首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The posterior parietal cortex is situated between visual and motor areas and supports coordinated visually guided behavior. Area LIP in the intraparietal sulcus contains representations of visual space and has been extensively studied in the context of saccades. However, area LIP has not been studied during coordinated movements, so it is not known whether saccadic representations in area LIP are influenced by coordinated behavior. Here, we studied spiking and local field potential (LFP) activity in area LIP while subjects performed coordinated reaches and saccades or saccades alone to remembered target locations to test whether activity in area LIP is influenced by the presence of a coordinated reach. We find that coordination significantly changes the activity of individual neurons in area LIP, increasing or decreasing the firing rate when a reach is made with a saccade compared with when a saccade is made alone. Analyzing spike-field coherence demonstrates that area LIP neurons whose firing rate is suppressed during the coordinated task have activity temporally correlated with nearby LFP activity, which reflects the synaptic activity of populations of neurons. Area LIP neurons whose firing rate increases during the coordinated task do not show significant spike-field coherence. Furthermore, LFP power in area LIP is suppressed and does not increase when a coordinated reach is made with a saccade. These results demonstrate that area LIP neurons display different responses to coordinated reach and saccade movements, and that different spike rate responses are associated with different patterns of correlated activity. The population of neurons whose firing rate is suppressed is coherently active with local populations of LIP neurons. Overall, these results suggest that area LIP plays a role in coordinating visually guided actions through suppression of coherent patterns of saccade-related activity.  相似文献   

2.
We examined the activity of neurons in the lateral intraparietal area (LIP) during a task in which we measured attention in the monkey, using an advantage in contrast sensitivity as our definition of attention. The animals planned a memory-guided saccade but made or canceled it depending on the orientation of a briefly flashed probe stimulus. We measured the monkeys' contrast sensitivity by varying the contrast of the probe. Both subjects had better thresholds at the goal of the saccade than elsewhere. If a task-irrelevant distractor flashed elsewhere in the visual field, the attentional advantage transiently shifted to that site. The population response in LIP correlated with the allocation of attention; the attentional advantage lay at the location in the visual field whose representation in LIP had the greatest activity when the probe appeared. During a brief period in which there were two equally active regions in LIP, there was no attentional advantage at either location. This time, the crossing point, differed in the two animals, proving a strong correlation between the activity and behavior. The crossing point of each neuron depended on the relationship of three parameters: the visual response to the distractor, the saccade-related delay activity, and the rate of decay of the transient response to the distractor. Thus the time at which attention lingers on a distractor is set by the mechanism underlying these three biophysical properties. Finally, we showed that for a brief time LIP neurons showed a stronger response to signal canceling the planned saccade than to the confirmation signal.  相似文献   

3.
To examine what kind of information task-related activity encodes during spatial working memory processes, we analyzed single-neuron activity in the prefrontal cortex while two monkeys performed two different oculomotor delayed-response (ODR) tasks. In the standard ODR task, monkeys were required to make a saccade to the cue location after a 3-s delay, whereas in the rotatory ODR (R-ODR) task, they were required to make a saccade 90 degrees clockwise from the cue location after the 3-s delay. By comparing the same task-related activities in these two tasks, we could determine whether such activities encoded the location of the visual cue or the direction of the saccade. One hundred twenty one neurons exhibited task-related activity in relation to at least one task event in both tasks. Among them, 41 neurons exhibited directional cue-period activity, most of which encoded the location of the visual cue. Among 56 neurons with directional delay-period activity, 86% encoded the location of the visual cue, whereas 13% encoded the direction of the saccade. Among 57 neurons with directional response-period activity, 58% encoded the direction of the saccade, whereas 35% encoded the location of the visual cue. Most neurons whose response-period activity encoded the location of the visual cue also exhibited directional delay-period activity that encoded the location of the visual cue as well. The best directions of these two activities were identical, and most of these response-period activities were postsaccadic. Therefore this postsaccadic activity can be considered a signal to terminate unnecessary delay-period activity. Population histograms encoding the location of the visual cue showed tonic sustained activation during the delay period. However, population histograms encoding the direction of the saccade showed a gradual increase in activation during the delay period. These results indicate that the transformation from visual input to motor output occurs in the dorsolateral prefrontal cortex. The analysis using population histograms suggests that this transformation occurs gradually during the delay period.  相似文献   

