首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A potassium channel peptide toxin (AETX K) was isolated from the sea anemone Anemonia erythraea by gel filtration on Sephadex G-50, reverse-phase HPLC on TSKgel ODS-120T and anion-exchange HPLC on Mono Q. AETX K inhibited the binding of (125)I-alpha-dendrotoxin to rat synaptosomal membranes, although much less potently than alpha-dendrotoxin. Based on the determined N-terminal amino acid sequence, the nucleotide sequence of the full-length cDNA (609bp) encoding AETX K was elucidated by a combination of degenerate RT-PCR, 3'RACE and 5'RACE. The precursor protein of AETX K is composed of a signal peptide (22 residues), a propart (27 residues) ended with a pair of basic residues (Lys-Arg) and a mature peptide (34 residues). AETX K is the sixth member of the type 1 potassium channel toxins from sea anemones, showing especially high sequence identities with HmK from Heteractis magnifica and ShK from Stichodactyla helianthus. It has six Cys residues at the same position as the known type 1 toxins. In addition, the dyad comprising Lys and Tyr, which is considered to be essential for the binding of the known type 1 toxins to potassium channels, is also conserved in AETX K.  相似文献   

2.

Background and purpose:

The effects of veratridine, an alkaloid found in Liliaceae plants, on tetrodotoxin (TTX)-sensitive voltage-gated Na+ channels were investigated in mouse vas deferens.

Experimental approach:

Effects of veratridine on TTX-sensitive Na+ currents (INa) in vas deferens myocytes dispersed from BALB/c mice, homozygous mice with a null allele of NaV1.6 (NaV1.6−/−) and wild-type mice (NaV1.6+/+) were studied using patch-clamp techniques. Tension measurements were also performed to compare the effects of veratridine on phasic contractions in intact tissues.

Key results:

In whole-cell configuration, veratridine had a concentration-dependent dual action on the peak amplitude of INa: INa was enhanced by veratridine (1–10 µM), while higher concentrations (≥30 µM) inhibited INa. Additionally, two membrane current components were evoked by veratridine, namely a sustained inward current during the duration of the depolarizing rectangular pulse and a tail current at the repolarization. Although veratridine caused little shift of the voltage dependence of the steady-state inactivation curve and the activation curve for INa, veratridine enhanced a non-inactivating component of INa. Veratridine caused no detectable contractions in vas deferens from NaV1.6−/− mice, although in tissues from NaV1.6+/+ mice, veratridine (≥3 µM) induced TTX-sensitive contractions. Similarly, no detectable inward currents were evoked by veratridine in NaV1.6−/− vas deferens myocytes, while veratridine elicited both the sustained and tail currents in cells taken from NaV1.6+/+ mice.

Conclusions and implications:

These results suggest that veratridine possesses a dual action on INa and that the veratridine-induced activation of contraction is induced by the activation of NaV1.6 channels.  相似文献   

3.
A full-length cDNA of neurotoxin (Hk2a) was isolated by RT-PCR of total RNA isolated from tentacles of Anthopleura sp. using degenerate oligonucleotide primers and 3',5'-RACE. The cDNA sequence of Hk2a encoded a polypeptide of 47 amino acids, which lacks a typical N-terminal signal sequences commonly found in proteins that are secreted via endoplasmic reticulum-Golgi pathway, indicating the possibility of secretion via a non-classical pathway. The neurotoxin has a predicted molecular mass of 4.8 kDa and a pI value of 7.62. The amino acid sequence of Hk2a is very similar to Anthopleurin C (Ap-C) and Neurotoxin I (Af I), and shares 95% amino acid sequence similarity to Ap-C.The coding region for the matured Hk2a toxin was cloned into the thioredoxin (TRX) fusion expression vector (pTRX) for the fusion expression in Escherichia coli. The recombinant polypeptide of Hk2a (rHk2a) was purified by the affinity chromatography, 15 mg/l of rHk2a was obtained after the digestion with protease 3C and further purification. The molecular weight of rHk2a (5.078 kDa) obtained by MALDI-TOF was very close to that (5Da) calculated from the sequence. The results of the UV-circular dichroism spectra of rHk2a indicates that its secondary structure is similar to that of Ap-B (), having 61.7% beta-sheet and no alpha-helix.Investigation on pharmacological effects of rHk2a in vitro was undertaken, and it was found that LD(50) of rHk2a was 1.4 mg/kg on NIH mice (i.p.). The rHk2a was demonstrated to increase contracting activity on isolated SD rat atria with the enhancing degree reaching 343.5+/-160.5%. The increase in contractile amplitude reached a plateau value within 3-5 min after addition of this toxin.  相似文献   

