首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的研究靶向肿瘤细胞高表达核仁素的核酸适配体AS1411与靶标作用的结合模式。方法利用CD光谱评价了退火及末端修饰对AS1411平行及反平行G-四链体(G-4)结构的影响,同时利用肿瘤细胞生长抑制实验评价了退火及末端修饰对AS1411抗肿瘤活性的影响,并通过流式细胞术对末端荧光基团缀合AS1411的靶向肿瘤细胞摄取进行了考察。结果推测G-4结构的端基参与靶蛋白的结合,3'-末端缀合对细胞靶向摄取有较明显的影响,说明AS1411的肿瘤细胞摄取与其抗肿瘤活性有一定程度的关联。结论利用等当量AS1411与其3'-末端缀合物退火形成不对称的反平行G-4,可以更好地保持其与肿瘤细胞的靶向结合及生长抑制活性,说明AS1411的端基是其发挥药效的重要区域。该结果可进一步应用于肿瘤的靶向检测和治疗研究。  相似文献   

2.
目的 制备肿瘤微环境敏感、具有肿瘤细胞靶向能力和穿膜能力的融合肽FQSIYPpIKRRRRRRRRHHHHC (FRH)修饰的聚合物胶束,并对其体外性质进行初步考察.方法 采用FRH修饰N-(2-羟丙基)-甲基丙烯酰胺(HPMA)聚合物-β-谷甾醇(β-SITO),形成HPMA聚合物胶束(FRH-M),考察其理化性质、肿瘤细胞的摄取和抑制肿瘤细胞生长的效果.结果 透射电镜显示:胶束为均匀的类球形.FRH-M胶束粒径约为55 nm,阿霉素载药量8.3%.该胶束在pH7.4条件下,Zeta电位为-3.01±0.05 mV,在pH6.4条件下,电荷翻转为5.27-0.32 mV.FRH-M的药物释放速度随释放介质的pH降低而加快.FRH-M的细胞摄取较未经修饰胶束的P-M提升了1.9倍;且在pH6.4条件下的细胞摄取明显高于pH7.4的,FRH-M的IC50值为1.40 ±0.41 μg·mL-1,明显低于未经配体修饰的胶束(5.08±0.33 μg· mL-1).结论 经FRH多肽修饰的聚合物胶束具有良好的肿瘤微环境响应能力,且有更好的细胞摄取能力和体外抗肿瘤活性,极具发展前景.  相似文献   

3.
目的:制备2种正电化修饰的N-(2-羟丙基)甲基丙烯酰胺(HPMA)聚合物-阿霉素接合物并表征,分别考察2种接合物的正电基团含量对肿瘤细胞摄取的影响。方法:制备侧链带伯胺基的HPMA聚合物-阿霉素接合物(pHPMA-DOX-APMA)和侧链带胍基的HPMA聚合物-阿霉素接合物(pHPMA-DOX-GPMA),对其药剂学性质如正电基团含量,载药量,Zeta电位和分子量进行表征,进一步考察不同正电基团含量的接合物对MCF-7细胞摄取和毒性的影响。结果:通过自由基聚合反应,2种接合物成功合成。其中pHPMA-DOX-APMA伯胺基含量为0.44~1.57 mmol·g-1,载药量为7.15%~9.25%;pHPMA-DOX-GPMA胍基含量为0.11~0.54 mmol·g-1,载药量为7.55%~9.07%;相对分子质量分别为33~38 kDa和32~37 kDa。通过BCA法和MTT法研究分别发现在pHPMA-DOX-APMA中的伯胺基团含量为1.570 mmol·g-1及pHPMA-DOX-GPMA中的胍基含量为0.260 mmol·g-1时,肿瘤细胞对阿霉素的摄取量显著增加,二者的IC50与pHPMA-DOX相比显著降低(P<0.05)。结论:成功制备了2种正电化修饰的HPMA聚合物-阿霉素接合物;适当的正电化修饰对阿霉素的肿瘤细胞摄取有促进作用。  相似文献   