4.
We studied whether the lateral intraparietal (LIP) area-a subdivision of parietal cortex anatomically interposed between visual cortical areas and saccade executive centers-contains neurons with activity patterns sufficient to contribute to the active process of selecting saccade targets in visual search. Visually responsive neurons were recorded while monkeys searched for a color-different target presented concurrently with seven distractors evenly distributed in a circular search array. We found that LIP neurons initially responded indiscriminately to the presentation of a visual stimulus in their response fields, regardless of its feature and identity. Their activation nevertheless evolved to signal the search target before saccade initiation: an ideal observer could reliably discriminate the target from the individual activation of 60% of neurons, on average, 138 ms after stimulus presentation and 26 ms before saccade initiation. Importantly, the timing of LIP neuronal discrimination varied proportionally with reaction times. These findings suggest that LIP activity reflects the selection of both the search target and the targeting saccade during active visual search.  相似文献   

5.
The lateral intraparietal area (LIP) of the macaque is believed to play a role in the allocation of attention and the plan to make saccadic eye movements. Many studies have shown that LIP neurons generally encode the static spatial location demarked by the receptive field (RF). LIP neurons might also provide information about the features of visual stimuli within the RF. For example, LIP receives input from cortical areas in the dorsal visual pathway that contain many direction-selective neurons. Here we examine direction selectivity of LIP neurons. Animals were only required to fixate while motion stimuli appeared in the RF. To avoid spatial confounds, the motion stimuli were patches of randomly arrayed dots that moved with 100% coherence in eight different directions. We found that the majority (61%) of LIP neurons were direction selective. The direction tuning was fairly broad, with a median direction-tuning bandwidth of 136 degrees. The average strength of direction selectivity was weaker in LIP than that of other areas of the dorsal visual stream but that difference may be because of the fact that LIP neurons showed a tonic offset in firing whenever a visual stimulus was in the RF, independent of direction. Direction-selective neurons do not seem to constitute a functionally distinct subdivision within LIP, because those neurons had robust, sustained delay-period activity during a memory delayed saccade task. The direction selectivity could also not be explained by asymmetries in the spatial RF, in the hypothetical case that the animals attended to slightly different locations depending on the direction of motion in the RF. Our results show that direction selectivity is a distinct attribute of LIP neurons in addition to spatial encoding.  相似文献   

6.
Neurons in both the lateral intraparietal area (LIP) of the monkey parietal cortex and the intermediate layers of the superior colliculus (SC) are activated well in advance of the initiation of saccadic eye movements. To determine whether there is a progression in the covert processing for saccades from area LIP to SC, we systematically compared the discharge properties of LIP output neurons identified by antidromic activation with those of SC neurons collected from the same monkeys. First, we compared activity patterns during a delayed saccade task and found that LIP and SC neurons showed an extensive overlap in their responses to visual stimuli and in their sustained activity during the delay period. The saccade activity of LIP neurons was, however, remarkably weaker than that of SC neurons and never occurred without any preceding delay activity. Second, we assessed the dependence of LIP and SC activity on the presence of a visual stimulus by contrasting their activity in delayed saccade trials in which the presentation of the visual stimulus was either sustained (visual trials) or brief (memory trials). Both the delay and the presaccadic activity levels of the LIP neuronal sample significantly depended on the sustained presence of the visual stimulus, whereas those of the SC neuronal sample did not. Third, we examined how the LIP and SC delay activity relates to the future production of a saccade using a delayed GO/NOGO saccade task, in which a change in color of the fixation stimulus instructed the monkey either to make a saccade to a peripheral visual stimulus or to withhold its response and maintain fixation. The average delay activity of both LIP and SC neuronal samples significantly increased by the advance instruction to make a saccade, but LIP neurons were significantly less dependent on the response instruction than SC neurons, and only a minority of LIP neurons was significantly modulated. Thus despite some overlap in their discharge properties, the neurons in the SC intermediate layers showed a greater independence from sustained visual stimulation and a tighter relationship to the production of an impending saccade than the LIP neurons supplying inputs to the SC. Rather than representing the transmission of one processing stage in parietal cortex area LIP to a subsequent processing stage in SC, the differences in neuronal activity that we observed suggest instead a progressive evolution in the neuronal processing for saccades.  相似文献   

