, parietal, and occipital regions in humans are involved in anticipatory deployment of visual spatial attention, less is known about the electrophysiological signals in each region across multiple subsecond periods of attentional deployment. We used MEG measures of cortical stimulus-locked, signal-averaged (event-related field) activity during a task in which a symbolic cue directed covert attention to the relevant location on each trial. Direction-specific attention effects occurred in different cortical regions for each of multiple time periods during the delay between the cue and imperative stimulus. A sequence of activation from V1/V2 to extrastriate, parietal, and frontal regions occurred within 110 ms after cue, possibly related to extraction of cue meaning. Direction-specific activations ~300 ms after cue in frontal eye field (FEF), lateral intraparietal area (LIP), and cuneus support early covert targeting of the cued location. This was followed by coactivation of a frontal-parietal system [superior frontal gyrus (SFG), middle frontal gyrus (MFG), LIP, anterior intraparietal sulcus (IPSa)] that may coordinate the transition from targeting the cued location to sustained deployment of attention to both space and feature in the last period. The last period involved direction-specific activity in parietal regions and both dorsal and ventral sensory regions [LIP, IPSa, ventral IPS, lateral occipital region, and fusiform gyrus], which was accompanied by activation that was not direction specific in right hemisphere frontal regions (FEF, SFG, MFG). Behavioral performance corresponded with the magnitude of attention-related activity in different brain regions at each time period during deployment. The results add to the emerging electrophysiological characterization of different cortical networks that operate during anticipatory deployment of visual spatial attention.  相似文献   

4.
The successful integration of visual and auditory stimuli requires information about whether visual and auditory signals originate from corresponding places in the external world. Here we report crossmodal effects of spatially congruent and incongruent audio-visual (AV) stimulation. Visual and auditory stimuli were presented from one of four horizontal locations in external space. Seven healthy human subjects had to assess the spatial fit of a visual stimulus (i.e. a gray-scaled picture of a cartoon dog) and a simultaneously presented auditory stimulus (i.e. a barking sound). Functional magnetic resonance imaging (fMRI) revealed two distinct networks of cortical regions that processed preferentially either spatially congruent or spatially incongruent AV stimuli. Whereas earlier visual areas responded preferentially to incongruent AV stimulation, higher visual areas of the temporal and parietal cortex (left inferior temporal gyrus [ITG], right posterior superior temporal gyrus/sulcus [pSTG/STS], left intra-parietal sulcus [IPS]) and frontal regions (left pre-central gyrus [PreCG], left dorsolateral pre-frontal cortex [DLPFC]) responded preferentially to congruent AV stimulation. A position-resolved analysis revealed three robust cortical representations for each of the four visual stimulus locations in retinotopic visual regions corresponding to the representation of the horizontal meridian in area V1 and at the dorsal and ventral borders between areas V2 and V3. While these regions of interest (ROIs) did not show any significant effect of spatial congruency, we found subregions within ROIs in the right hemisphere that showed an incongruency effect (i.e. an increased fMRI signal during spatially incongruent compared to congruent AV stimulation). We interpret this finding as a correlate of spatially distributed recurrent feedback during mismatch processing: whenever a spatial mismatch is detected in multisensory regions (such as the IPS), processing resources are re-directed to low-level visual areas.  相似文献   

