首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Objective: The aim of this study was to evaluate osseointegration of one‐piece zirconia vs. titanium implants depending on their insertion depth by histomorphometry. Material and methods: Four one‐piece implants of identical geometry were inserted on each side of six mongrel dogs: (1) an uncoated zirconia implant, (2) a zirconia implant coated with a calcium‐liberating titanium oxide coating, (3) a titanium implant and (4) an experimental implant made of a synthetic material (polyetheretherketone). In a split‐mouth manner they were inserted in submerged and non‐submerged gingival healing modes. After 4 months, dissected blocks were stained with toluidine blue in order to histologically assess the bone‐to‐implant contact (BIC) rates and the bone levels (BL) of the implants. Results: All 48 implants were osseointegrated clinically and histologically. Histomorphometrically, BL in the crestal implant part did not differ significantly with regard to material type or healing modality. The submerged coated zirconia implants tended to offer the most stable crestal BL. The histometric results reflected the different healing modes by establishing different BL. The median BIC of the apical implant part of the zirconia and titanium group amounted to 59.2% for uncoated zirconia, 58.3% for coated zirconia, 26.8% for the synthetic material and 41.2% for titanium implants. Conclusions: Within the limits of this animal study, it is concluded that zirconia implants are capable of establishing close BIC rates similar to what is known from the osseointegration behaviour of titanium implants with the same surface modification and roughness. To cite this article:
Koch FP, Weng D, Krämer S, Biesterfeld S, Jahn‐Eimermacher A, Wagner W. Osseointegration of one‐piece zirconia implants compared with a titanium implant of identical design: a histomorphometric study in the dog.
Clin. Oral Impl. Res. 21 , 2010; 350–356.
doi: 10.1111/j.1600‐0501.2009.01832.x  相似文献   

6.
Objectives: The purpose of this study was to evaluate the movement of pure titanium implants under different continuous forces in the edentulous alveolar ridge. Material and methods: Four pairs of titanium implants were inserted into the right maxillary and mandibular post‐extraction edentulous ridge of the experimental dog. Three different levels of continuous force (100, 200, and 500 g) were loaded onto three pairs of adjacent implant abutments using a memory Ni–Ti coil spring for up to 6 months and the remaining two implant abutments as the control group received no force. The positions of implant abutments were observed and the distances between the implants abutment at the top, middle and base levels were measured at the 0th, 2nd, 3rd, 6th and 8th month of the follow‐up period. Results: There was no significant change in the distances between adjacent abutments loaded with 100 or 200 g continuous forces throughout the entire study period. However, significantly more movement of implant abutments was noted in the 500 g pair after the 3rd month of loading when compared with the 200 or the 100 g pair (both P<0.001). This change further increased at the 6th month (P<0.001, 0.01, respectively). Moreover, the difference in the measurements at the top, middle and base level indicated that the two adjacent implants moved in a tipping manner in the 500 g pair after 3 and 6 months of loading. Conclusion: The osseointegrated implants remained stable and rigid with a pulling force of 100 and 200 g after 6 months of loading. However, when the force reached 500 g, the implants moved in an inward‐tipping pattern. The results suggested that endosseous titanium implants might not necessarily be rigid anchorages under all circumstances.  相似文献   

7.
Objectives: The early stages of peri‐implant bone formation play an essential role in the osseointegration and long‐term success of dental implants. By incorporating bioactive coatings, this biofunctionalization of implant surfaces may enhance the attachment of the implant to the surrounding bone and stimulate bone regeneration. Material and methods: To demonstrate faster osseointegration, the surfaces of dental implants were grit‐blasted and acid‐etched. They were then coated with hydroxyapatite (HA) and experimental implants were further coated with a biomimetic active peptide (P‐15) in one of two concentrations. These biofunctionalized samples and controls with no peptide were placed in the forehead region of 12 adult pigs. Six animals were evaluated for a period of 14 or 30 days. Results: Histomorphometric analysis demonstrated that the implants with the high concentration of P‐15 had significantly higher percentage of bone‐to‐implant contact (BIC) at 14 (P=0.018) and 30 (P=0.015) days compared with the other groups. Both concentrations of P‐15 showed increased peri‐implant bone density compared to the control group at 30 days. Conclusion: Biofunctionalization of the implant surface with a biomimetic active peptide leads to significantly increased BIC rates at 14 and 30 days and higher peri‐implant bone density at 30 days. To cite this article:
Lutz R, Srour S, Nonhoff J, Weisel T, Damien CJ, Schlegel KA. Biofunctionalization of titanium implants with a biomimetic active peptide (P‐15) promotes early osseointegration.
Clin. Oral Impl. Res. 21 , 2010; 726–734.
doi: 10.1111/j.1600‐0501.2009.01904.x  相似文献   