4.
Recent studies have demonstrated that the botulinum neurotoxins inhibit the release of acetylcholine, glutamate, GABA, and glycine in central nerve system (CNS) neurons. The Na(+) current (I(Na)) is of major interest because it acts as the trigger for many cellular functions such as transmission, secretion, contraction, and sensation. Thus, these observations raise the possibility that A type neurotoxin might also alter the I(Na) of neuronal excitable membrane. To test our idea, we examined the effects of A type neurotoxins on I(Na) of central and peripheral neurons. The neurotoxins in femtomolar to picomolar concentrations produced substantial decreases of the neuronal I(Na), but interestingly the current inhibition was saturated at about maximum 50% level of control I(Na). The inhibitory pattern in the concentration-response curve for the neurotoxins differed from tetrodotoxin (TTX), local anesthetic, and antiepileptic drugs that completely inhibited I(Na) in a concentration-dependent manner. We concluded that A type neurotoxins inhibited membrane Na(+)-channel activity in CNS neurons and that I(Na) of both TTX-sensitive and -insensitive peripheral dorsal ganglion cells were also inhibited similarly to a maximum 40% of the control by the neurotoxins. The results suggest evidently that A2NTX could be also used as a powerful drug in treating epilepsy and several types of pain.  相似文献   

5.
In the present study, the participation of the NaV1.8 sodium channel was investigated in the development of the peripheral pro-nociceptive state induced by daily intraplantar injections of PGE2 in rats and its regulation in vivo by protein kinase A (PKA) and protein kinase C epsilon (PKC?) as well. In the prostaglandin E2 (PGE2)-induced persistent hypernociception, the NaV1.8 mRNA in the dorsal root ganglia (DRG) was up-regulated. The local treatment with dipyrone abolished this persistent hypernociception but did not alter the NaV1.8 mRNA level in the DRG. Daily intrathecal administrations of antisense NaV1.8 decreased the NaV1.8 mRNA in the DRG and reduced ongoing persistent hypernociception. Once the persistent hypernociception had been abolished by dipyrone, but not by NaV1.8 antisense treatment, a small dose of PGE2 restored the hypernociceptive plateau. These data show that, after a period of recurring inflammatory stimuli, an intense and prolonged nociceptive response is elicited by a minimum inflammatory stimulus and that this pro-nociceptive state depends on NaV1.8 mRNA up-regulation in the DRG. In addition, during the persistent hypernociceptive state, the PKA and PKC? expression and activity in the DRG are up-regulated and the administration of the PKA and PKC? inhibitors reduce the hypernociception as well as the NaV1.8 mRNA level. In the present study, we demonstrated that the functional regulation of the NaV1.8 mRNA by PKA and PKC? in the primary sensory neuron is important for the development of the peripheral pro-nociceptive state induced by repetitive inflammatory stimuli and for the maintenance of the behavioral persistent hypernociception.  相似文献   

6.
Chronic pain affects approximately 20% of people worldwide and places a large economic and social burden on society. Despite the availability of a range of analgesics, this condition is inadequately treated, with complete alleviation of symptoms rarely occurring. In the past 30 years, the voltage-gated calcium channels (VGCCs) have been recognized as potential targets for analgesic development. Although the majority of the research has been focused on Cav2.2 in particular, other VGCC subtypes such as Cav3.2 have recently come to the forefront of analgesic research. Venom peptides from marine cone snails have been proven to be a valuable tool in neuroscience, playing a major role in the identification and characterization of VGCC subtypes and producing the first conotoxin-based drug on the market, the ω-conotoxin, ziconotide. This peptide potently and selectively inhibits Cav2.2, resulting in analgesia in chronic pain states. However, this drug is only available via intrathecal administration, and adverse effects and a narrow therapeutic window have limited its use in the clinic. Other Cav2.2 inhibitors are currently in development and offer the promise of an improved route of administration and safety profile. This review assesses the potential of targeting VGCCs for analgesic development, with a main focus on conotoxins that block Cav2.2 and the developments made to transform them into therapeutics.  相似文献   

