首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
INTRODUCTION: Local delivery of antimitotic agents is a potential therapeutic strategy for protection of injured coronary vasculature against intimal hyperplasia and restenosis. This study sought to establish the principle that thermoresponsive poly(N-isopropylacrylamide) co-polymer films can be used to deliver, in a controlled manner, an antimitotic agent to vascular smooth muscle cells (VSMC). METHODS: A series of co-polymer films was prepared, using varying ratios (w/w) of N-isopropylacrylamide (NiPAAm) monomer to N-tert-butylacrylamide (NtBAAm) and loaded with the antimitotic agent colchicine (100 nmol/film) at room temperature. RESULTS: The extent of colchicine release at 37 degrees C was inversely proportional to the amount of NtBAAm in co-polymer films: release after 48 h from 85:15, 65:35 and 50:50 (NiPAAm:NtBAAm) films was 26, 17 and 0.5 nmol, respectively. In cytotoxicity studies, when medium incubated with co-polymers for 24 h (in the absence of colchicine) was further incubated with target bovine aortic smooth muscle cells (BASMC), no loss of cell viability occurred. Colchicine released from all three co-polymer films significantly inhibited proliferation and random migration of BASMC: 100 nM colchicine (released from 65:35 NiPAAm:NtBAAm) reduced cell proliferation to 25.7+/-1.7% of levels seen in the absence of colchicine (control) and random cell migration to 37.7+/-5.7% of control (mean+/-S.E.M., n = 3, P < .01 and P < .05, respectively). The magnitudes of these effects were comparable to those seen in separate experiments with native colchicine and were observed in samples of released colchicine which had been stored at -20 degrees C for up to 6 months. CONCLUSIONS: This study has shown that the release of the antimitotic agent colchicine, from NiPAAm/NtBAAm co-polymer films can be manipulated by changes in co-polymer composition. Furthermore, such drug released at 37 degrees C retains comparable bioactivity to that of native colchicine.  相似文献   

2.
The aim of this study was to establish the capacity of thermoresponsive poly(N-isopropylacrylamide) copolymer films to deliver bioactive concentrations of an antimitotic agent to human vascular smooth muscle cells (HASMC) over an extended period of time. Copolymer films were prepared using a 50:50 (w/w) ratio of N-isopropylacrylamide (NiPAAm) monomer to the more hydrophobic N-tert-butylacrylamide (NtBAAm) and loaded with the antimitotic agent colchicine (0.1 micromol per film) at room temperature. Colchicine release from films was sustained over a 14-day period. At 24 h postloading, the concentration of colchicine in the medium overlying films was 2.12 +/- 0.16 microM; this fell to 0.20 +/- 0.01 microM at 7 days and decreased further to 0.12 +/- 0.01 microM after 14 days. Colchicine released from copolymer films inhibited proliferation when subsequently placed on HASMC: at 0.1 microM, released colchicine reduced proliferation to 18.5 +/- 0.8% of control cells (p < 0.001, n = 9). The antiproliferative effect of released colchicine was comparable to that of native colchicine, as observed in separate experiments. Furthermore, colchicine released from 50:50 polymer films inhibited the proliferation of cells grown in the same environment as the copolymer. Inhibition of cell proliferation was not due to the release of cytotoxic particles from the copolymer because medium incubated with copolymer for 5 days and then applied to HASMC did not alter cell viability. In conclusion, this study demonstrates that 50:50 NiPAAm:NtBAAm copolymers can deliver bioactive concentrations of the antimitotic agent colchicine to human vascular cells over an extended period of time.  相似文献   