8.
Objectives: Growing clinical demands for stronger and faster bone bonding to the implant have motivated the development of methods enhancing osseointegration. Lately, the application of bisphosphonates (bis) in order to optimize bone healing has become a topic of great interest. N‐containing bis, such as alendronate (ALN), are the more potent drugs of this class. It was the aim of this study to determine the effect of ALN on the osseointegration of a well‐documented nanotreated implant system in a rabbit femoral condyle model. Material and methods: Thirty‐two adult female New Zealand White rabbits received one implant (3.25 mm in diameter and 10 mm in length) in their left femoral condyle, a week after they were ovariectomized. Half of them were saline treated (control, group A) and the other half were ALN treated (group B). Rabbits from both groups were euthanized after 6 and 12 weeks, respectively. Results: The specimens were evaluated histologically and histomorphometrically. Upon histological evaluation, no obvious differences were found between the control and the treatment group. Implants showed good integration into the bone tissue surrounding them. There were also no statistically significant differences in bone‐to‐implant contact and the amount of bone tissue in the immediate neighborhood of the implant at both healing periods. Conclusions: The systemic administration of ALN was not found to affect histological osseointegration of implants in animals with a hormonal status resembling that of postmenopausal healthy women. Further research will be needed to investigate this approach.  相似文献   

9.
10.
11.
12.
13.
Objectives: Severe alveolar bone loss affects dental implant placement. Bone augmentation by grafting iliac crest bone rich in osteoprogenitor cells such as bone marrow stromal cells (BMSCs) requires a second surgical procedure in non‐orofacial bone. Skeletal site‐specific osteogenesis indicates maxilla and mandible BMSCs are highly proliferative and exhibit osteogenic properties superior to iliac crest BMSCs. Alveolar bone can be easily obtained during routine dental surgery, but it is unclear if titanium‐attached alveolar BMSCs will retain their superior osteogenic properties. This study evaluated and compared in vitro osteogenic properties of titanium‐attached maxilla and iliac crest BMSCs in same individuals. Material and methods: Primary culture of maxilla and iliac crest BMSCs from four normal healthy volunteers was expanded in culture. In 24‐well plates, first passage BMSCs were seeded directly (1 × 104 cells/well) on oxidized titanium disks (1.27 cm diameter and 2 mm thickness) or tissue culture plate. Each cell type was assessed for affinity for titanium, post‐attachment survival and osteogenic differentiation based on alkaline phosphatase and osteopontin expressions. Results: There was no difference in the affinity of maxilla and iliac crest BMSCs to titanium. However, titanium‐attached maxilla BMSCs were apparently more osteogenically responsive than iliac crest cells based on calcium accumulation and gene expression of alkaline phosphatase and osteopontin. But these differences were not statistically significant in this small patient sample. Conclusion: Maxilla and iliac crest BMSCs have similar attachment affinity for titanium. This pilot study indicates that titanium‐attached maxilla BMSCs are more osteogenically responsive and may be a viable and more readily available donor graft material in implant dentistry.  相似文献   