7.
Functional nematocysts of one specific morphological class, the penetrant microbasic mastigophores, were isolated from the sea anemone, Aiptasia pallida. These nematocysts contain a multicomponent venom composed of several proteins, including those with neurotoxic, hemolytic, and lethal activities. Hemolytic activity is produced by at least three synergistic venom proteins. One of these proteins is identified as a phospholipase A2 (EC 3.1.1.4) which exists in two isozymic forms, α and β, with molecular weights of 45,000 and 43,000, respectively. The β isozyme has been purified to homogeneity. It is a single-chained glycoprotein with an isoelectric point (pI) of 8.8 and represents 70% of the phospholipase activity of the venom. The activity of the β isozyme is relatively labile and is inactivated by 3.5 M urea or by heating at 45°C. It is most stable at pH 4.0 and loses 50% of its activity at pH values below 3.5 and above 8.0. A second venom protein has also been purified. It is essential for the hemolytic activity of the venom and is termed co-lytic factor (CLF). It is a monomeric glycoprotein having a pI of 4.5. CLF has a molecular weight of approximately 98,000, a sedimentation coefficient of 4.8 S, and is prolate in shape, having a frictional ratio of about 1.6. CLF constitutes about 1.25% of the total venom protein and is assayed by reversing fatty acid inhibition of the venom hemolysis activity.  相似文献   

8.
The inhibitory effects of toxin extracted from muscle or liver of five different puffer fishes (hereafter referred as puffer(s)) captured on the Japanese sea coast were examined on voltage-dependent sodium current (INa) recorded from dissociated single rat hippocampal CA1 neurons. The inhibitory effects estimated from IC50 values of toxin extracts on INa were in the order of Takifugu vermicularis > Lagocephalus wheeleri > Canthigaster rivulata > Takifugu rubripes > Arothron reticularis from muscle and T. vermicularis > T. rubripes > L. wheeleri > A. reticularis > C. rivulata from liver, thereby indicating that the amount of toxin in the liver or muscle differs between puffers. In addition, the present results indicate that the muscle of T. vermicularis, which is eaten in Japan, contains relatively higher amounts of toxin compared to those of T. rubripes, also eaten. This observation suggests that caution should be taken concerning the maximal edible amount of muscle prepared from T. rubripes.  相似文献   

