首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a novel method for the boundary detection of human kidneys from three dimensional (3D) ultrasound (US) is proposed. The inherent difficulty of interpretation of such images, even by a trained expert, makes the problem unsuitable for classical methods. The method here proposed finds the kidney contours in each slice. It is a probabilistic Bayesian method. The prior defines a Markov field of deformations and imposes the restriction of contour smoothness. The likelihood function imposes a probabilistic behavior to the data, conditioned to the contour position. This second function, which is also Markov, uses an empirical model of distribution of the echographical data and a function of the gradient of the data. The model finally includes, as a volumetric extension of the prior, a term that forces smoothness along the depth coordinate. The experiments that have been carried out on echographies from real patients validate the model here proposed. A sensitivity analysis of the model parameters has also been carried out.  相似文献   

2.
Fetal abdominal contour extraction and measurement in ultrasound images   总被引:1,自引:0,他引:1  
A novel method is developed for the fetal abdominal contour extraction and measurement in ultrasound images. Fetal abdominal circumference (AC) is one of the standardized measurements in the antepartum ultrasound monitoring. Among several standardized measurements, AC is best correlated with fetal growth but is also the most difficult to be accurately measured. To overcome the difficulties in the abdominal contour extraction, the proposed method is a four-step procedure that integrates several image segmentation techniques. The proposed method is able to make the best use of the strength of different segmentation algorithms, while avoiding their deficiencies. An enhanced instantaneous coefficient of variation (ICOV) edge detector is first developed to detect edges of the abdominal contour and alleviate the effects of most speckle noise. Then, the Fuzzy C-Means clustering is employed to distinguish salient edges attributable to the abdominal contour from weak edges due to the other texture. Subsequently, the iterative Hough transform is applied to determine an elliptical contour and obtain an initial estimation of the AC. Finally, the gradient vector field (GVF) snake adapts the initial ellipse to the real edges of the abdominal contour. Quantitative validation of the proposed method on synthetic images under different imaging conditions achieves satisfactory segmentation accuracy (98.78%+/-0.16%). Experiments on 150 clinical images are carried out in three aspects: comparisons between inter-observer and inter-run variation, the fitness analysis between the automatically detected ellipse and the manual delineation, and the accuracy comparisons between automatic measurements and manual measurements in estimation of fetal weight (EFW). Experimental results show that the proposed method can provide consistent and accurate measurements. The reductions of the mean absolute difference and the standard deviation of EFW based on automatic measurements are about 1.2% and 2.1%, respectively, which indicate its potential in clinical antepartum monitoring application.  相似文献   

3.
In this letter, we develop a variational model for change detection in multitemporal synthetic aperture radar (SAR) images. SAR images are typically polluted by multiplicative noise, therefore ordinary active contour model (ACM), or the snake model, for image segmentation is not suitable for change detection in multitemporal SAR images. Our model is a generalization of ACM under the assumption that the image data fits the Generalized Gaussian Mixture (GGM) model. Our method first computes the log-ratio image of the input multitemporal SAR images. Then the method iteratively executes the following two steps until convergence: (1) estimate the parameters for the generalized Gaussian distributions inside and outside the current evolving curve using maximum-likelihood estimation; (2) evolve the current curve according to the image data and the parameters previously estimated. When convergence is achieved, the location of the evolving curve depicts the changed and the unchanged areas.