14.
Objectives: The aim of the present study was to evaluate immunohistochemically the pattern of guided bone regeneration (GBR) using different types of barrier membranes. Material and methods: Standardized buccal dehiscence defects were surgically created following implant bed preparation in 12 beagle dogs. Defects were randomly assigned to six different GBR procedures: a collagen‐coated bone grafting material (BOC) in combination with either a native, three cross‐linked, a titanium‐reinforced collagen membrane, or expanded polytetrafluorethylene (ePTFE), or BOC alone. After 1, 2, 4, 6, 9, and 12 weeks of submerged healing, dissected blocks were processed for immunohistochemical (osteocalcin – OC, transglutaminase II – angiogenesis) and histomorphometrical analysis [e.g., bone‐to‐implant contact (BIC), area of new bone fill (BF)]. Results: In general, angiogenesis, OC antigen reactivity, and new bone formation mainly arose from open bone marrow spaces at the bottom of the defect and invaded the dehiscence areas along the implant surface and BOC. At 4 weeks, membranes supporting an early transmembraneous angiogenesis also exhibited some localized peripheral areas of new bone formation. However, significantly increasing BIC and BF values over time were observed in all groups. Membrane exposure after 10–12 weeks was associated with a loss of the supporting alveolar bone in the ePTFE group. Conclusion: Within the limits of the present study, it was concluded that (i) angiogenesis plays a crucial role in GBR and (ii) all membranes investigated supported bone regeneration on an equivalent level.  相似文献   

15.
16.
17.
18.
Objectives: To compare the bone tissue response to surface‐modified zirconia (ZrO2) and titanium implants. Methods: Cylindrical low‐pressure injection moulded zirconia (ZrO2) implants were produced with an acid‐etched surface. Titanium implants with identical shape, sandblasted and acid‐etched surface (SLA) served as controls. Eighteen adult miniature pigs received both implant types in the maxilla 6 months after extraction of the canines and incisors. The animals were euthanized after 4, 8 and 12 weeks and 16 zirconia and 18 titanium implants with the surrounding tissue were retrieved, embedded in methylmethacrylate and stained with Giemsa–Eosin. The stained sections were digitized and histomorphometrically analysed with regard to peri‐implant bone density (bone volume/total volume) and bone–implant contact (BIC) ratio. Statistical analysis was performed using Mann–Whitney' U‐test. Results: Histomorphometrical analysis showed direct osseous integration for both materials. ZrO2 implants revealed mean peri‐implant bone density values of 60.4% (SD ± 9.9) at 4 weeks, 65.4% (SD ± 13.8) at 8 weeks, and 63.3% (SD ± 21.5) at 12 weeks after implantation, whereas Ti‐SLA implants demonstrated mean values of 61.1% (SD ± 6.2), 63.6% (SD ± 6.8) and 68.2% (SD ± 5.8) at corresponding time intervals. Concerning the BIC ratio, the mean values for ZrO2 ranged between 67.1% (SD ± 21.1) and 70% (SD ± 14.5) and for Ti‐SLA between 64.7% (SD ± 9.4) and 83.7% (SD ± 10.3). For the two parameters investigated, no significant differences between both types of implants could be detected at any time point. Conclusion: The results indicate that there was no difference in osseointegration between ZrO2 implants and Ti‐SLA controls regarding peri‐implant bone density and BIC ratio. To cite this article :
Gahlert M, Roehling S, Sprecher CM, Kniha H, Milz S, Bormann K. In vivo performance of zirconia and titanium implants: a histomorphometric study in mini pig maxillae.
Clin. Oral Impl. Res. 23 , 2012; 281–286.
doi: 10.1111/j.1600‐0501.2011.02157.x  相似文献   

19.
Early bone response to cylindrical smooth titanium implants (S(a)=0.1 microm) inserted into the rabbit tibia was compared in a stable and nonstable regime. Surface roughness parameters were calculated from measurements obtained with optical interferometry and atomic force microscopy. Contrary to our hypothesis, the nonstable implant showed higher bone to metal contact and increased bone area in the endosteal region compared with the stable implant after 4 weeks of healing. Bone area measurements in the cortical region revealed similar values. Primitive woven bone was found in close contact with both implants, but significantly more with the nonstable implant. Finding more bone-to-implant contact (BIC) need not necessarily indicate that unstable implants were more strongly integrated. Primitive bone stage development observed indicates less strong implant anchorage than could be expected from BIC percentage alone. Stable implant design used in this study is a reliable model to evaluate submicron and nanostructures in vivo, as implant stability was achieved in the absence of microirregularaties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号