共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Dettmer TS Barnes A Iqbal U Bailey CD Reynolds JN Brien JF Valenzuela CF 《Alcoholism, clinical and experimental research》2003,27(4):677-681
BACKGROUND: The superfamily of glutamate-gated ion channels mediates fast excitatory synaptic transmission in the central nervous system and is composed of the NMDA, AMPA, and kainate receptors. Binding studies have shown that chronic prenatal and/or neonatal ethanol exposure produces persistent effects on the numbers of some of these channels. However, whether or not this chronic ethanol exposure produces long-lasting effects on the expression of specific ionotropic receptor subunits remains an open question. METHODS: Timed pregnant Dunkin-Hartley strain guinea pigs received oral administration of one of the following regimens between gestational days 2 and 67: (1) 4 g of ethanol per kilogram of maternal body weight per day with ad libitum access to pellet food and water (ethanol group), (2) isocaloric sucrose- and pair-feeding with ad libitum access to water (sucrose group), or (3) isovolumetric water with ad libitum access to food and water (water group). The maternal blood ethanol concentration produced by the ethanol regimen was 71 +/- 12 mM. Adult offspring were killed on postnatal day 61, and cerebral cortical tissue was analyzed for ionotropic glutamate receptor subunit expression by Western immunoblotting. RESULTS: There was a statistically significant decrease in NR2B subunit protein expression and an increase in GluR2/3 subunit protein expression in the ethanol group. Expression of NR1, NR2A, NR2C, GluR1, GluR6/7, and KA2 subunit proteins was not affected. CONCLUSIONS: These results demonstrate that chronic prenatal ethanol exposure produces long-lasting effects on the subunit composition of NMDA and AMPA receptors in the cerebral cortex of the adult guinea pig. 相似文献
3.
Lulu Y. Chen Christopher S. Rex Yas Sanaiha Gary Lynch Christine M. Gall 《Proceedings of the National Academy of Sciences of the United States of America》2010,107(15):7030-7035
Learning-induced trophic activity is thought to be critical for maintaining health of the aging brain. We report here that learning, acting through an unexpected pathway, activates synaptic receptors for one of the brain''s primary trophic factors. Unsupervised learning, but not exploratory activity alone, robustly increased the number of postsynaptic densities associated with activated (phosphorylated) forms of BDNF''s TrkB receptor in adult rat hippocampus; these increases were blocked by an NMDA receptor antagonist. Similarly, stimulation of hippocampal slices at the learning-related theta frequency increased synaptic TrkB phosphorylation in an NMDA receptor–dependent fashion. Theta burst stimulation, which was more effective in this regard than other stimulation patterns, preferentially engaged NMDA receptors that, in turn, activated Src kinases. Blocking the latter, or scavenging extracellular TrkB ligands, prevented theta-induced TrkB phosphorylation. Thus, synaptic TrkB activation was dependent upon both ligand presentation and postsynaptic signaling cascades. These results show that afferent activity patterns and cellular events involved in memory encoding initiate BDNF signaling through synaptic TrkB, thereby ensuring that learning will trigger neurotrophic support. 相似文献
4.
5.
The glutamate receptor subunit delta2 is capable of gating its intrinsic ion channel as revealed by ligand binding domain transplantation 下载免费PDF全文
Sabine M. Schmid Sabine Kott Charlotte Sager Thomas Huelsken Michael Hollmann 《Proceedings of the National Academy of Sciences of the United States of America》2009,106(25):10320-10325
The family of ionotropic glutamate receptors includes 2 subunits, delta1 and delta2, the physiological relevance of which remains poorly understood. Both are nonfunctional in heterologous expression systems, although the isolated, crystallized ligand binding domain (LBD) of delta2 is capable of binding D-serine. To investigate these seemingly contradictory observations we tested whether delta receptors can be ligand gated at all. We used a strategy that replaced the native LBD of delta2 by a proven glutamate-binding LBD. Test transplantations between α-amino-3-hydroxy-5-methylisoxazole propionate (AMPA) and kainate receptors (GluR1 and GluR6, respectively) showed that this approach can produce functional chimeras even if only one part of the bipartite LBD is swapped. Upon outfitting delta2 with the LBD of GluR6, the chimera formed glutamate-gated ion channels with low Ca2+ permeability and unique rectification properties. Ligand-induced conformational changes can thus gate delta2, suggesting that the LBD of this receptor works fundamentally differently from that of other ionotropic glutamate receptors. 相似文献
6.