4.
目的制备p H敏感多肽修饰载紫杉醇脂质体(p HS-LP-PTX),并评价其体外性质。方法采用薄膜分散法制备PHS-LP-PTX,MTT实验考察脂质体对MCF-7细胞和Hep G2细胞的毒性,通过细胞摄取实验考察脂质体与肿瘤细胞的结合能力。结果所制备的p HS-LP-PTX在p H6.4时平均粒径为125.5±13.4 nm,Zeta电位为10.47±2.53 m V,24 h内具有良好的血清稳定性。MTT结果显示:p H6.4时,p HS-LP-PTX的细胞毒性优于各对照组。体外细胞摄取实验表明:p H6.4时,MCF-7细胞和Hep G2细胞对p HS-LP-PTX的摄取效率优于p H7.4时和普通脂质体。结论紫杉醇脂质体经过p H敏感多肽修饰后,能增强脂质体在酸性环境下的细胞穿透能力,是一种良好的p H敏感型肿瘤靶向给药系统。  相似文献   

5.
杜瑶瑶  王冰  张宁 《药学学报》2020,(6):1166-1174
肠道派氏结(Peyer’s patches, PPs)是诱导黏膜免疫应答的重要部位, M细胞(microfold cells, M cells)作为PPs中一种特化的上皮细胞,具有摄取抗原的独特能力,能够通过将抗原传递给PPs中的树突状细胞(dendritic cells, DCs)来促进全身免疫应答。选择合适的递药载体并利用特异性配体对载体进行修饰,可以将药物及生物活性物质靶向递送至M细胞以发挥治疗肠道免疫相关疾病的作用。本文综述了近20年相关文献,对靶向M细胞的配体、载体种类、材料性质及影响M细胞摄取的主要因素进行了归纳与分析,以期为研究PPs M细胞靶向递药策略提供可资借鉴的构建思路和实验方法。  相似文献   

6.
目的 体外评价自制羧甲基壳聚糖超顺磁氧化铁纳米粒(OCMCS-SPIO-NPs)的细胞毒性和逃避巨噬细胞的吞噬能力.方法 以菲立磁和未包被的超顺磁氧化铁纳米粒为对照,采用四唑盐(MTT)比色法考察OCMCS-SPIO-NPs对LO2细胞(正常肝细胞株)和A549(人肺腺癌细胞株)的细胞毒性;用菲洛嗪法及普鲁士蓝法考察OCMCS-SPIO-NPs纳米粒并评价其体外的抗吞噬能力.结果 SPIO-NPs经羧甲基壳聚糖共价修饰后,对LO2和A549细胞的细胞毒性明显降低,OCMCS-SPIO-NPs的细胞毒性和dextran-SPIO的细胞毒性无显著性差异(P>0.05),其细胞毒性与培养基中SPIO的浓度呈正相关;与3种SPIO纳米粒孵化24h后,RAW264.7细胞内铁含量随培养基中SPIO的含量增加而增加,细胞内铁含量依次为:未包被SPIO-NPs>dextran-SPIO-NPs>CMCS-SPIO-NPs组(P<0.05).结论 超顺氧化铁纳米粒经羧甲基壳聚糖共价修饰后能显著降低细胞毒性和吞噬细胞摄取,提高了生物相容性,显著降低了巨噬细胞对其的摄取.  相似文献   