9.
  1. Whole cell patch clamp techniques were used to study the effects of 4030W92 (2,4-diamino-5-(2,3-dichlorophenyl)-6-fluoromethylpyrimidine), a new antihyperalgesic agent, on rat dorsal root ganglion (DRG) neurones.
  2. In small diameter, presumably nociceptive DRG neurones under voltage-clamp, 4030W92 (1–100 μM) produced a concentration-related inhibition of slow tetrodotoxin-resistant Na+ currents (TTXR). From a holding potential (Vh) of −90 mV, currents evoked by test pulses to 0 mV were inhibited by 4030W92 with a mean IC50 value of approximately 103 μM.
  3. The inhibitory effect of 4030W92 on TTXR was both voltage- and use-dependent. Currents evoked from a Vh of −60 mV were inhibited by 4030W92 with a mean IC50 value of 22 μM, which was 5 fold less than the value obtained at −90 mV. Repeated activation of TTXR by a train of depolarizing pulses (5 Hz, 20 ms duration) enhanced the inhibitory effects of 4030W92. These data could be explained by a preferential interaction of the drug with inactivation states of the channel. In support of this hypothesis 4030W92 (30 μM) produced a significant hyperpolarizing shift of 10 mV in the slow inactivation curve for TTXR and markedly slowed the recovery from channel inactivation.
  4. Fast TTX-sensitive Na+ currents (TTXS) were also inhibited by 4030W92 in a voltage-dependent manner. The IC50 values obtained from Vhs of −90 mV and −70 mV were 37 μM and 5 μM, respectively. 4030W92 (30 μM) produced a 13 mV hyperpolarizing shift in the steady-state inactivation curve of TTXS.
  5. High threshold voltage-gated Ca2+ currents were only weakly inhibited by 4030W92. The reduction in peak Ca2+ current amplitude produced by 100 μM 4030W92 was 20±6% (n=6). Low threshold T-type Ca2+ currents were inhibited by 17±8% and 43±3% by concentrations of 4030W92 of 30 μM and 100 μM, respectively (n=6).
  6. Under current clamp, some cells exhibited broad TTX-resistant action potentials whilst others showed fast TTX-sensitive action potentials in response to a depolarizing current injection. In most cells a long duration (800 ms) supramaximal current injection evoked a train of action potentials. 4030W92 (10–30 μM) had little effect on the first spike in the train but produced a concentration-related inhibition of the later spikes. The number of spikes per train was significantly reduced from 9.7±1.5 to 4.2±1.0 and 2.6±1.1 in the presence of 10 μM and 30 μM 4030W92, respectively (n=5).
  7. Thus, 4030W92 is a potent voltage- and use-dependent inhibitor of Na+ channels in sensory neurones. This profile can be explained by a preferential action of the drug on a slow inactivation state of the channel that results in a delayed recovery to the resting state. This state-dependent modulation by 4030W92 of Na+ channels that are important in sensory neurone function may underlie or contribute to the antihyperalgesic profile of this compound observed in vivo.
  相似文献   

10.
BACKGROUND AND PURPOSE The Na(+) /Ca(2+) exchanger is a bi-directional transporter that plays an important role in maintaining the concentration of cytosolic Ca(2+) ([Ca(2+) ](i) ) of quiescent platelets and increasing it during activation with some, but not all, agonists. There are two classes of Na(+) /Ca(2+) exchangers: K(+) -independent Na(+) /Ca(2+) exchanger (NCX) and K(+) -dependent Na(+) /Ca(2+) exchanger (NCKX). Platelets have previously been shown to express NCKX1. However, initial studies from our laboratory suggest that NCX may also play a role in platelet activation. The objective of this study was to determine if the human platelet expresses functional NCXs. EXPERIMENTAL APPROACH RT-PCR, DNA sequencing and Western blot analysis were utilized to characterize the human platelet Na(+) /Ca(2+) exchangers. Their function during quiescence and collagen-induced activation was determined by measuring [Ca(2+) ](i) with calcium-green/fura-red in response to: changes in the Na(+) and K(+) gradient, NCX pharmacological inhibitors (CBDMB, KB-R7943 and SEA0400) and antibodies specific to extracellular epitopes of the exchangers. KEY RESULTS Human platelets express NCX1.3, NCX3.2 and NCX3.4. The NCXs operate in the Ca(2+) efflux mode in resting platelets and also during their activation with thrombin but not collagen. Collagen-induced increase in [Ca(2+) ](i) was reduced with the pharmacological inhibitors of NCX (CBDMB, KB-R7943 or SEA0400), anti-NCX1 and anti-NCX3. In contrast, anti-NCKX1 enhanced the collagen-induced increase in [Ca(2+) ](i) . CONCLUSIONS AND IMPLICATIONS Human platelets express K(+) -independent Na(+) /Ca(2+) exchangers NCX1.3, NCX3.2 and NCX3.4. During collagen activation, NCX1 and NCX3 transiently reverse to promote Ca(2+) influx, whereas NCKX1 continues to operate in the Ca(2+) efflux mode to reduce [Ca(2+) ](i) .  相似文献   