7.
Thomas Schikorski 《Proceedings of the National Academy of Sciences of the United States of America》2014,111(14):5415-5420
During the synaptic vesicle cycle, synaptic vesicles fuse with the plasma membrane and recycle for repeated exo/endocytic events. By using activity-dependent N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino) styryl) pyridinium dibromide dye uptake combined with fast (<1 s) microwave-assisted fixation followed by photoconversion and ultrastructural 3D analysis, we tracked endocytic vesicles over time, “frame by frame.” The first retrieved synaptic vesicles appeared 4 s after stimulation, and these endocytic vesicles were located just above the active zone. Second, the retrieved vesicles did not show any sign of a protein coat, and coated pits were not detected. Between 10 and 30 s, large labeled vesicles appeared that had up to 5 times the size of an individual synaptic vesicle. Starting at around 20 s, these large labeled vesicles decreased in number in favor of labeled synaptic vesicles, and after 30 s, labeled vesicles redocked at the active zone. The data suggest that readily releasable vesicles are retrieved as noncoated vesicles at the active zone.The mechanisms that govern synaptic vesicle (SV) retrieval have been debated since the discovery of the SV cycle (1, 2). Currently the two original mechanisms via coated vesicles and via “kiss and run” are proposed for mammalian excitatory central synapses (3–6). The proposed clathrin-mediated mechanism that retrieves the membrane via coated vesicles has comparable slow kinetics (7) (15–40 s until the endocytic vesicle separates from the plasma membrane) and a retrieval site outside the active zone (8, 9). First, the SV fully collapses into the release site and diffuses outside the active zone either as an entity or by its parts. At regions outside the active zone, coated pits form that sort SV proteins, and eventually a coated endocytic vesicle pinches off the plasma membrane. It is generally believed that coated vesicles shed their coat and fuse with early endosomes from which SVs bud off that join the SV cluster (8). This endosomal budding step is also believed to be mediated via coated vesicles. In contrast, SV retrieval via kiss and run has faster kinetics (10, 11) (<1 s), and SVs are retrieved at the active zone. During kiss and run, the SV is thought to maintain its identity and SVs are available for redocking and rapid reuse (12–14). Because SVs maintain their identity, fusion steps with potential endosomal compartments after endocytosis are not believed to occur after kiss and run.There is overwhelming evidence that SV retrieval at mammalian central synapses depends on the major coat protein clathrin, but the visualization of coated vesicles shortly after physiological stimulation has only been shown for lower vertebrate synapses (8, 15, 16). Kiss and run, on the other hand, is not generally accepted as a retrieval mechanism at mammalian central synapses. Several fluorescent imaging techniques (e.g., pHluorin-based SV protein chimeras and nanoparticles) recently provided unique insights into kiss and run (6), but many open questions remain. The visualization of a labeled endocytic vesicle at or near the active zone right after a physiological stimulus would provide elegant additional proof for kiss and run. More so, if one could follow such a labeled vesicle until “redocking,” it would greatly facilitate the investigation of the various steps SVs pass through on their way through the SV cycle.Here, we introduce a technique that is based on activity-dependent labeling of SV retrieval with N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino) styryl) pyridinium dibromide (FM1-43) followed by photoconversion and electron microscopic 3D analysis. This technique is combined with fast microwave-assisted fixation, ensuring a high time resolution that allows tracking of endocytic vesicles “frame by frame”—that is, at distinct time points (0, 4, 10, 20, 30, and 40 s) after stimulation. 相似文献
8.