5.
Unilateral neglect reflects a disturbance in the spatial distribution of directed attention. A review of unilateral neglect syndromes in monkeys and humans suggests that four cerebral regions provide an integrated network for the modulation of directed attention within extrapersonal space. Each component region has a unique functional role that reflects its profile of anatomical connectivity, and each gives rise to a different clinical type of unilateral neglect when damaged. A posterior parietal component provides an internal sensory map and perhaps also a mechanism for modifying the extent of synaptic space devoted to specific portions of the external world; a limbic component in the cingulate gyrus regulates the spatial distribution of motivational valence; a frontal component coordinates the motor programs for exploration, scanning, reaching, and fixating; and a reticular component provides the underlying level of arousal and vigilance. This hypothetical network requires at least three complementary and interacting representations of extrapersonal space: a sensory representation in posterior parietal cortex, a schema for distributing exploratory movements in frontal cortex, and a motivational map in the cingulate cortex. Lesions in only one component of this network yield partial unilateral neglect syndromes, while those that encompass all the components result in profound deficits that transcend the mass effect of the larger lesion. This network approach to the localization of complex functions offers an alternative to more extreme approaches, some of which stress an exclusive concentration of function within individual centers in the brain and others which advocate a more uniform (equipotential or holistic) distribution. In human beings, unilateral neglect syndromes are more frequent and severe after lesions in the right hemisphere. Also, right hemisphere mechanisms appear more effective in the execution of attentional tasks. Furthermore, the attentional functions of the right hemisphere span both hemispaces, while the left hemisphere seems to contain the neural apparatus mostly for contralateral attention. This evidence indicates that the right hemisphere of dextrals has a functional specialization for the distribution of directed attention within extrapersonal space.  相似文献   

6.
Goal-directed movements involve a series of neural computations that compare the sensory representations of goal location and effector position, and transform these into motor commands. Neurons in posterior parietal cortex (PPC) control several effectors (e.g., eye, hand, foot) and encode goal location in a variety of spatial coordinate systems, including those anchored to gaze direction, and to the positions of the head, shoulder, or hand. However, there is little evidence on whether reference frames depend also on the effector and/or type of motor response. We addressed this issue in macaque PPC area V6A, where previous reports using a fixate-to-reach in depth task, from different starting arm positions, indicated that most units use mixed body/hand-centered coordinates. Here, we applied singular value decomposition and gradient analyses to characterize the reference frames in V6A while the animals, instead of arm reaching, performed a nonspatial motor response (hand lift). We found that most neurons used mixed body/hand coordinates, instead of “pure” body-, or hand-centered coordinates. During the task progress the effect of hand position on activity became stronger compared to target location. Activity consistent with body-centered coding was present only in a subset of neurons active early in the task. Applying the same analyses to a population of V6A neurons recorded during the fixate-to-reach task yielded similar results. These findings suggest that V6A neurons use consistent reference frames between spatial and nonspatial motor responses, a functional property that may allow the integration of spatial awareness and movement control.  相似文献   

7.
Nan Liu  Hui Li  Wen Su  Qi Chen 《Human brain mapping》2017,38(4):2112-2127
The spatial location of an object can be represented in two frames of reference: egocentric (relative to the observer's body or body parts) and allocentric (relative to another object independent of the observer). The object positions relative to the two frames can be either congruent (e.g., both left or both right) or incongruent (e.g., one left and one right). Most of the previous studies, however, did not discriminate between the two types of spatial conflicts. To investigate the common and specific neural mechanisms underlying the spatial congruency effect induced by the two reference frames, we adopted a 3 (type of task: allocentric, egocentric, and color) × 2 (spatial congruency: congruent vs. incongruent) within‐subject design in this fMRI study. The spatial congruency effect in the allocentric task was induced by the task‐irrelevant egocentric representations, and vice versa in the egocentric task. The nonspatial color task was introduced to control for the differences in bottom‐up stimuli between the congruent and incongruent conditions. Behaviorally, significant spatial congruency effect was revealed in both the egocentric and allocentric task. Neurally, the dorsal‐medial visuoparietal stream was commonly involved in the spatial congruency effect induced by the task‐irrelevant egocentric and allocentric representations. The right superior parietal cortex and the right precentral gyrus were specifically involved in the spatial congruency effect induced by the irrelevant egocentric and allocentric representations, respectively. Taken together, these results suggested that different subregions in the parieto‐frontal network played different functional roles in the spatial interaction between the egocentric and allocentric reference frame. Hum Brain Mapp 38:2112–2127, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
This study investigates the sets of brain areas that are functionally connected during an auditory goal-directed task. We used a paradigm including a resting state condition and an active condition, which consisted in active listening to the footsteps of walking humans. The regional brain activity was measured using fMRI and the adjusted values of activity in brain regions involved in the task were analysed using both principal component analysis and structural equation modelling. A first set of connected areas includes regions located in Heschl's gyrus, planum temporale, posterior superior temporal sulcus (in the so-called 'social cognition' area), and parietal lobe. This network could be responsible for the perceptual integration of the auditory signal. A second set encompassing frontal regions is related to attentional control. Dorsolateral- and medial-prefrontal cortex have mutual negative influences which are similar to those described during a visual goal-directed task [T. Chaminade & P. Fonlupt (2003) Eur. J. Neurosci., 18, 675-679.]. Moreover, the dorsolateral prefrontal cortex (DLPFC) exerts a positive influence on the auditory areas during the task, as well as a strong negative influence on the visual areas. These results show that: (i) the negative influence between the medial and lateral parts of the frontal cortex during a goal-directed task is not dependent on the input modality (visual or auditory), and (ii) the DLPFC activates the pathway of the relevant sensory modality and inhibits the nonrelevant sensory modality pathway.  相似文献   