11.
BACKGROUND AND PURPOSE: Selective cannabinoid CB2 receptor agonists have demonstrated analgesic activity across multiple preclinical pain models. AM1241 is an indole derivative that exhibits high affinity and selectivity for the CB2 binding site and broad spectrum analgesic activity in rodent models, but is not an antagonist of CB2 in vitro functional assays. Additionally, its analgesic effects are mu-opioid receptor-dependent. Herein, we describe the in vitro and in vivo pharmacological properties of A-796260, a novel CB2 agonist. EXPERIMENTAL APPROACH: A-796260 was characterized in radioligand binding and in vitro functional assays at rat and human CB1 and CB2 receptors. The behavioural profile of A-796260 was assessed in models of inflammatory, post-operative, neuropathic, and osteoarthritic (OA) pain, as well as its effects on motor activity. The receptor specificity was confirmed using selective CB1, CB2 and mu-opioid receptor antagonists. KEY RESULTS: A-796260 exhibited high affinity and agonist efficacy at human and rat CB2 receptors, and was selective for the CB2 vs CB1 subtype. Efficacy in models of inflammatory, post-operative, neuropathic and OA pain was demonstrated, and these activities were selectively blocked by CB2, but not CB1 or mu-opioid receptor-selective antagonists. Efficacy was achieved at doses that had no significant effects on motor activity. CONCLUSIONS AND IMPLICATIONS: These results further confirm the therapeutic potential of CB2 receptor-selective agonists for the treatment of pain. In addition, they demonstrate that A-796260 may be a useful new pharmacological compound for further studying CB2 receptor pharmacology and for evaluating its role in the modulation of pain.  相似文献   

12.

Background and purpose:

Stimulation of muscarinic receptors in intestinal smooth muscle cells results in suppression of voltage-gated Ca2+ channel currents (ICa). However, little is known about which receptor subtype(s) mediate this effect.

Experimental approach:

The effect of carbachol on ICa was studied in single intestinal myocytes from M2 or M3 muscarinic receptor knockout (KO) and wild-type (WT) mice.

Key results:

In M2KO cells, carbachol (100 µM) induced a sustained ICa suppression as seen in WT cells. However, this suppression was significantly smaller than that seen in WT cells. Carbachol also suppressed ICa in M3KO cells, but with a phasic time course. In M2/M3-double KO cells, carbachol had no effect on ICa. The extent of the suppression in WT cells was greater than the sum of the ICa suppressions in M2KO and M3KO cells, indicating that it is not a simple mixture of M2 and M3 receptor responses. The Gi/o inhibitor, Pertussis toxin, abolished the ICa suppression in M3KO cells, but not in M2KO cells. In contrast, the Gq/11 inhibitor YM-254890 strongly inhibited only the ICa suppression in M2KO cells. Suppression of ICa in WT cells was markedly reduced by either Pertussis toxin or YM-254890.

Conclusion and implications:

In intestinal myocytes, M2 receptors mediate a phasic ICa suppression via Gi/o proteins, while M3 receptors mediate a sustained ICa suppression via Gq/11 proteins. In addition, another pathway that requires both M2/Gi/o and M3/Gq/11 systems may be operative in inducing a sustained ICa suppression.  相似文献   

13.
Persistent neuroinflammation and microglial activation play an integral role in the pathogenesis of many neurological disorders. We investigated the role of voltage-gated sodium channels (VGSC) and Na+/H+ exchangers (NHE) in the activation of immortalized microglial cells (BV-2) after lipopolysaccharide (LPS) exposure. LPS (10 and 100 ng/ml) caused a dose- and time-dependent accumulation of intracellular sodium [(Na+)i] in BV-2 cells. Pre-treatment of cells with the VGSC antagonist tetrodotoxin (TTX, 1 μM) abolished short-term Na+ influx, but was unable to prevent the accumulation of (Na+)i observed at 6 and 24 h after LPS exposure. The NHE inhibitor cariporide (1 μM) significantly reduced accumulation of (Na+)i 6 and 24 h after LPS exposure. Furthermore, LPS increased the mRNA expression and protein level of NHE-1 in a dose- and time-dependent manner, which was significantly reduced after co-treatment with TTX and/or cariporide. LPS increased production of TNF-α, ROS, and H2O2 and expression of gp91phox, an active subunit of NADPH oxidase, in a dose- and time-dependent manner, which was significantly reduced by TTX or TTX + cariporide. Collectively, these data demonstrate a closely-linked temporal relationship between VGSC and NHE-1 in regulating function in activated microglia, which may provide avenues for therapeutic interventions aimed at reducing neuroinflammation.  相似文献   