Experiments were carried out on both semi-simulated data set and real data set. Results showed that the proposed method achieves total error rates of 0.43% and 1.05%, for semi-simulated and real data sets, respectively, which were comparable to other prevalent methods.  相似文献   

4.
A framework for coronary vessels analysis in digital subtracted angiograms is described. This method combines the motion estimation with the frame-to-frame structure detection in a natural way such that they act interactively. The first step consists of the extraction of the vessel centrelines in one image and their organization into meaningful constituents or branches of the coronary arterial tree. The motion is then estimated along the centrelines through a gradient based method. These motion estimates supply an initial positioning of an active contour model (or ‘snake“) in the next image. This model adapts itself by changing its shape to accurately fit onto the new centrelines. This process is then reiterated on the subsequent images to depict the dynamic behaviour of all the relevant branches. The main interests of this scheme are: (1) the active models operate locally so a fast detection of the vessels can be performed; (2) the centrelines extraction is fully guided by the confluence of the motion estimation and the contour model; (3) both morphological and kinetic features are provided on a quantitative basis.  相似文献   

5.
We develop a probabilistic network model over image spaces and demonstrate its broad utility in mammographic image analysis, particularly with respect to computer-aided diagnosis. The model employs a multi-scale pyramid decomposition to factor images across scale and a network of tree-structured hidden variables to capture long-range spatial dependencies. This factoring makes the computation of the density functions local and tractable. The result is a hierarchical mixture of conditional probabilities, similar to a hidden Markov model on a tree. The model parameters are found with maximum likelihood estimation using the expectation-maximization algorithm. The utility of the model is demonstrated for three applications: (1) detection of mammographic masses for computer-aided diagnosis; (2) qualitative assessment of model structure through mammographic synthesis; and (3) compression of mammographic regions of interest.  相似文献   

6.

Purpose

For accurate evaluation of myocardial perfusion on computed tomography images, precise identification of the myocardial borders of the left ventricle (LV) is mandatory. In this article, we propose a method to detect the contour of LV myocardium automatically and accurately.

Methods

Our detection method is based on active shape model. For precise detection, we estimate the pose and shape parameters separately by three steps: LV coordinate system estimation, myocardial shape estimation, and transformation. In LV coordinate system estimation, we detect heart features followed by the entire LV by introducing machine-learning approach. Since the combination of two types feature detection covers the LV variation, such as pose or shape, we can estimate the LV coordinate system robustly. In myocardial shape estimation, we minimize the energy function including pattern error around myocardium with adjustment of pattern model to input image using estimated concentration of contrast dye. Finally, we detect LV myocardial contours in the input images by transforming the estimated myocardial shape using the matrix composed of the vectors calculated by the LV coordinate system estimation.

Results

In our experiments with 211 images from 145 patients, mean myocardial contours point-to-point errors for our method as compared to ground truth were 1.02 mm for LV endocardium and 1.07 mm for LV epicardium. The average computation time was 2.4 s (on a 3.46 GHz processor with 2-multithreading process).

Conclusions

Our method achieved accurate and fast myocardial contour detection which may be sufficient for myocardial perfusion examination.  相似文献   

7.
IntraVascular UltraSound (IVUS) is a catheter-based technique which provides real-time high resolution tomographic images of both the lumen and arterial wall of a coronary segment, this in contrast to X-ray arteriography that provides a shadow image (luminogram) of the entire lumen. Nowadays the lumen and vessel parameters are measured manually, which is very time consuming and suffers from high inter- and intra-obser variability. With the continuing improvement in IVUS imaging, it is now feasible to develop and clinically apply automated methods of three-dimensional quantitative analysis of the coronary vessel morphology in an objective and reproducible way with automated contour detection techniques (QCU). Quantification, in 2D and 3D, as well as volume rendering for visualization of the IVUS images requires segmentation of the images (contour detection). The 3D contour detection system described in this article is based on the combination of contour detection in the transversal and sagital view. This article provides some of the basic principles of IVUS, the IVUS image quantification, the three-dimensional reconstruction and the contour detection and quantification in three-dimensional IVUS images.  相似文献   