9.
Specialization of phonological and semantic processing in Chinese word reading   总被引:12,自引:0,他引:12  
Booth JR  Lu D  Burman DD  Chou TL  Jin Z  Peng DL  Zhang L  Ding GS  Deng Y  Liu L 《Brain research》2006,1071(1):197-207
The purpose of this study was to examine the neurocognitive network for processing visual word forms in native Chinese speakers using functional magnetic resonance imaging (fMRI). In order to compare the processing of phonological and semantic representations, we developed parallel rhyming and meaning association judgment tasks that required explicit access and manipulation of these representations. Subjects showed activation in left inferior/middle frontal gyri, bilateral medial frontal gyri, bilateral middle occipital/fusiform gyri, and bilateral cerebella for both the rhyming and meaning tasks. A direct comparison of the tasks revealed that the rhyming task showed more activation in the posterior dorsal region of the inferior/middle frontal gyrus (BA 9/44) and in the inferior parietal lobule (BA 40). The meaning task showed more activation in the anterior ventral region of the inferior/middle frontal gyrus (BA 47) and in the superior/middle temporal gyrus (BA 22,21). These findings are consistent with previous studies in English that suggest specialization of inferior frontal regions for the access and manipulation of phonological vs. semantic representations, but also suggest that this specialization extends to the middle frontal gyrus for Chinese. These findings are also consistent with the suggestion that the left middle temporal gyrus is involved in representing semantic information and the left inferior parietal lobule is involved in mapping between orthographic and phonological representations.  相似文献   

10.
Magnetoencephalography was recorded during a matching‐to‐sample plus cueing paradigm, in which participants judged the occurrence of changes in either categorical (CAT) or coordinate (COO) spatial relations. Previously, parietal and frontal lobes were identified as key areas in processing spatial relations and it was shown that each hemisphere was differently involved and modulated by the scope of the attention window (e.g. a large and small cue). In this study, Granger analysis highlighted the patterns of causality among involved brain areas – the direction of information transfer ran from the frontal to the visual cortex in the right hemisphere, whereas it ran in the opposite direction in the left side. Thus, the right frontal area seems to exert top‐down influence, supporting the idea that, in this task, top‐down signals are selectively related to the right side. Additionally, for CAT change preceded by a small cue, the right frontal gyrus was not involved in the information transfer, indicating a selective specialization of the left hemisphere for this condition. The present findings strengthen the conclusion of the presence of a remarkable hemispheric specialization for spatial relation processing and illustrate the complex interactions between the lateralized parts of the neural network. Moreover, they illustrate how focusing attention over large or small regions of the visual field engages these lateralized networks differently, particularly in the frontal regions of each hemisphere, consistent with the theory that spatial relation judgements require a fronto‐parietal network in the left hemisphere for categorical relations and on the right hemisphere for coordinate spatial processing.  相似文献   