14.
  1. We recently showed that intrathecal administration of nociceptin induced allodynia by innocuous tactile stimuli and hyperalgesia by noxious thermal stimuli in conscious mice. In the present study, we examined the effect of prostaglandins on nociceptin-induced allodynia and hyperalgesia.
  2. Prostaglandin D2 (PGD2) blocked the allodynia induced by nociceptin in a dose-dependent manner with an IC50 of 26 ng kg−1, but did not affect the nociceptin-induced hyperalgesia at doses up to 500 ng kg−1. BW 245C (an agonist for PGD (DP) receptor) blocked the allodynia with an IC50 of 83 ng kg−1.
  3. The blockade of nociceptin-induced allodynia by PGD2 was reversed by the potent and selective DP-receptor antagonist BW A868C in a dose-dependent manner with an ED50 of 42.8 ng kg−1.
  4. Glycine (500 ng kg−1) almost completely blocked the nociceptin-induced allodynia. A synergistic effect on the inhibition of nociceptin-evoked allodynia was observed between glycine and PGD2 at below effective doses.
  5. Dibutyryl cyclic AMP, but not dibutyryl cyclic GMP, blocked the nociceptin-induced allodynia with an IC50 of 2.9 μg kg−1.
  6. PGE2, PGF, butaprost (an EP2 agonist) and cicaprost (a PGI receptor agonist) did not affect the nociceptin-induced allodynia.
  7. These results demonstrate that PGD2 inhibits the nociceptin-evoked allodynia through DP receptors in the spinal cord and that glycine may be involved in this inhibition.
  相似文献   

15.
Prostanoids, i.e. prostaglandins and thromboxane, regulate liver-specific functions both in homeostasis and during defense reactions. For example, prostanoids are released from Kupffer cells, the resident liver macrophages, in response to the inflammatory mediator anaphylatoxin C5a, and mediate an enhanced glucose output from hepatocytes as energy supply. In perfused rat livers, the thromboxane receptor antagonist daltroban enhanced C5a-induced prostanoid overflow and reduced glucose output. It was the aim of this study to elucidate whether daltroban interfered with prostanoid release from Kupffer cells or prostanoid clearance by hepatocytes, and/or whether it directly influenced prostanoid-dependent glucose metabolism in these cells. In perfused rat livers, daltroban enhanced prostaglandin (PG)D(2) overflow not only after infusion of C5a (15-fold), but also after PGD(2) (10-fold). Neither daltroban nor another receptor antagonist, ifetroban, or the thromboxane synthase inhibitor furegrelate enhanced prostanoid release from Kupffer cells. In contrast, all inhibitors reduced clearance, i.e. uptake and degradation, of PGD(2) by hepatocytes: within 5 min uptake of 1 nmol/L PGD(2) was reduced from 43+/-5 fmol (controls) to 22+/-6 fmol (daltroban), 24+/-6 fmol (ifetroban) and 21+/-6 fmol (furegrelate). PGD(2) in the medium was reduced to 39+/-7% in the controls, but remained at 93+/-9%, 93+/-11% and 60+/-3% in the presence of the inhibitors. PGD(2)-dependent glucose output in the perfused liver or activation of glycogen phosphorylase in isolated hepatocytes remained unaffected by daltroban. These data clearly demonstrate that the thromboxane-inhibitors reduced PGD(2) clearance by hepatocytes, presumably by inhibition of prostanoid transport into the cells. In contrast, they did not interfere with PGD(2)-dependent glucose metabolism, suggesting an independent mechanism for the inhibition of glucose output from the liver.  相似文献   