Kwon OB Paredes D Gonzalez CM Neddens J Hernandez L Vullhorst D Buonanno A 《Proceedings of the National Academy of Sciences of the United States of America》2008,105(40):15587-15592
Neuregulin-1 (NRG-1) is genetically linked with schizophrenia, a neurodevelopmental cognitive disorder characterized by imbalances in glutamatergic and dopaminergic function. NRG-1 regulates numerous neurodevelopmental processes and, in the adult, suppresses or reverses long-term potentiation (LTP) at hippocampal glutamatergic synapses. Here we show that NRG-1 stimulates dopamine release in the hippocampus and reverses early-phase LTP via activation of D4 dopamine receptors (D4R). NRG-1 fails to depotentiate LTP in hippocampal slices treated with the antipsychotic clozapine and other more selective D4R antagonists. Moreover, LTP is not depotentiated in D4R null mice by either NRG-1 or theta-pulse stimuli. Conversely, direct D4R activation mimics NRG-1 and reduces AMPA receptor currents and surface expression. These findings demonstrate that NRG-1 mediates its unique role in counteracting LTP via dopamine signaling and opens future directions to study new aspects of NRG function. The novel functional link between NRG-1, dopamine, and glutamate has important implications for understanding how imbalances in Neuregulin-ErbB signaling can impinge on dopaminergic and glutamatergic function, neurotransmitter pathways associated with schizophrenia. 相似文献
9.
Persistently active cannabinoid receptors mute a subpopulation of hippocampal interneurons 下载免费PDF全文
Losonczy A Biró AA Nusser Z 《Proceedings of the National Academy of Sciences of the United States of America》2004,101(5):1362-1367
Cortical information processing requires an orchestrated interaction between a large number of pyramidal cells and albeit fewer, but highly diverse GABAergic interneurons (INs). The diversity of INs is thought to reflect functional and structural specializations evolved to control distinct network operations. Consequently, specific cortical functions may be selectively modified by altering the input-output relationship of unique IN populations. Here, we report that persistently active cannabinoid receptors, the site of action of endocannabinoids, and the psychostimulants marijuana and hashish, switch off the output (mute) of a unique class of hippocampal INs. In paired recordings between cholecystokinin-immunopositive, mossy fiber-associated INs, and their target CA3 pyramidal cells, no postsynaptic currents could be evoked with single presynaptic action potentials or with repetitive stimulations at frequencies <25 Hz. Cannabinoid receptor antagonists converted these "mute" synapses into high-fidelity ones. The selective muting of specific GABAergic INs, achieved by persistent presynaptic cannabinoid receptor activation, provides a state-dependent switch in cortical networks. 相似文献
10.
Volk L Kim CH Takamiya K Yu Y Huganir RL 《Proceedings of the National Academy of Sciences of the United States of America》2010,107(50):21784-21789
AMPA-type glutamate receptors (AMPARs) mediate the majority of fast excitatory neurotransmission in the mammalian central nervous system. Modulation of AMPAR trafficking supports several forms of synaptic plasticity thought to underlie learning and memory. Protein interacting with C kinase 1 (PICK1) is an AMPAR-binding protein shown to regulate both AMPAR trafficking and synaptic plasticity at many distinct synapses. However, studies examining the requirement for PICK1 in maintaining basal synaptic transmission and regulating synaptic plasticity at hippocampal Schaffer collateral-cornu ammonis 1 (SC-CA1) synapses have produced conflicting results. In addition, the effect of PICK1 manipulation on learning and memory has not been investigated. In the present study we analyzed the effect of genetic deletion of PICK1 on basal synaptic transmission and synaptic plasticity at hippocampal Schaffer collateral-CA1 synapses in adult and juvenile mice. Surprisingly, we find that loss of PICK1 has no significant effect on synaptic plasticity in juvenile mice but impairs some forms of long-term potentiation and multiple distinct forms of long-term depression in adult mice. Moreover, inhibitory avoidance learning is impaired only in adult KO mice. These results suggest that PICK1 is selectively required for hippocampal synaptic plasticity and learning in adult rodents. 相似文献
11.
目的观察老年小鼠海马CA1区轴棘突触相关结构的改变,为衰老引起的学习记忆减退提供神经解剖学依据。方法利用Golgi染色、超薄连续切片及NIH图像分析系统测量海马CA1区锥体细胞树突棘的密度、树突棘头及突触后致密斑的大小。结果海马CA1第2、3级顶树突的树突棘密度在3月龄组与22月龄组分别为(1.056±0.049)/μm和(0.868±0.038)/μm;穿孔型突触的比率3月龄与22月龄组分别为12.7%和19%。结论老年小鼠海马CA1区锥体细胞树突棘的减少、穿孔型突触比率的增加可能是衰老引起学习记忆减退的形态学基础。 相似文献
12.