11.
A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal–ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior–anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top–down modulation of modality‐specific information to occur within higher‐order cortex. This could provide a potentially faster and more efficient pathway by which top–down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long‐range connections to sensory cortices. Hum Brain Mapp 38:255–270, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
Visual form and position perception in primates is thought to engage two different sets of cortical visual areas. However, the original concept of two functionally different and anatomically segregated pathways has been challenged by recent investigations. Using identical stimuli in the centre of the visual field with no external cues, we examined whether discrimination of form aspects and position aspects would indeed activate occipito-temporal and occipito-parietal areas, respectively. We measured and localised regional cerebral blood flow (rCBF) changes in the brain with positron emission tomography (PET) and 15O-butanol while the subjects performed four visual tasks: position discrimination (PD), form discrimination (FD), joint form and position discrimination (FPD), and a control task. Discrimination of form contrasted with discrimination of position resulted in rCBF increases in the lateral occipital and fusiform gyri. Discrimination of position contrasted with discrimination of form yielded rCBF increases in the left frontal eye field and middle frontal gyrus. No extra activations were seen when the joint form and position discrimination task was contrasted with either the individual form and position discrimination tasks. When the individual form and position discrimination tasks were contrasted with the control task, form discrimination resulted in activations in both occipito-temporal and occipito-parietal visual cortical regions, as well as in the right middle-frontal gyrus. Position discrimination resulted in activation in occipito-parietal visual cortical regions, the left frontal eye field and the left middle frontal gyrus. These findings are consistent with the view that the processing of visual position information activates occipito-parietal visual regions. On the other hand, the processing of 2D visual form information, in addition to the activation of occipito-temporal neuronal populations, also involves the parietal cortex. Form and position discrimination activated different nonsymmetrical prefrontal fields. Although the visual stimuli were identical, the network of activated cortical fields depended on whether the task was a form discrimination task or a position discrimination task, indicating a strong task dependence of cortical networks underlying form and position discrimination in the human brain. In contrast to former studies, however, these task-dependent macronetworks are overlapping in the posterior parietal cortex, but differentially engage the occipito-temporal and the prefrontal cortex.  相似文献   

13.
Stilla R  Sathian K 《Human brain mapping》2008,29(10):1123-1138
Previous functional neuroimaging studies have described shape-selectivity for haptic stimuli in many cerebral cortical regions, of which some are also visually shape-selective. However, the literature is equivocal on the existence of haptic or visuo-haptic texture-selectivity. We report here on a human functional magnetic resonance imaging (fMRI) study in which shape and texture perception were contrasted using haptic stimuli presented to the right hand, and visual stimuli presented centrally. Bilateral selectivity for shape, with overlap between modalities, was found in a dorsal set of parietal areas: the postcentral sulcus and anterior, posterior and ventral parts of the intraparietal sulcus (IPS); as well as ventrally in the lateral occipital complex. The magnitude of visually- and haptically-evoked activity was significantly correlated across subjects in the left posterior IPS and right lateral occipital complex, suggesting that these areas specifically house representations of object shape. Haptic shape-selectivity was also found in the left postcentral gyrus, the left lingual gyrus, and a number of frontal cortical sites. Haptic texture-selectivity was found in ventral somatosensory areas: the parietal operculum and posterior insula bilaterally, as well as in the right medial occipital cortex, overlapping with a medial occipital cortical region, which was texture-selective for visual stimuli. The present report corroborates and elaborates previous suggestions of specialized visuo-haptic processing of texture and shape.  相似文献   

14.
Cognitive reappraisal recruits prefrontal and parietal cortical areas. Because of the near exclusive usage in past research of visual stimuli to elicit emotions, it is unknown whether the same neural substrates underlie the reappraisal of emotions induced through other sensory modalities. Here, participants reappraised their emotions in order to increase or decrease their emotional response to angry prosody, or maintained their attention to it in a control condition. Neural activity was monitored with fMRI, and connectivity was investigated by using psychophysiological interaction analyses. A right-sided network encompassing the superior temporal gyrus, the superior temporal sulcus and the inferior frontal gyrus was found to underlie the processing of angry prosody. During reappraisal to increase emotional response, the left superior frontal gyrus showed increased activity and became functionally coupled to right auditory cortices. During reappraisal to decrease emotional response, a network that included the medial frontal gyrus and posterior parietal areas showed increased activation and greater functional connectivity with bilateral auditory regions. Activations pertaining to this network were more extended on the right side of the brain. Although directionality cannot be inferred from PPI analyses, the findings suggest a similar frontoparietal network for the reappraisal of visually and auditorily induced negative emotions.  相似文献   