8.
Linearity evaluation of an analytical method is important for both manufacturers of diagnostic devices and laboratory users. Some of the statistical assumptions for estimation and testing in linear regression are violated in analytical methods that count particles per unit of volume or/and time, leading to potential erroneous evaluation of linearity. The objective of this paper is to provide an approach for evaluating linearity in these cases. The number of counts for each concentration level has a Poisson probability distribution that is linear, second-, or higher-order polynomial function of the concentration. Maximum likelihood approach is used to estimate the parameters of the models. Deviance of a particular model and the likelihood ratio test are used to test for linearity. An evaluation of linearity of an analytical method in multiple experiments is also described. No particular changes to the standard testing protocols and data collections are necessary. There are several statistical software packages that can perform the calculations. Formulas and SAS codes presented in this article can also assist in estimation and statistical testing.  相似文献   

9.
In this paper a minimally interactive high-throughput system which employs a color gradient based active contour model for rapid and accurate segmentation of multiple target objects on very large images is presented. While geodesic active contours (GAC) have become very popular tools for image segmentation, they tend to be sensitive to model initialization. A second limitation of GAC models is that the edge detector function typically involves use of gray scale gradients; color images usually being converted to gray scale, prior to gradient computation. For color images, however, the gray scale gradient image results in broken edges and weak boundaries, since the other channels are not exploited in the gradient computation. To cope with these limitations, we present a new GAC model that is driven by an accurate and rapid object initialization scheme; hierarchical normalized cuts (HNCut). HNCut draws its strength from the integration of two powerful segmentation strategies—mean shift clustering and normalized cuts. HNCut involves first defining a color swatch (typically a few pixels) from the object of interest. A multi-scale, mean shift coupled normalized cuts algorithm then rapidly yields an initial accurate detection of all objects in the scene corresponding to the colors in the swatch. This detection result provides the initial contour for a GAC model. The edge-detector function of the GAC model employs a local structure tensor based color gradient, obtained by calculating the local min/max variations contributed from each color channel. We show that the color gradient based edge-detector function results in more prominent boundaries compared to the classical gray scale gradient based function. By integrating the HNCut initialization scheme with color gradient based GAC (CGAC), HNCut-CGAC embodies five unique and novel attributes: (1) efficiency in segmenting multiple target structures; (2) the ability to segment multiple objects from very large images; (3) minimal human interaction; (4) accuracy; and (5) reproducibility. A quantitative and qualitative comparison of the HNCut-CGAC model against other state of the art active contour schemes (including a Hybrid Active Contour model (Paragios–Deriche) and a region-based AC model (Rousson–Deriche)), across 196 digitized prostate histopathology images, suggests that HNCut-CGAC is able to outperform state of the art hybrid and region based AC techniques. Our results show that HNCut-CGAC is computationally efficient and may be easily applied to a variety of different problems and applications.  相似文献   

10.
《Medical image analysis》2014,18(2):253-271
This paper presents a dynamical appearance model based on sparse representation and dictionary learning for tracking both endocardial and epicardial contours of the left ventricle in echocardiographic sequences. Instead of learning offline spatiotemporal priors from databases, we exploit the inherent spatiotemporal coherence of individual data to constraint cardiac contour estimation. The contour tracker is initialized with a manual tracing of the first frame. It employs multiscale sparse representation of local image appearance and learns online multiscale appearance dictionaries in a boosting framework as the image sequence is segmented frame-by-frame sequentially. The weights of multiscale appearance dictionaries are optimized automatically. Our region-based level set segmentation integrates a spectrum of complementary multilevel information including intensity, multiscale local appearance, and dynamical shape prediction. The approach is validated on twenty-six 4D canine echocardiographic images acquired from both healthy and post-infarct canines. The segmentation results agree well with expert manual tracings. The ejection fraction estimates also show good agreement with manual results. Advantages of our approach are demonstrated by comparisons with a conventional pure intensity model, a registration-based contour tracker, and a state-of-the-art database-dependent offline dynamical shape model. We also demonstrate the feasibility of clinical application by applying the method to four 4D human data sets.  相似文献   