7.
熊小兵  黄悦  吕万良  张煊  张华  张强 《药学学报》2005,40(12):1085-1090
目的研究用精氨酸-甘氨酸-天冬氨酸(RGD)类似物(RGDm)修饰隐形脂质体(SL),以增加抗癌药物在肿瘤部位积蓄的同时,增加抗癌药物向肿瘤细胞内的传递。方法合成RGDm,将其通过PEG链与二硬脂酰磷脂酰乙醇胺(DSPE)连接形成导向化合物DSPE-PEG-RGDm,在此基础上制备RGDm修饰的隐形脂质体(RGDm-SL),阿霉素(DOX)作为模型药物通过硫酸铵梯度法装载。体外实验中,用pH探针(BCECF-AM)标记黑色素瘤细胞,通过细胞黏附试验考察导向化合物与肿瘤细胞的黏附情况;通过流式细胞实验和激光共聚焦显微实验考察肿瘤细胞对SL包封的阿霉素(SL-DOX)及RGDm-SL包封的阿霉素(RGDm-SL-DOX)的结合或摄取情况。结果与DSPE-PEG相比,黑色素瘤细胞与导向化合物DSPE-PEG-RGDm的黏附显著增加,过量游离RGDm的加入能抑制其黏附;与SL-DOX相比,RGDm-SL-DOX与黑色素瘤细胞共同孵育后,细胞对阿霉素的结合及摄取均显著增加。结论RGDm修饰的隐形脂质体可作为肿瘤靶向的载体通过受体介导的方式促进抗肿瘤药物向肿瘤细胞内的传递。  相似文献   

8.
新型药物载体的开发对药物的研究具有举足轻重的作用。碳纳米管具有独特的中空结构和纳米管径,可用作药物载体。采用肽、蛋白、核酸及药物分子修饰的碳纳米管作为载体,可运载生物活性分子进入细胞且不产生毒性。本文综述了近年来修饰碳纳米管作为药物载体的研究进展,评述了碳纳米管的细胞穿透性能和细胞毒性,概述了碳纳米管功能化修饰的方法。随着碳纳米管在药物载体领域研究日趋深入,碳纳米管修饰方式与其细胞穿透性能的相互关系、尺寸效应将会深入研究。制备溶解性好、低毒性的修饰碳纳米管作为药物载体,将是今后研究的主要方向。  相似文献   

9.
目的 研究一种新型配体RVG29修饰脂质体后,对体外脑胶质瘤的靶向性.方法 采用有机相合成法制备DSPE-PEG2000-RVG29 PPP(D-RVG29)材料,按照薄膜分散法制备脂质体,通过C6细胞和Hela细胞的细胞摄取考察D-RVG29修饰脂质体后,对体外脑胶质瘤的靶向性.结果 在脂质体处方中加入DSPE-PEG2000-OME(D-OME)可使D-RVG29修饰脂质体具有更好的粒径和分布范围,C6细胞对D-RVG29修饰脂质体的摄取强于未修饰D-RVG29的脂质体,Hela细胞对两种脂质体的摄取强度无明显区别.结论 D-OME可以提高D-RVG29修饰脂质体的稳定性,D-RVG29修饰脂质体具有体外脑胶质瘤细胞的靶向性.  相似文献   

10.
目的构建一种主动靶向的新型纳米药物载体——聚合物泡囊(polymer vesicles,PVs),并考察其细胞摄取。方法以马来酰亚胺-聚乙二醇-聚乳酸-羟基乙酸共聚物(MAL-PEG-PLGA)为载体材料,通过自组装制备PVs,用转铁蛋白(Tf)与Tet-1对PVs进行修饰,构建纳米药物载体(Tf/Tet-1-PVs)。以香豆素-6作为荧光探针包载于药物载体,考察脑微血管内皮细胞(BCEC)及神经细胞(Neuro-2a)对载体系统的摄取。结果 PVs粒径约80nm,形态圆整,电镜观察具有明显膜层结构。BCEC细胞和Neuro-2a细胞对Tf/Tet-1-PVs的摄取均显著优于空白对照组和单配体修饰对照组。结论 PVs经双配体Tf及Tet-1修饰后可促进脑微血管内皮细胞和神经细胞的摄取。  相似文献   