Although neurotransmitters are present in pancreatic islets of Langerhans and can be shown to alter hormone secretion, their
precise physiological roles in islet function and their cellular mechanisms of action are unclear. Recent research has identified
specific neurotransmitter receptor isoforms in islets that may be important physiologically, because selective receptor agonists
activate islet ion channels, modify intracellular [Ca2+], and affect secretion. This article focuses on the putative roles of acetylcholine, glutamate, and GABA in islet function.
It has been hypothesized that acetylcholine potentiates insulin secretion by either promoting Ca release from cellular stores,
activating a store depletion-activated channel, or activating a novel Na channel. GABA and glutamate, in contrast, have been
proposed to mediate a novel paracrine signaling pathway whereby α- and β-cells communicate within the islet. The evidence
supporting these hypotheses will be critically evaluated. 相似文献
13.
Philip McArdle Donald H. Penning Franklin Dexter James D. Reynolds 《Metabolic brain disease》1996,11(4):329-342
Hepatic encephalopathy (HE) is a neuropsychiatric disorder that often occurs as a consequence of acute or chronic liver failure. Previous reports have suggested that alterations in amino acid neurotransmission, particularly glutamate, may play an important role in the pathogenesis of HE. The objectives of the present study were to test the hypothesis that extracellular glutamate concentration is increased during HE, and to determine if flumazenil, a benzodiazepine antagonist, alters the extracellular concentration of glutamate during HE. The experimental approach involved using microdialysis probes to measure rat hippocampal extracellular glutamate concentration. HE was brought about as a result of thioacetamide-induced liver failure. Thioacetamide produced behavioral and metabolic effects, such as somnolence, hyperventilation and hyperammonemia, consistent with stage three HE. Comparison with saline-treated rats demonstrated that HE was associated with a significant increase (p=0.010) in extracellular hippocampal glutamate concentration. Administration of flumazenil caused a transient increase in arousal level, but did not affect the increase in glutamate concentration (p=0.93). These results corroborate the theory that glutamate neurotransmission is altered during HE and suggest that the flumazenil arousal of HE rats is not mediated by a change in extracellular glutamate concentration. 相似文献
14.
Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors 下载免费PDF全文
Hesheng Liu Steven M. Stufflebeam Jorge Sepulcre Trey Hedden Randy L. Buckner 《Proceedings of the National Academy of Sciences of the United States of America》2009,106(48):20499-20503
Cerebral lateralization is a fundamental property of the human brain and a marker of successful development. Here we provide evidence that multiple mechanisms control asymmetry for distinct brain systems. Using intrinsic activity to measure asymmetry in 300 adults, we mapped the most strongly lateralized brain regions. Both men and women showed strong asymmetries with a significant, but small, group difference. Factor analysis on the asymmetric regions revealed 4 separate factors that each accounted for significant variation across subjects. The factors were associated with brain systems involved in vision, internal thought (the default network), attention, and language. An independent sample of right- and left-handed individuals showed that hand dominance affects brain asymmetry but differentially across the 4 factors supporting their independence. These findings show the feasibility of measuring brain asymmetry using intrinsic activity fluctuations and suggest that multiple genetic or environmental mechanisms control cerebral lateralization. 相似文献
15.