11.
12.
Segmentation of a fetal head from three-dimensional (3-D) ultrasound images is a critical step in the quantitative measurement of fetal craniofacial structure. However, two main issues complicate segmentation, including fuzzy boundaries and large variations in pose and shape among different ultrasound images. In this article, we propose a new registration-based method for automatically segmenting the fetal head from 3-D ultrasound images. The proposed method first detects the eyes based on Gabor features to identify the pose of the fetus image. Then, a reference model, which is constructed from a fetal phantom and contains prior knowledge of head shape, is aligned to the image via feature-based registration. Finally, 3-D snake deformation is utilized to improve the boundary fitness between the model and image. Four clinically useful parameters including inter-orbital diameter (IOD), bilateral orbital diameter (BOD), occipital frontal diameter (OFD) and bilateral parietal diameter (BPD) are measured based on the results of the eye detection and head segmentation. Ultrasound volumes from 11 subjects were used for validation of the method accuracy. Experimental results showed that the proposed method was able to overcome the aforementioned difficulties and achieve good agreement between automatic and manual measurements.  相似文献   

13.
Interactive segmentation of abdominal aortic aneurysms in CTA images   总被引:1,自引:0,他引:1  
A model-based approach to interactive segmentation of abdominal aortic aneurysms from CTA data is presented. After manual delineation of the aneurysm sac in the first slice, the method automatically detects the contour in subsequent slices, using the result from the previous slice as a reference. If an obtained contour is not sufficiently accurate, the user can intervene and provide an additional manual reference contour. The method is inspired by the active shape model (ASM) segmentation scheme (), in which a statistical shape model, derived from corresponding landmark points in manually labeled training images, is fitted to the image in an iterative manner. In our method, a shape model of the contours in two adjacent image slices is progressively fitted to the entire volume. The contour obtained in one slice thus constrains the possible shapes in the next slice. The optimal fit is determined on the basis of multi-resolution gray level models constructed from gray value patches sampled around each landmark. We propose to use the similarity of adjacent image slices for this gray level model, and compare these to single-slice features that are more generally used with ASM. The performance of various image features is evaluated in leave-one-out experiments on 23 data sets. Features that use the similarity of adjacent image slices outperform measures based on single-slice features in all cases. The average number of slices in our datasets is 51, while on average eight manual initializations are required, which decreases operator segmentation time by a factor of 6.  相似文献   

14.
An approach to the deformable registration of three-dimensional brain tumor images to a normal brain atlas is presented. The approach involves the integration of three components: a biomechanical model of tumor mass-effect, a statistical approach to estimate the model's parameters, and a deformable image registration method. Statistical properties of the sought deformation map from the atlas to the image of a tumor patient are first obtained through tumor mass-effect simulations on normal brain images. This map is decomposed into the sum of two components in orthogonal subspaces, one representing inter-individual differences in brain shape, and the other representing tumor-induced deformation. For a new tumor case, a partial observation of the sought deformation map is obtained via deformable image registration and is decomposed into the aforementioned spaces in order to estimate the mass-effect model parameters. Using this estimate, a simulation of tumor mass-effect is performed on the atlas image in order to generate an image that is similar to tumor patient's image, thereby facilitating the atlas registration process. Results for a real tumor case and a number of simulated tumor cases indicate significant reduction in the registration error due to the presented approach as compared to the direct use of deformable image registration.  相似文献   

15.
Traditionally, segmentation and registration have been solved as two independent problems, even though it is often the case that the solution to one impacts the solution to the other. In this paper, we introduce a geometric, variational framework that uses active contours to simultaneously segment and register features from multiple images. The key observation is that multiple images may be segmented by evolving a single contour as well as the mappings of that contour into each image.  相似文献   