11.
利用固相合成法合成了LyP-1,一种对肿瘤细胞具有靶向能力的环状九肽,及其荧光素标记物(LyP-1-FAM).利用巯基和马来酰亚胺的专属性反应制备了功能化脂质材料LyP-1-PEG 3400-DSPE.用成膜水化法制备了LyP-1修饰的多柔比星(1)、荧光素(FAM)和近红外染料(DiR)脂质体,并评价其对SCI 375黑素瘤细胞的体内外靶向性、细胞毒性和体内抑瘤效果.体外试验表明,SCI 375细胞对LyP-1-FAM或LyP-1修饰的FAM脂质体的摄取显著高于5-FAM或普通FAM脂质体.LyP-1修饰及未修饰的DiR脂质体分别尾静脉注射给予荷瘤裸鼠后,可见LyP-1修饰组肿瘤组织的荧光强度较高,提示DiR脂质体经LyP-1修饰后体内靶向性提高.LyP-1修饰及未修饰的1脂质体在体外对SCI 375细胞的IC50分别为3.4×10-6和8.0× 10-6 mol/L;修饰组在荷瘤裸鼠体内的抑瘤效果也显著高于未修饰组(P<0.05).  相似文献   

12.
目的以人血清白蛋白为载体包载替尼泊苷,经过包衣修饰后制备包载替尼泊苷的多层包衣纳米粒(teniposide-encapsulated multilayer nanoparticles,P-CS-NP),以期降低药物的不良反应并改善其体外抗肿瘤活性。方法以粒径、多分散指数和载药率为评价指标,采用单一因素法筛选出替尼泊苷白蛋白纳米粒的最优处方工艺,通过加入壳聚糖和聚谷氨酸聚乙二醇共聚物进一步制备多层包衣白蛋白纳米粒,筛选得到最优包衣量。以游离的替尼泊苷作为参比,用MTT法测定纳米粒对人肺癌A549细胞的体外细胞毒性,并用流式细胞仪和共聚焦显微镜测定和观察多层包衣纳米粒的细胞摄取率和细胞摄取行为。结果确定了多层包衣纳米粒的处方及制备工艺。多层包衣纳米粒的体外细胞毒性比游离的替尼泊苷小,摄取具有时间依赖性,与壳聚糖共孵育的纳米粒的细胞摄取量增加,入胞后纳米粒主要分布在细胞质。结论白蛋白纳米粒能被壳聚糖和聚谷氨酸聚乙二醇共聚物包衣修饰,多层包衣纳米粒可以作为替尼泊苷的药物递送载体,其体外细胞毒性降低。  相似文献   

13.
胰岛素-5-氟尿嘧啶偶联物在体外的细胞毒性和细胞亲和性   总被引:2,自引:2,他引:0  
目的 研究胰岛素-5-氟尿嘧啶偶联物(insulin-5-Fu)在体外的细胞毒性和细胞亲和性.方法 通过MTI比色法和荧光标记成像来检测insulin-5-Fu对正常肝细胞和肝癌细胞的作用效应.结果 偶联物在体外能够与肝癌细胞迅速地特异性结合;在中、低浓度下对肝癌细胞具有与原药相近的细胞毒性,对于正常细胞,其初期毒性较低;在高浓度下对正常细胞和肿瘤细胞的毒性急剧增加.结论 以胰岛素为靶向载体的偶联物能够靶向肿瘤细胞,在中、低浓度范围内能够达到与原药相近的抑瘤效果,对正常细胞的毒性表现出时间延迟现象,高浓度时具有一定的细胞毒性.  相似文献   