16.
Neuro- and myotoxicological signs and symptoms are significant clinical features of envenoming snakebites in many parts of the world. The toxins primarily responsible for the neuro and myotoxicity fall into one of two categories—those that bind to and block the post-synaptic acetylcholine receptors (AChR) at the neuromuscular junction and neurotoxic phospholipases A2 (PLAs) that bind to and hydrolyse membrane phospholipids of the motor nerve terminal (and, in most cases, the plasma membrane of skeletal muscle) to cause degeneration of the nerve terminal and skeletal muscle. This review provides an introduction to the biochemical properties of secreted sPLA2s in the venoms of many dangerous snakes and a detailed discussion of their role in the initiation of the neurologically important consequences of snakebite. The rationale behind the experimental studies on the pharmacology and toxicology of the venoms and isolated PLAs in the venoms is discussed, with particular reference to the way these studies allow one to understand the biological basis of the clinical syndrome. The review also introduces the involvement of PLAs in inflammatory and degenerative disorders of the central nervous system (CNS) and their commercial use in the food industry. It concludes with an introduction to the problems associated with the use of antivenoms in the treatment of neuro-myotoxic snakebite and the search for alternative treatments.  相似文献   

17.
We expressed rat Nav1.6 sodium channels in combination with the rat β1 and β2 auxiliary subunits in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on expressed sodium currents using the whole-cell patch clamp technique. Both pyrethroids produced concentration-dependent, resting modification of Nav1.6 channels, prolonging the kinetics of channel inactivation and deactivation to produce persistent “late” currents during depolarization and tail currents following repolarization. Both pyrethroids also produced concentration dependent hyperpolarizing shifts in the voltage dependence of channel activation and steady-state inactivation. Maximal shifts in activation, determined from the voltage dependence of the pyrethroid-induced late and tail currents, were ~ 25 mV for tefluthrin and ~ 20 mV for deltamethrin. The highest attainable concentrations of these compounds also caused shifts of ~ 5–10 mV in the voltage dependence of steady-state inactivation. In addition to their effects on the voltage dependence of inactivation, both compounds caused concentration-dependent increases in the fraction of sodium current that was resistant to inactivation following strong depolarizing prepulses. We assessed the use-dependent effects of tefluthrin and deltamethrin on Nav1.6 channels by determining the effect of trains of 1 to 100 5-ms depolarizing prepulses at frequencies of 20 or 66.7 Hz on the extent of channel modification. Repetitive depolarization at either frequency increased modification by deltamethrin by ~ 2.3-fold but had no effect on modification by tefluthrin. Tefluthrin and deltamethrin were equally potent as modifiers of Nav1.6 channels in HEK293 cells using the conditions producing maximal modification as the basis for comparison. These findings show that the actions of tefluthrin and deltamethrin of Nav1.6 channels in HEK293 cells differ from the effects of these compounds on Nav1.6 channels in Xenopus oocytes and more closely reflect the actions of pyrethroids on channels in their native neuronal environment.  相似文献   

18.

Aim:

Intracellular Ca2+ ([Ca2+]i) overload occurs in myocardial ischemia. An increase in the late sodium current (INaL) causes intracellular Na+ overload and subsequently [Ca2+]i overload via the reverse-mode sodium-calcium exchanger (NCX). Thus, inhibition of INaL is a potential therapeutic target for cardiac diseases associated with [Ca2+]i overload. The aim of this study was to investigate the effects of ketamine on Na+-dependent Ca2+ overload in ventricular myocytes in vitro.

Methods:

Ventricular myocytes were enzymatically isolated from hearts of rabbits. INaL, NCX current (INCX) and L-type Ca2+ current (ICaL) were recorded using whole-cell patch-clamp technique. Myocyte shortening and [Ca2+]i transients were measured simultaneously using a video-based edge detection and dual excitation fluorescence photomultiplier system.