Natalia V. Luchkina Johanna Huupponen Vernon R. J. Clarke Sarah K. Coleman Kari Kein?nen Tomi Taira Sari E. Lauri 《Proceedings of the National Academy of Sciences of the United States of America》2014,111(11):4321-4326
The AMPA-receptor subunit GluA4 is expressed transiently in CA1 pyramidal neurons at the time synaptic connectivity is forming, but its physiological significance is unknown. Here we show that GluA4 expression is sufficient to alter the signaling requirements of long-term potentiation (LTP) and can fully explain the switch in the LTP kinase dependency from PKA to Ca2+/calmodulin-dependent protein kinase II during synapse maturation. At immature synapses, activation of PKA leads to a robust potentiation of AMPA-receptor function via the mobilization of GluA4. Analysis of GluA4-deficient mice indicates that this mechanism is critical for neonatal PKA-dependent LTP. Furthermore, lentiviral expression of GluA4 in CA1 neurons conferred a PKA-dependent synaptic potentiation and LTP regardless of the developmental stage. Thus, GluA4 defines the signaling requirements for LTP and silent synapse activation during a critical period of synapse development.Activity-dependent plasticity at immature glutamatergic synapses is thought to underlie fine tuning of the synaptic circuitry and optimize the network for its adult functions. The synaptic mechanisms of plasticity at immature contacts differ from those in the adult because of developmental alterations in the expression of several molecules that are critical in mediating and modulating synaptic transmission. For example, in area CA1 of the hippocampus, the signaling cascades necessary for long-term potentiation (LTP) are altered during the first weeks of postnatal life, corresponding to the time of formation and maturation of glutamatergic synapses. In the neonate, LTP is dependent mainly on the activation of PKA, but later in development LTP requires the activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) together with other kinases (1, 2). In parallel, expression of the AMPA-receptor subunit GluA4 in the hippocampal pyramidal neurons is strongly down-regulated and replaced by other subunits, including GluA1 (3, 4).Both GluA4 and GluA1 and a splice variant of GluA2, GluA2L, contain a long intracellular C-terminal domain (CTD) that is thought to be involved in activity-dependent synaptic incorporation of AMPA receptors (5–8, but also see ref. 9). Spontaneous synaptic activity and consequent activity-dependent PKA phosphorylation is sufficient to drive recombinant GluA4, but not GluA1, into synapses (4, 10), suggesting that the switch in the subunit composition of AMPA receptors may explain some of the developmental changes in the mechanisms of LTP. However, the exact role of the developmentally restricted expression of GluA4 in synaptic transmission and plasticity remains unknown.Here we show that GluA4 expression is sufficient to alter the signaling mechanisms underlying LTP and to confer PKA-dependent postsynaptic potentiation. Thus, the expression of GluA4 can explain fully the developmental switch in the LTP kinase dependency in CA1 pyramidal neurons. 相似文献
16.
Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum 总被引:1,自引:0,他引:1 下载免费PDF全文
Valjent E Pascoli V Svenningsson P Paul S Enslen H Corvol JC Stipanovich A Caboche J Lombroso PJ Nairn AC Greengard P Hervé D Girault JA 《Proceedings of the National Academy of Sciences of the United States of America》2005,102(2):491-496
Many drugs of abuse exert their addictive effects by increasing extracellular dopamine in the nucleus accumbens, where they likely alter the plasticity of corticostriatal glutamatergic transmission. This mechanism implies key molecular alterations in neurons in which both dopamine and glutamate inputs are activated. Extracellular signal-regulated kinase (ERK), an enzyme important for long-term synaptic plasticity, is a good candidate for playing such a role. Here, we show in mouse that d-amphetamine activates ERK in a subset of medium-size spiny neurons of the dorsal striatum and nucleus accumbens, through the combined action of glutamate NMDA and D1-dopamine receptors. Activation of ERK by d-amphetamine or by widely abused drugs, including cocaine, nicotine, morphine, and Delta(9)-tetrahydrocannabinol was absent in mice lacking dopamine- and cAMP-regulated phosphoprotein of M(r) 32,000 (DARPP-32). The effects of d-amphetamine or cocaine on ERK activation in the striatum, but not in the prefrontal cortex, were prevented by point mutation of Thr-34, a DARPP-32 residue specifically involved in protein phosphatase-1 inhibition. Regulation by DARPP-32 occurred both upstream of ERK and at the level of striatal-enriched tyrosine phosphatase (STEP). Blockade of the ERK pathway or mutation of DARPP-32 altered locomotor sensitization induced by a single injection of psychostimulants, demonstrating the functional relevance of this regulation. Thus, activation of ERK, by a multilevel protein phosphatase-controlled mechanism, functions as a detector of coincidence of dopamine and glutamate signals converging on medium-size striatal neurons and is critical for long-lasting effects of drugs of abuse. 相似文献
17.