15.
Recent evidence shows that task‐deactivations are functionally relevant for cognitive performance. Indeed, higher cognitive engagement has been associated with higher suppression of activity in task‐deactivated brain regions ‐ usually ascribed to the Default Mode Network (DMN). Moreover, a negative correlation between these regions and areas actively engaged by the task is associated with better performance. DMN regions show positive modulation during autobiographical, social, and emotional tasks. However, it is not clear how processing of emotional stimuli affects the interplay between the DMN and executive brain regions. We studied this interplay in an fMRI experiment using emotional negative stimuli as distractors. Activity modulations induced by the emotional interference of negative stimuli were found in frontal, parietal, and visual areas, and were associated with modulations of functional connectivity between these task‐activated areas and DMN regions. A worse performance was predicted both by lower activity in the superior parietal cortex and higher connectivity between visual areas and frontal DMN regions. Connectivity between right inferior frontal gyrus and several DMN regions in the left hemisphere was related to the behavioral performance. This relation was weaker in the negative than in the neutral condition, likely suggesting less functional inhibitions of DMN regions during emotional processing. These results show that both executive and DMN regions are crucial for the emotional interference process and suggest that DMN connections are related to the interplay between externally‐directed and internally‐focused processes. Among DMN regions, superior frontal gyrus may be a key node in regulating the interference triggered by emotional stimuli.  相似文献   

16.
Response selection is the mental process of choosing representations for appropriate motor behaviors given particular environmental stimuli and one's current task situation and goals. Many cognitive theories of response selection postulate a unitary process. That is, one central response-selection mechanism chooses appropriate responses in most, if not all, task situations. However, neuroscience research shows that neural processing is often localized based on the type of information processed. Our current experiments investigate whether response selection is unitary or stimulus specific by manipulating response-selection difficulty in two functional magnetic resonance imaging experiments using spatial and nonspatial stimuli. The same participants were used in both experiments. We found spatial response selection involves the right prefrontal cortex, the bilateral premotor cortex, and the dorsal parietal cortical regions (precuneus and superior parietal lobule). Nonspatial response selection, conversely, involves the left prefrontal cortex and the more ventral posterior cortical regions (left middle temporal gyrus, left inferior parietal lobule, and right extrastriate cortex). Our brain activation data suggest a cognitive model for response selection in which different brain networks mediate the choice of appropriate responses for different types of stimuli. This model is consistent with behavioral research suggesting that response-selection processing may be more flexible and adaptive than originally proposed.  相似文献   

17.
Recently some authors have challenged the conventional association of directional motor neglect with damage of frontal structures, showing that pure sensory perceptual neglect (classically associated with parietal lesion) can follow damage of right frontal cortex. The aim of the present study was to assess the type of defect in visuo-spatial attention consequent upon a virtual frontal or parietal lesion induced by transcranial magnetic stimulation in normal subjects. To this purpose eleven subjects performed a visuo-spatial task requiring judgement about the length of the two segments of asymmetrically bisected horizontal lines, presented for 50 ms on a computer monitor. After each visual stimulus, subjects made a binary forced choice decision according to two different response conditions: A and B. In condition A, they had to name (right or left) the longer segment and in B the shorter segment of the line. The task was given in baseline condition and during repetitive transcranial magnetic stimulation. Trains of 10 stimuli at 25 Hz of frequency were applied over right frontal premotor and right posterior parietal areas, synchronously with visual stimuli. Parietal and frontal magnetic stimulation gave rise to significant perceptual bias as compared to baseline performance (i.e. subjects made opposite errors in the two response conditions). No significant response bias (i.e. the tendency to name the same side of the line in the two response conditions) was induced by magnetic stimulation on parietal and frontal sites. The present study highlights both the relevant contribution of frontal cortex in the determinism of neglect and the predominant role of sensory perceptual factors in parietal and frontal neglect.  相似文献   