14.
本文旨在制备T7肽和穿膜肽TAT双修饰的脂质体(T7 and TAT dual modified liposomes,T7-TAT-LIP)用于血脑屏障和脑肿瘤细胞双级靶向药物递送。研究以CFPE为荧光探针,T7修饰的PEG-DSPE、TAT修饰的PEG-DSPE、卵磷脂、PEG-DSPE和胆固醇为材料,采用成膜水化法制备脂质体,对T7浓度、TAT浓度、连接T7和TAT的PEG长度进行优化,表征其粒径、zeta电位、形态和稳定性。以b End.3细胞和C6细胞为模型,考察T7-TAT-LIP的细胞摄取能力,表征其穿过血脑屏障和脑肿瘤细胞靶向能力。结果表明,T7用量为脂质的6%、修饰T7所用PEG链长为2000、TAT用量为脂质的0.5%、修饰TAT所用PEG链长为1000时所得到的双修饰脂质体被C6细胞摄取能力最强。优化后T7-TAT-LIP粒径为118 nm,zeta电位为-6.32 m V,透射电镜下形态圆整。脂质体在PBS中较为稳定,37℃放置24 h,浊度和粒径无明显变化;4~8℃放置1个月,粒径和PDI无明显变化。在不同时间点,b End.3和C6细胞摄取T7-TAT-LIP的强度均高于单配体修饰脂质体,且随着孵育时间提高,摄取浓度逐渐提高。这些结果说明,双修饰脂质体具有血脑屏障和脑肿瘤细胞双级靶向能力,且效果优于单配体修饰脂质体。  相似文献   

15.
新型阿霉素隐形阳离子脂质体的制备及体外细胞实验   总被引:1,自引:0,他引:1  
目的制备阿霉素隐形阳离子脂质体(DOX-SCL),并与中性脂质体(DOX-SNL)比较在体外小鼠乳腺癌4T1细胞实验上的差异。方法采用薄膜超声法制备空白脂质体,硫酸铵梯度法包载盐酸阿霉素(DOX);引入赖氨酸-胆固醇酯(Chol-lys)制成阳离子脂质体(CL),同时引入聚乙二醇-胆固醇琥珀酸酯(CHEMS-PEG)制成隐形阳离子脂质体(SCL);采用凝胶柱-UV法测定包封率;采用MTT法测定细胞毒性及体外抗肿瘤活性;通过流式细胞试验考察4T1细胞对脂质体的摄取情况。结果 SCL粒径约为100 nm,Zeta电位约为15.2 mV,对DOX的包封率大于95%;CHEMS-PEG的引入可以有效地降低CL的细胞毒性;与DOX-SNL相比,4T1细胞对DOX-SCL的摄取有所增加,DOX-SCL对4T1细胞的抑制率也更高。结论 SCL作为新型药物载体,可有效地促进DOX在肿瘤细胞中的传递。  相似文献   

16.
目的 制备单壁碳纳米管(SWNTs)靶向抗肿瘤药物载体,初步分析其药学特性和细胞学特性.方法 功能化处理SWNTs后,在其表面负载各种生物活性分子,包括表面改性分子叶酸-聚乙二醇(PEG-FA)、抗肿瘤化疗药物阿霉素(DOX)以及荧光标记分子异硫氰酸荧光素(FITC),考察各生物分子负载情况及该药物载体的体外细胞学特性.结果 酸处理及PEG-FA功能化后的SWNT能稳定分散于水中,长度为200~500nm,浓度最高可达50μg·mL-1;DOX及FITC能在SWNTs表面稳定结合,最佳结合值pH7;药物载体能通过叶酸分子的靶向介导进入肿瘤细胞,较游离DOX有更强的体外抑癌效能.结论 碳纳米管靶向抗肿瘤药物载体能靶向作用于肿瘤细胞,性状稳定,载药量可控,增加了化疗药物的抗癌活性.  相似文献   