7.
We previously demonstrated that the activities of neurons in the lateral intraparietal area (LIP) and the parietal reach region (PRR) of the posterior parietal cortex (PPC) are modulated by nonspatial effector-specific information. We now report similar modulation in FEF, an area of frontal cortex that is reciprocally connected with LIP. Although it is possible that these effector-specific signals originate in LIP and are conveyed to FEF, it is also possible that these signals originate in FEF and are "fed back" to LIP. We found that signal magnitude was no larger, and onset time no earlier, in FEF compared with LIP. Moreover, effector-specific activity in FEF, but not in LIP, was largely driven by spatial prediction. These results suggest that the saccade-related effector-specific signals found in LIP do not originate in FEF. Conversely, LIP may contribute to the effector-specific signals found in FEF, but does not wholly account for them.  相似文献   

8.
The lateral intraparietal area (LIP), a region of posterior parietal cortex, was once thought to be unresponsive to auditory stimulation. However, recent reports have indicated that neurons in area LIP respond to auditory stimuli during an auditory-saccade task. To what extent are auditory responses in area LIP dependent on the performance of an auditory-saccade task? To address this question, recordings were made from 160 LIP neurons in two monkeys while the animals performed auditory and visual memory-saccade and fixation tasks. Responses to auditory stimuli were significantly stronger during the memory-saccade task than during the fixation task, whereas responses to visual stimuli were not. Moreover, neurons responsive to auditory stimuli tended also to be visually responsive and to exhibit delay or saccade activity in the memory-saccade task. These results indicate that, in general, auditory responses in area LIP are modulated by behavioral context, are associated with visual responses, and are predictive of delay or saccade activity. Responses to auditory stimuli in area LIP may therefore be best interpreted as supramodal responses, and similar in nature to the delay activity, rather than as modality-specific sensory responses. The apparent link between auditory activity and oculomotor behavior suggests that the behavioral modulation of responses to auditory stimuli in area LIP reflects the selection of auditory stimuli as targets for eye movements.  相似文献   

9.
The anatomical connections of the pregeniculate complex (PrGC) with components of the visual-ocular motor system suggested its contribution to ocular motor behavior. Subsequent studies reported saccade-related activity in the primate PrGC. To determine its contribution, we characterized pregeniculate units (n = 128) in alert macaques during ocular motor tasks and visual stimulation. We found that 36/109 saccade-related units exhibited postsaccadic bursts or pauses in tonic discharge for saccades of any amplitude or direction. In contrast to previous results, 46/109 responses preceded or coincided with the saccade, while 47/109 responses were directionally tuned. Pregeniculate units were modulated not only in association with saccades (109/128) but also with smooth eye movements and visual motion (20/128) or eye position (23/128). Multiple ocular motor signals were recorded from 19% of the units, indicating signal convergence on individual neurons. Visual responses were demonstrated in 51% of PrGC units: visual field illumination modulated the resting discharge of 33 units; the responses of 37 saccade-related units and all 23 position-dependent units were modulated by visual stimulation. Early saccadic activity in the PrGC suggests that it contributes more to gaze than postsaccadic modulation of visual or ocular motor activity. The patterns of saccadic responses and the modulation of PrGC activity in association with a variety of visual-ocular motor behaviors suggest its potential role as a relay between the parietal cortex and elements of the brain stem ocular motor pathways, such as the superior colliculus and pretectal nucleus of the optic tract.  相似文献   