Results:

Ketamine (20, 40, 80 μmol/L) inhibited INaL in a concentration-dependent manner. In the presence of sea anemone toxin II (ATX, 30 nmol/L), INaL was augmented by more than 3-fold, while ketamine concentration-dependently suppressed the ATX-augmented INaL. Ketamine (40 μmol/L) also significantly suppressed hypoxia or H2O2-induced enhancement of INaL. Furthermore, ketamine concentration-dependently attenuated ATX-induced enhancement of reverse-mode INCX. In addition, ketamine (40 μmol/L) inhibited ICaL by 33.4%. In the presence of ATX (3 nmol/L), the rate and amplitude of cell shortening and relaxation, the diastolic [Ca2+]i, and the rate and amplitude of [Ca2+]i rise and decay were significantly increased, which were reverted to control levels by tetrodotoxin (TTX, 2 μmol/L) or by ketamine (40 μmol/L).

Conclusion:

Ketamine protects isolated rabbit ventricular myocytes against [Ca2+]i overload by inhibiting INaL and ICaL.  相似文献   

19.
In the myocardium the inhibitory guanine nucleotide-binding regulatory proteins (Gi proteins) mediate negative chronotropic and negative inotropic effects by activation of K+ channels and inhibition of adenylyl cyclase. The concept of a uniform inhibitory action of Gi proteins on myocardial cellular activity has been questioned by the recent observations of adenosine-induced activation of the Na+/Ca2+ exchange and a carbachol-induced inhibition of the Na+/K+-ATPase activity in cardiac sarcolemmal membranes. The aim of the present study, therefore, was to reinvestigate the putative regulation of Na+/Ca2+ exchange and Na+/K+-ATPase activity in purified canine sarcolemmal membranes. These membranes were enriched in adenosine A1 (Maximum number of receptors, B max 0.033 pmol/mg) and muscarinic M2 (B max 2.9 pmol/mg) receptors and contained Gi2 and Gi3, two Gi protein isoforms, and Go, another pertussis toxin-sensitive G protein, as detected with specific antibodies. The adenosine A1-selective agonist, (–)-N 6-(2-phenylisopropyl)-adenosine, and the muscarinic agonist, carbachol, both inhibited isoprenaline-stimulated adenylyl cyclase activity by 25% and 35% respectively, and the stable GTP analogue 5-guanylylimidodiphosphate inhibited forskolin-stimulated adenylyl cyclase activity by 35% in these membranes. The characteristics of Na+/Ca2+ exchange and Na+/K+-ATPase activity as well as those of the ouabain-sensitive, K+-activated 4-nitrophenylphosphatase, an ATP-independent, partial reaction of the Na+/K+-ATPase, were in agreement with published data with regard to specific activity, time course of activity and substrate dependency. However, none of these activities were influenced by adenosine, (–)-N 6-(2-phenylisopropyl)-adenosine, carbachol, or stable GTP analogs, suggesting that Na+/Ca2+ exchange and Na+/K+-ATPase are not regulated by Gi proteins in canine cardiac sarcolemmal membranes.  相似文献   

20.
Tefluthrin is a synthetic pyrethroid and involved in acute neurotoxic effects. How this compound affects ion currents in endocrine or neuroendocrine cells remains unclear. Its effects on membrane ion currents in pituitary tumor (GH3) cells and in hypothalamic (GT1-7) neurons were investigated. Application of Tef (10 μM) increased the amplitude of voltage-gated Na+ current (INa), along with a slowing in current inactivation and deactivation in GH3 cells. The current–voltage relationship of INa was shifted to more negative potentials in the presence of this compound. Tef increased INa with an EC50 value of 3.2 ± 0.8 μM. It also increased the amplitude of persistent INa. Tef reduced the amplitude of L-type Ca2+ current. This agent slightly inhibited K+ outward current; however, it had no effect on the activity of large-conductance Ca2+-activated K+ channels. Under cell-attached voltage-clamp recordings, Tef (10 μM) increased amplitude and frequency of spontaneous action currents, along with appearance of oscillatory inward currents. Tef-induced inward currents were suppressed after further application of tetrodotoxin, riluzole or ranolazine. In GT1-7 cells, Tef also increased the amplitude and frequency of action currents. Taken together, the effects of Tef and its structural related pyrethroids on ion currents can contribute to the underlying mechanisms through which they affect endocrine or neuroendocrine function in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号