16.
Bootstrapped DEPICT for error estimation in PET functional imaging   总被引:1,自引:0,他引:1  
Kukreja SL  Gunn RN 《NeuroImage》2004,21(3):1096-1104
Basis pursuit denoising is a new approach for data-driven estimation of parametric images from dynamic positron emission tomography (PET) data. At present, this kinetic modeling technique does not allow for the estimation of the errors on the parameters. These estimates are useful when performing subsequent statistical analysis, such as, inference across a group of subjects or when applying partial volume correction algorithms. The difficulty with calculating the error estimates is a consequence of using an overcomplete dictionary of kinetic basis functions. In this paper, a bootstrap approach for the estimation of parameter errors from dynamic PET data is presented. This paper shows that the bootstrap can be used successfully to compute parameter errors on a region of interest or parametric image basis. Validation studies evaluate the methods performance on simulated and measured PET data ([(11)C]Diprenorphine-opiate receptor and [(11)C]Raclopride-dopamine D(2) receptor). The method is presented in the context of PET neuroreceptor binding studies, however, it has general applicability to a wide range of PET/SPET radiotracers in neurology, oncology and cardiology.  相似文献   

17.
Deep-learning (DL) algorithms are becoming the standard for processing ultrasound (US) fetal images. A number of survey papers in the field is today available, but most of them are focusing on a broader area of medical-image analysis or not covering all fetal US DL applications. This paper surveys the most recent work in the field, with a total of 153 research papers published after 2017. Papers are analyzed and commented from both the methodology and the application perspective. We categorized the papers into (i) fetal standard-plane detection, (ii) anatomical structure analysis and (iii) biometry parameter estimation. For each category, main limitations and open issues are presented. Summary tables are included to facilitate the comparison among the different approaches. In addition, emerging applications are also outlined. Publicly-available datasets and performance metrics commonly used to assess algorithm performance are summarized, too. This paper ends with a critical summary of the current state of the art on DL algorithms for fetal US image analysis and a discussion on current challenges that have to be tackled by researchers working in the field to translate the research methodology into actual clinical practice.  相似文献   

18.
We present a computer-aided approach to segmenting suspicious lesions in digital mammograms, based on a novel maximum likelihood active contour model using level sets (MLACMLS). The algorithm estimates the segmentation contour that best separates the lesion from the background using the Gamma distribution to model the intensity of both regions (foreground and background). The Gamma distribution parameters are estimated by the algorithm. We evaluate the performance of MLACMLS on real mammographic images. Our results are compared to those of two leading related methods: The adaptive level set-based segmentation method (ALSSM) and the spiculation segmentation using level sets (SSLS) approach, and show higher segmentation accuracy (MLACMLS: 86.85% vs. ALSSM: 74.32% and SSLS: 57.11%). Moreover, our results are qualitatively compared with those of the Active Contour Without Edge (ACWOE) and show a better performance. Further, the suitability of using ML as the objective function as opposed to the KL divergence and to the energy functional of the ACWOE is also demonstrated. Our algorithm is also shown to be robust to the selection of a required single seed point.  相似文献   

19.
Segmentation of ultrasound images is a challenging problem due to speckle, which corrupts the image and can result in weak or missing image boundaries, poor signal to noise ratio and diminished contrast resolution. Speckle is a random interference pattern that is characterized by an asymmetric distribution as well as significant spatial correlation. These attributes of speckle are challenging to model in a segmentation approach, so many previous ultrasound segmentation methods simplify the problem by assuming that the speckle is white and/or Gaussian distributed. Unlike these methods, in this article we present an ultrasound-specific segmentation approach that addresses both the spatial correlation of the data as well as its intensity distribution. We first decorrelate the image and then apply a region-based active contour whose motion is derived from an appropriate parametric distribution for maximum likelihood image segmentation. We consider zero-mean complex Gaussian, Rayleigh, and Fisher-Tippett flows, which are designed to model fully formed speckle in the in-phase/quadrature (IQ), envelope detected, and display (log compressed) images, respectively. We present experimental results demonstrating the effectiveness of our method and compare the results with other parametric and nonparametric active contours. (E-mail:greg.slabaugh@gmail.com)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号