10.
The lateral intraparietal area (LIP) of macaques has been considered unresponsive to auditory stimulation. Recent reports, however, indicate that neurons in this area respond to auditory stimuli in the context of an auditory-saccade task. Is this difference in auditory responsiveness of LIP due to auditory-saccade training? To address this issue, LIP responses in two monkeys were recorded at two different times: before and after auditory-saccade training. Before auditory-saccade training, the animals had never been trained on any auditory task, but had been trained on visual tasks. In both sets of experiments, activity of LIP neurons was recorded while auditory and visual stimuli were presented and the animals were fixating. Before training, 172 LIP neurons were recorded. Among these, the number of cells responding to auditory stimuli did not reach significance, whereas about one-half of the cells responded to visual stimuli. An information theory analysis confirmed that no information about auditory stimulus location was available in LIP neurons in the experiments before training. After training, activity from 160 cells was recorded. These experiments showed that 12% of cells in area LIP responded to auditory stimuli, whereas the proportion of cells responding to visual stimuli remained about the same as before training. The information theory analysis confirmed that, after training, information about auditory stimulus location was available in LIP neurons. Auditory-saccade training therefore generated responsiveness to auditory stimuli de novo in LIP neurons. Thus some LIP cells become active for auditory stimuli in a passive fixation task, once the animals have learned that these stimuli are important for oculomotor behavior.  相似文献   

11.
Visuospatial working memory mechanisms have been studied extensively at single cell level in the dorsolateral prefrontal cortex (PFCd) in nonhuman primates. Despite the importance of short-term memory of sound location for behavioral orientation, there are only a few studies on auditory spatial working memory. The purpose of this study was to investigate neuronal mechanisms underlying working memory processing of auditory and visual location information at single cell level in the PFCd. Neuronal activity was recorded in monkeys performing a delayed matching-to-sample task (DMTS). The location of a visual or auditory stimulus was used as a memorandum. The majority of the neurons that were activated during presentation of the cue memorandum were selective either for visual or auditory spatial information. A small group of cue related bimodal neurons were sensitive to the location of the cue regardless of whether the stimulus was visual or auditory, suggesting modality independent processing of spatial information at cellular level in the PFCd. Most neurons that were activated during the delay period were modality specific, responding either during visual or auditory trials. All bimodal delay related neurons that responded during both visual and auditory trials were spatially nonselective. The results of the present study suggest that in addition to the modality specific parallel mechanism, working memory of auditory and visual space also involves modality independent processing at cellular level in the PFCd.  相似文献   

12.
Many neurons in the frontal eye field (FEF) and lateral intraparietal (LIP) areas of cerebral cortex are active during the visual-motor events preceding the initiation of saccadic eye movements: they respond to visual targets, increase their activity before saccades, and maintain their activity during intervening delay periods. Previous experiments have shown that the output neurons from both LIP and FEF convey the full range of these activities to the superior colliculus (SC) in the brain stem. These areas of cerebral cortex also have strong interconnections, but what signals they convey remains unknown. To determine what these cortico-cortical signals are, we identified the LIP neurons that project to FEF by antidromic activation, and we studied their activity during a delayed-saccade task. We then compared these cortico-cortical signals to those sent subcortically by also identifying the LIP neurons that project to the intermediate layers of the SC. Of 329 FEF projection neurons and 120 SC projection neurons, none were co-activated by both FEF and SC stimulation. FEF projection neurons were encountered more superficially in LIP than SC projection neurons, which is consistent with the anatomical projection of many cortical layer III neurons to other cortical areas and of layer V neurons to subcortical structures. The estimated conduction velocities of FEF projection neurons (16.7 m/s) were significantly slower that those of SC projection neurons (21.7 m/s), indicating that FEF projection neurons have smaller axons. We identified three main differences in the discharge properties of FEF and SC projection neurons: only 44% of the FEF projection neurons changed their activity during the delayed-saccade task compared with 69% of the SC projection neurons; only 17% of the task-related FEF projection neurons showed saccadic activity, whereas 42% of the SC projection neurons showed such increases; 78% of the FEF projection neurons had a visual response but no saccadic activity, whereas only 55% of the SC projection neurons had similar activity. The FEF and SC projection neurons had three similarities: both had visual, delay, and saccadic activity, both had stronger delay and saccadic activity with visually guided than with memory-guided saccades, and both had broadly tuned responses for disparity stimuli, suggesting that their visual receptive fields have a three-dimensional configuration. These observations indicate that the activity carried between parietal and frontal cortical areas conveys a spectrum of signals but that the preponderance of activity conveyed might be more closely related to earlier visual processing than to the later saccadic stages that are directed to the SC.  相似文献   