Uwe L. Rossbach Madeleine Le Grevès Fred Nyberg Qin Zhou Pierre Le Grevès 《Molecular and cellular endocrinology》2010
High doses of anabolic androgenic steroid are associated with changes in personality, e.g. increased aggression and irritability, behavioural changes that may be linked to structural changes in the hippocampus. In this in vivo study we demonstrate acute effects of a single injection of 19-nortestosterone on proteins that play a major role in molecular plasticity at synaptic connections. The steroid rapidly and transiently decreased total and phosphorylated NMDA receptor GluN2B subunit levels and phosphorylated extracellular signal-regulated kinase 1 in rat hippocampal synaptoneurosomes. Pretreatment with the androgen receptor antagonist flutamide prevented these effects suggesting an androgen receptor mediated mode of action. However, flutamide alone stimulated the phosphorylation of both extracellular signal-regulated kinase 1 and 2. EphrinB2 and phosphorylated translation initiation factor 4E, two proteins that act on synaptic plasticity through NMDA receptor and/or mitogen-activated protein kinase pathways, were not affected by any of the treatment regimens. This study demonstrates rapid in vivo effects of an anabolic androgenic steroid on two key elements in hippocampal synaptic plasticity. 相似文献
18.
Yuan Ge Zhifang Dong Rosemary C. Bagot John G. Howland Anthony G. Phillips Tak Pan Wong Yu Tian Wang 《Proceedings of the National Academy of Sciences of the United States of America》2010,107(38):16697-16702
Although NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) and long-term depression (LTD) of glutamatergic transmission are candidate mechanisms for long-term spatial memory, the precise contributions of LTP and LTD remain poorly understood. Here, we report that LTP and LTD in the hippocampal CA1 region of freely moving adult rats were prevented by NMDAR 2A (GluN2A) and 2B subunit (GluN2B) preferential antagonists, respectively. These results strongly suggest that NMDAR subtype preferential antagonists are appropriate tools to probe the roles of LTP and LTD in spatial memory. Using a Morris water maze task, the LTP-blocking GluN2A antagonist had no significant effect on any aspect of performance, whereas the LTD-blocking GluN2B antagonist impaired spatial memory consolidation. Moreover, similar spatial memory deficits were induced by inhibiting the expression of LTD with intrahippocampal infusion of a short peptide that specifically interferes with AMPA receptor endocytosis. Taken together, our findings support a functional requirement of hippocampal CA1 LTD in the consolidation of long-term spatial memory. 相似文献
19.
BACKGROUND: The N-methyl-D-aspartate (NMDA) subtype of glutamate receptor is involved in a variety of processes that regulate neuronal plasticity and is an important target for the acute and chronic effects of ethanol. However, the specific sites where ethanol interacts with the receptor protein have yet to be fully elucidated. We previously demonstrated that a phenylalanine to alanine mutation in the third transmembrane domain (TM3) of the NR1 subunit decreased the ethanol inhibition of NMDA receptors expressed in HEK293 cells. In this study, we characterized the ethanol inhibition of NMDA receptors containing additional mutations within the TM3 and TM4 domains of the NR1 subunit. METHODS: Site-directed mutagenesis was used to alter specific amino acid residues in the TM3 and TM4 domains of the NR1 subunit. Mutant NR1 subunits were coexpressed with the NR2A subunit in HEK293 cells and examined for alterations in ethanol sensitivity using whole-cell voltage-clamp electrophysiology. RESULTS: Replacing phenylalanine at TM3 position 639 in the NR1 subunit (F639) with 9 different amino acids produced functional receptors when coexpressed with the NR2A subunit. All mutants showed a concentration-dependent inhibition by ethanol (10-100 mM), with the alanine and serine mutants being significantly less sensitive to ethanol. Amino acid substitutions at the F639 site also produced variable changes in the concentration-response relationship to glycine. However, no significant correlation between glycine EC(50) values and the magnitude of ethanol inhibition was observed. Alanine mutations at TM4 positions 813 (M813A) and 819 (L819A), but not at 817 (F817A), of the NR1 subunit enhanced ethanol inhibition. Substitution of tryptophan for TM4 residues in the NR1 subunit (positions 820-822) that are homologous to a site in the NR2A subunit shown to reduce ethanol inhibition (A825W) had no effect on ethanol sensitivity. However, these NR1 TM4 tryptophan mutants restored the ethanol inhibition of the NR1 TM3 F639A mutant to wild-type levels in a stepwise fashion. CONCLUSIONS: These results indicate that the ethanol sensitivity of NMDA receptors may be regulated by discrete sites within the TM3 and TM4 domains of the NR1 subunit. 相似文献