17.
黑色素瘤恶性程度高,且发病率逐年上升。本研究制备了一种能特异性靶向黑色素瘤的透明质酸纳米凝胶,将巯基化的透明质酸修饰于表面功能化的普朗尼克F127-TPGS混合胶束制备共价交联的纳米凝胶。通过测定粒径考察其体外稳定性;细胞毒性实验考察该载体材料对细胞的毒性作用;细胞摄取实验定量和定性考察B16F10黑色素瘤细胞对该纳米凝胶的摄取情况。结果显示,本研究制备了一种30 nm左右的小粒径纳米凝胶,该纳米凝胶对小鼠3T3成纤维细胞与小鼠黑色素瘤B16F10细胞均无明显细胞毒性作用,与低表达CD44受体的3T3细胞相比,高表达CD44受体的B16F10细胞的摄取效率显著增加(P<0.05)。  相似文献   

18.
目的制备聚乙二醇1000维生素E琥珀酸酯(TPGS)修饰的阿霉素脂质体并考察其对阿霉素抗肿瘤活性的增敏作用。方法用阳离子树脂吸附法测定阿霉素脂质体的包封率;MTT法测定对MCF-7和MCF-7/ADR的毒性;用荧光显微镜观察阿霉素的细胞摄取,并用HPLC测定细胞内的阿霉素含量。结果 TPGS修饰的阿霉素脂质体增加了MCF-7/ADR对阿霉素的摄取,并增强了对MCF-7和MCF-7/ADR细胞的毒性。结论 TPGS修饰脂质体能显著增强MCF-7和MCF-7/ADR对阿霉素的敏感性。  相似文献   

19.
目的 利用离子交联和化学交联相结合的方法制备壳聚糖纳米粒子(NPs),并对NPs分别进行了叶酸(FA)和聚乙二醇(PEG)的修饰。方法 通过红外光谱进行结构验证;用扫描电镜和粒度分析仪对粒子的微观形态、粒径、电位等进行了表征;通过与Hela细胞摄取实验对其靶向作用进行验证。结果 离子交联和化学交联相结合的方法制备壳聚糖纳米粒子粒径在200 nm左右并且粒径分布窄,修饰后的NPs(FA-NPs、PEG-NPs及FA+PEG-NPs)粒径不受功能基团修饰的影响。激光共聚焦试验证明FA-NPs及FA+PEG-NPs能显著提高细胞对粒子的摄取,而PEG-NPs则明显降低其对粒子的摄取。结论 FA+PEG-NPs有望成为一种新型的药物载体,用于抗癌药物对癌细胞的主动靶向。  相似文献   

20.
汪瑜  陈钦俊  孙涛  蒋晨 《药学学报》2022,(1):188-199+278
化疗药物的非特异性蓄积和释放是影响其治疗效果以及引起不良反应的主要原因。现阶段,将药物纳米制剂化并且进行响应性释药设计是提高药物肿瘤特异性蓄积量和降低其不良反应的重要策略。本研究首先合成了一种α-烯醇化酶靶向肽修饰的共价荷载奥沙利铂前药的聚乙二醇聚赖氨酸嵌段共聚物,通过相转透析法制备了载药聚合物包覆的四氧化三铁纳米粒,以提高奥沙利铂的循环稳定性及肿瘤靶向性。在体外和活体水平对靶向修饰的载药四氧化三铁纳米粒的物理化学性质、还原响应药物释放、细胞摄取和肿瘤靶向等生物学功能进行了相关研究。体外的还原响应释药、肿瘤靶向摄取及摄取抑制考察结果显示,在模拟肿瘤细胞浆微环境的还原条件中,载药纳米粒可实现3 h内超80%的奥沙利铂原型药物的快速释放;流式细胞术的结果显示,靶向多肽的修饰能够增加肿瘤细胞对载药纳米粒的摄取量,并且靶向载药纳米粒主要是通过受体蛋白和小窝蛋白介导的能量依赖的内吞途径被肿瘤细胞所摄取的。所有动物实验操作均通过复旦大学药学院实验动物伦理委员会批准并遵循相关管理规定。药物动力学实验结果显示,纳米制剂化能显著增加奥沙利铂的平均药时曲线下面积(AUC0-∞),约为...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号