13.
1. Visual responses and their relationship to delay-period activity were studied by recording single neuron activity from the prefrontal cortex of rhesus monkeys while they performed an oculomotor delayed-response (ODR) and a visual probe (VP) task. In the ODR task, the monkey was required to maintain fixation of a central spot of light throughout the cue (0.5 s) and delay (3 s) periods and then make a saccadic eye movement to one of four or eight locations where the visual cue had been presented. In the VP task, the same visual stimuli that were used in the ODR task were presented for 0.5 s, but no response was required. The VP task was thus employed to test the passive visual response and, by comparison with cue-elicited activity in the ODR task, to examine the degree of behavioral enhancement present in prefrontal visual activity. 2. Among 434 neurons recorded from the prefrontal cortex within and surrounding the principal sulcus (PS), 261 had task-related activity during at least one phase of the ODR task, and 74 of these had phasic visual responses to the onset of the visual cues with a median latency of 116 ms. The visual responses of 69 neurons were excitatory, and 5 neurons were inhibited. Five of the neurons with excitatory visual responses also responded transiently after the offset of the cue. 3. Visual responses were classified as directional for 71 PS neurons (96%) in that excitatory or inhibitory responses occurred only for location of cues in a restricted portion of the visual field. Only 3 PS neurons were omnidirectional, i.e., responded equivalently to cues in all locations tested. 4. The best direction and tuning specificity of all PS neurons with directional visual responses were estimated from parameters yielding the best fit to a Gaussian-shaped tuning function. The best direction for the majority (71%) of neurons was toward the visual field contralateral to the hemisphere where the neuron was located. The remaining neurons had their best directions in the ipsilateral field (18%) or along the vertical meridian (11%). 5. The specificity of directional tuning for PS visual responses was quite variable, ranging from neurons that responded only to one of the eight cue locations to neurons that responded to all eight, but in a clearly graded fashion. The standard deviation parameter of the Gaussian curve indexed the breadth of directional tuning of each neuron; its median value was 37 degrees.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The integration of visual and auditory events is thought to require a joint representation of visual and auditory space in a common reference frame. We investigated the coding of visual and auditory space in the lateral and medial intraparietal areas (LIP, MIP) as a candidate for such a representation. We recorded the activity of 275 neurons in LIP and MIP of two monkeys while they performed saccades to a row of visual and auditory targets from three different eye positions. We found 45% of these neurons to be modulated by the locations of visual targets, 19% by auditory targets, and 9% by both visual and auditory targets. The reference frame for both visual and auditory receptive fields ranged along a continuum between eye- and head-centered reference frames with approximately 10% of auditory and 33% of visual neurons having receptive fields that were more consistent with an eye- than a head-centered frame of reference and 23 and 18% having receptive fields that were more consistent with a head- than an eye-centered frame of reference, leaving a large fraction of both visual and auditory response patterns inconsistent with both head- and eye-centered reference frames. The results were similar to the reference frame we have previously found for auditory stimuli in the inferior colliculus and core auditory cortex. The correspondence between the visual and auditory receptive fields of individual neurons was weak. Nevertheless, the visual and auditory responses were sufficiently well correlated that a simple one-layer network constructed to calculate target location from the activity of the neurons in our sample performed successfully for auditory targets even though the weights were fit based only on the visual responses. We interpret these results as suggesting that although the representations of space in areas LIP and MIP are not easily described within the conventional conceptual framework of reference frames, they nevertheless process visual and auditory spatial information in a similar fashion.  相似文献   