18.
Neuroimaging studies have suggested that left inferior frontal gyrus, left inferior parietal lobule and left middle temporal gyrus are critical for semantic processing in normal children. The goal of the present functional magnetic resonance imaging (fMRI) study was to determine whether these regions are systematically related to semantic processing in children (9- to 15-year-old) diagnosed with reading disorders (RD). Semantic judgments required participants to indicate whether two words were related in meaning. The strength of semantic association varied continuously from higher association pairs (e.g., king-queen) to lower association pairs (e.g. net-ship). We found that the correlation between association strength and activation was significantly weaker for RD children compared to controls in left middle temporal gyrus and left inferior parietal lobule for both the auditory and the visual modalities and in left inferior frontal gyrus for the visual modality. These results suggest that the RD children have abnormalities in semantic search/retrieval in the inferior frontal gyrus, integration of semantic information in the inferior parietal lobule and semantic lexical representations in the middle temporal gyrus. These deficits appear to be general to the semantic system and independent of modality.  相似文献   

19.
Cognitive control processes enable us to adjust our behavior to changing environmental demands. Although neuropsychological studies suggest that the critical cortical region for cognitive control is the prefrontal cortex, neuro-imaging studies have emphasized the interplay of prefrontal and parietal cortices. This raises the fundamental question about the different contributions of prefrontal and parietal areas in cognitive control. It was assumed that the prefrontal cortex biases processing in posterior brain regions. This assumption leads to the hypothesis that neural activity in the prefrontal cortex should precede parietal activity in cognitive control. The present study tested this assumption by combining results from functional magnetic resonance imaging (fMRI) providing high spatial resolution and event-related potentials (ERPs) to gain high temporal resolution. We collected ERP data using a modified task-switching paradigm. In this paradigm, a situation where the same task was indicated by two different cues was compared with a situation where two cues indicated different tasks. Only the latter condition required updating of the task set. Task-set updating was associated with a midline negative ERP deflection peaking around 470 msec. We placed dipoles in regions activated in a previous fMRI study that used the same paradigm (left inferior frontal junction, right inferior frontal gyrus, right parietal cortex) and fitted their directions and magnitudes to the ERP effect. The frontal dipoles contributed to the ERP effect earlier than the parietal dipole, providing support for the view that the prefrontal cortex is involved in updating of general task representations and biases relevant stimulus-response associations in the parietal cortex.  相似文献   

20.
Multivariate analyses of hemodynamic signals serve to identify the storage of specific stimulus contents in working memory (WM). Representations of visual stimuli have been demonstrated both in sensory regions and in higher cortical areas. While previous research has typically focused on the WM maintenance of a single content feature, it remains unclear whether two separate features of a single object can be decoded concurrently. Also, much less evidence exists for representations of auditory compared with visual stimulus features. To address these issues, human participants had to memorize both pitch and perceived location of one of two sample sounds. After a delay phase, they were asked to reproduce either pitch or location. At recall, both features showed comparable levels of discriminability. Region of interest (ROI)-based decoding of functional magnetic resonance imaging (fMRI) data during the delay phase revealed feature-selective activity for both pitch and location of a memorized sound in auditory cortex and superior parietal lobule. The latter region showed higher decoding accuracy for location than pitch. In addition, location could be decoded from angular and supramarginal gyrus and both superior and inferior frontal gyrus. The latter region also showed a trend for decoding of pitch. We found no region exclusively coding pitch memory information. In summary, the present study yielded evidence for concurrent representations of pitch and location of a single object both in sensory cortex and in hierarchically higher regions, pointing toward representation formats that enable feature integration within the same anatomic brain regions.SIGNIFICANCE STATEMENT Decoding of hemodynamic signals serves to identify brain regions involved in the storage of stimulus-specific information in working memory (WM). While to-be-remembered information typically consists of several features, most previous investigations have focused on the maintenance of one memorized feature belonging to one visual object. The present study assessed the concurrent storage of two features of the same object in auditory WM. We found that both pitch and location of memorized sounds were decodable both in early sensory areas, in higher-level superior parietal cortex and, to a lesser extent, in inferior frontal cortex. While auditory cortex is known to process different features in parallel, their concurrent representation in parietal regions may support the integration of object features in WM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号