15.
1. Single-neuron activity was recorded from the prefrontal cortex of monkeys performing saccadic eye movements in oculomotor delayed-response (ODR) and visually guided saccade (VGS) tasks. In the ODR task the monkey was required to maintain fixation of a central spot throughout the 0.5-s cue and 3.0-s delay before making a saccadic eye movement in the dark to one of four or eight locations where the visual cue had been presented. The same locations were used for targets in the VGS tasks; however, unlike the ODR task, saccades in the VGS tasks were visually guided. 2. Among 434 neurons recorded from prefrontal cortex within and surrounding the principal sulcus (PS), 147 changed their discharge rates in relation to saccadic eye movements in the ODR task. Their response latencies relative to saccade initiation were distributed between -192 and 460-ms, with 22% exhibiting presaccadic activity and 78% exhibiting only postsaccadic activity. Among PS neurons with presaccadic activity, 53% also had postsaccadic activity when the monkey made saccadic eye movements opposite to the directions for which the presaccadic activity was observed. 3. Almost all (97%) PS neurons with presaccadic activity were directionally selective. The best direction and tuning specificity of each neuron were estimated from parameters used to fit a Gaussian tuning curve function. The best direction for 62% of the neurons with presaccadic activity was toward the contralateral visual field, with the remaining neurons having best directions toward the ipsilateral field (23%) or along the vertical meridian (15%). 4. Most postsaccadic activity of PS neurons (92%) was also directionally selective. The best direction for 48% of these neurons was toward the contralateral visual field, with the remaining neurons having best directions toward the ipsilateral field (36%) or along the vertical meridian (16%). Eighteen percent of the neurons with postsaccadic activity showed a reciprocal response pattern: excitatory responses occurred for one set of saccade directions, whereas inhibitory responses occurred for roughly the opposite set of directions. 5. Sixty PS neurons with saccade-related activity in the ODR task were also examined in a VGS task. Forty of these neurons showed highly similar profiles of directional specificity and response magnitude in both tasks, 13 showed saccade-related activity only in the ODR task, and 7 changed their response characteristics between the ODR and VGS tasks.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
1. The cortex of the inferior parietal lobule (IPL) contains neurons whose activity is related to saccadic eye movements. The exact role of the IPL in relation to saccades remains, however, unclear. In this and the companion paper, we approach this problem by quantifying many of the spatial and temporal parameters of the saccade-related (S) activity. These parameters have hitherto been largely unstudied. 2. The activity of single neurons was recorded from Macaca mulatta monkeys while they were performing a delayed-saccade task. The analysis presented here is based on 161 neurons recorded from the lateral intraparietal area (LIP), a recently defined subdivision of the IPL; and 54 neurons recorded from the neighboring part of the IPL, area 7a. Overall, 409 IPL neurons were isolated in this study. 3. The typical activity of IPL neurons during the delayed-saccade task has three basic phases: light sensitive (LS), memory (M), and S. These basic phases are common to neurons of both areas LIP and 7a. In each phase (LS, M, and S), individual neurons may or may not be active. Most LIP neurons, however, are active in more than one phase. 4. To compare the activity levels of different neurons, the actual firing rate was weighted by each neuron's background level, yielding an "activity index" for each neuron, in each phase of the task. We calculated the activity index for the LS and M phases and for three phases related to the saccade: a presaccadic (Pre-S), a saccade-coincident (S-Co), and a postsaccadic (Post-S) phase. For area LIP neurons the median values of the activity index were high for the LS, M, Pre-S, and S-Co activities, and slightly lower in the Post-S period. In area 7a the median values were low for the LS phase and, in particular, for the M and Pre-S phases, somewhat higher coincident with the saccade, and high post-saccadically. 5. In area LIP, in each phase, 49-63% of the neurons had excitatory activity, and 10-17% had inhibitory responses. 6. In contrast, in area 7a excitatory responses were most frequent in the Post-S phase (56%). Excitation was particularly infrequent during M (28%) and Pre-S (22%). The incidence of inhibitory responses varied too (4-18%). The time course of inhibition was roughly opposite that of excitation; the highest frequency of inhibitory responses occurred during the saccade.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Summary Several brain areas have been identified with attention, because damage to these regions leads to neglect and extinction. We have tested elements of visual attentional processing in patients with parietal, frontal, or temporal lesions and compared their responses to control subjects. Normal humans respond faster in a reaction time task when the spatial location of a target is correctly predicted by an antecedent stimulus (valid cue) than when the location is incorrectly predicted (invalid cue). The cue is hypothesized to shift attention towards its location and thereby facilitate or impede response latencies. The reaction times of individuals with damage to the parietal lobe are somewhat slowed for targets ipsilateral or contralateral to the side of the lesion if the targets are preceded by valid cues. These same patients are extremely slow in responding to targets in the visual field contralateral to the lesion when the cue has just appeared in the unaffected (ipsilateral) visual field. In addition, these individuals are especially slow in responding to targets in either visual field when the lights are preceded by weak, diffuse illumination of the entire visual field. Patients with lesions of the frontal lobe have very slow reaction times in general and, as is the case for patients with lesions of the temporal lobe, are slow in all conditions for targets in the field contralateral to the lesion. These patterns are probably not associated with attentional defects. For patients with parietal lesions, these studies demonstrate a further deficit in a cued reaction-time task suggesting abnormal visual attention. Since different sites of brain damage yield different patterns of responses, tests such as these could be of analytic and diagnostic value.  相似文献   

18.
The present study was designed to investigate whether the rat posterior parietal cortex is involved in the perception and the representation of the auditory space. We recorded single neural activity in the posterior parietal cortex of rats that performed a directional delayed nonmatching-to-sample task. In the task, cue tones were presented in one of six speakers that were placed symmetrically around the rats. "Familiar tones" were those repeatedly used in the course of behavioral training. Novel tones were presented only during the unit recording time and less frequently used (e.g., only once in alternate weeks). The responses of the posterior parietal cortex neurons were typically tested with familiar cue tones while the rats were situated in a particular geomagnetic orientation. The same cells were further tested while the rats were reoriented by 180 degrees, or by novel cue tones. As the task included a delay period, in which the cue tone was removed, the rats had to maintain the directional information of the cue tones during this period to maximize the reward rates. A well-trained rat could perform the task with 85% success. We found two major types of neurons intermixed in the rat posterior parietal cortex. One type (n = 14) mainly discriminated the direction of the cue tones, whereas the other (n = 36) carried a mnemonic value of the cue tones while the tones were removed. The former responded only during the cue tone period (discriminatory neurons), whereas the latter responded during the cue tone period and the delay period (mnemonic neurons). These cells also exhibited broad directional tuning. The results agreed with previous studies, suggesting that a population coding scheme exists in the posterior parietal cortex. When the cells were tested with novel tones or when the rats were rotated through 180 degrees, the vast majority of the cells exhibited a directional tuning similar to those under the control conditions. Three quarters (18/24) of the cells that exhibited a mnemonic characteristic persisted in their directional preference when the rat's orientation was changed (12/17 neurons) or when an unfamiliar auditory stimulus was used (6/7 neurons). Half of the discriminatory neurons (4/8 neurons) persisted in their directional preference. These results, consistent with previous behavioral studies, suggest an allocentric representation of the auditory processing in this area. Furthermore, when the rat was reoriented or an unfamiliar cue tone was used, both the average and peak directional responses were enhanced in more than half of the mnemonic or discriminatory neurons. These results support the frequency-dependent neocortical gating hypothesis of the entorhinal hippocampal loop.  相似文献   

19.
We tested the responses of neurons in the lateral parietal area (area LIP) for their sensitivity to the spatial and non-spatial attributes of an auditory stimulus. We found that the firing rates of LIP neurons were modulated by both of these attributes. These data indicate that, while area LIP is involved in spatial processing, non-spatial processing is not restricted to independent channels.  相似文献   

20.
When a monkey attends to, remembers, and looks toward targets, the activity of some neurons in the lateral intraparietal area (LIP) changes. We recorded from isolated neurons during both a spatial and a shape match-to-sample task to examine and characterize voluntary active processes in LIP. Many LIP neurons show spatially selective activity during the delay period that depends on the location of the sample, but for most cells, this activity does not differ between the two tasks. Although much past work in posterior parietal cortex has explained responses in this region in terms of active processes such as decision-making and motor planning, our findings suggest that much of that activity represents more passive processing. Nevertheless, we do see a significant minority of units that demonstrate instruction-dependent activity during the delay period, suggesting that these units could represent the neural correlates of voluntary or active processes. Separately, we found that during the presentation of the sample stimulus and test array, some units show stronger responses to the stimulus in the shape-matching task when the animal must attend to the shape of a stimulus. This elevated response to the sample during the shape task provides evidence for feature-based attention in LIP. Attention to shape is a property that has not previously been described in primate cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号