3.
Temperature-responsive hydration/dehydration changes in surface-grafted poly(N-isopropylacrylamide) (PIPAAm) were utilized for hydrophilic/hydrophobic surface property alterations in cell culture. In this report, we utilized PIPAAm-grafted surfaces to recover confluently-cultured vascular endothelial cells as coherent monolayers from this cell culture substrate and to transfer to new cell culture substrates. For this purpose, we used two different methods to recover and transfer cell monolayer cultures: (1) chitin membranes used as an apical side cell support during cultured cell transfer, allowing cell basal side reattachment to new culture substrates after transfer; and (2) a cell culture insert? (porous PET) used as both a support as well as new substrate, allowing basal surfaces of cultured cells to be exposed to the medium after transfer. In both cases, all cells grown on PIPAAm-grafted surfaces detach completely with maintenance of basement membrane-like structure. Recovered cells attach to the second culture surfaces, covering more than 60% of the new substrate, and retain approximately 90% viability and their original function as judged from tissue-type plasminogen activator secretion. This technique could be utilized to prepare novel bioartificial organs as well as cell co-culture systems by multi-layering different cell types to mimic tissue structures for tissue engineering.  相似文献   

4.
Gene therapy application to pulmonary airways and alveolar spaces holds tremendous promise for the treatment of lung diseases. However, safe and effective long-term gene expression using viral and nonviral vectors has not yet been achieved. Adenoviral vectors, with a natural affinity for airway epithelia, have been partially effective, but are inflammatory and induce only transient gene expression. We investigate the novel approach of using retrovirally transduced multipotent bone marrow-derived stem cells (BMSC) to deliver gene therapy to lung epithelium. We have shown previously that up to 20% of lung epithelial cells can be derived from marrow following BMSC transplantation. Here, irradiated female mice were transplanted with male marrow that had been transduced with retrovirus encoding eGFP. Transgene expressing lung epithelial cells were present in all recipients analyzed at 2, 5, or 11 mo after transplant (n = 10), demonstrating that highly plastic BMSC can be stably transduced in vitro and retain their ability to differentiate into lung epithelium while maintaining long-term transgene expression.  相似文献   

5.
The three-dimensional changes in the cytoskeleton and in cell proliferation of bovine pulmonary artery endothelial cells when exposed to sustained hydrostatic pressure were investigated in vitro using laser scanning confocal microscopy. Subconfluent endothelial cells on rigid substrates were exposed to 1.5, 5 and 10 cm H2O pressure under hydrostatic heads of culture medium for up to seven days. Confocal microscopic images were taken at distances of 0.4 μm through the thickness of the sample and visualised in multiplanar, stereopair and 90o rotation formats. The results of the study provide evidence of: increased proliferation after exposure to 10 cm H2O pressure for five and seven days; cell bilayering after exposure to 1.5 and 5 cm H2O pressure and trilayering after exposure to 10 cm H2O pressure for seven days; and F-actin filament reorganisation into centrally located, parallel, stress fibres in confluent cells, into peripheral bands in subconfluent, multilayered cells, and into multilayers in the plane perpendicular to the applied force.  相似文献   

6.
Micelle-like nanoparticles that could be used as drug-delivery carriers were developed. The unique feature of these nanoparticles was that the core of poly(ethylene oxide)-b-poly(N-isopropylacrylamide) (PEO-b-PNIPAAm) micelle was lightly cross-linked with a biodegradable cross-linker, N, N-bis(acryloyl)cystamine (BAC). The nanoparticles were characterized by dynamic light scattering and fluorescence measurements. When the BAC content ranged from 0.75 wt% to 0.2 wt% of the mass of NIPAAm, the diameters of the nanoparticles were less than 150 nm. The anti-cancer drug doxorubicin (Dox) and 1,6-diphenyl-1,3,5-hexatriene (DPH) were used as fluorescent probes to study the hydrophobicity of the cores of the nanoparticles; the results showed that the cores of the nanoparticles were hydrophobic enough to sequester Dox and DPH. The nanoparticles with 0.5 wt% BAC stored at room temperature were stable up to 2 weeks, even at dilute concentrations. The degradation of BAC by reducing agent β-mercaptoethanol was investigated, and the nanoparticles were not detectable 14 days after adding β-mercaptoethanol.  相似文献   

7.
Micelle-like nanoparticles that could be used as drug-delivery carriers were developed. The unique feature of these nanoparticles was that the core of poly(ethylene oxide)-b-poly(N-isopropylacrylamide) (PEO-b-PNIPAAm) micelle was lightly cross-linked with a biodegradable cross-linker, N,N-bis(acryloyl)cystamine (BAC). The nanoparticles were characterized by dynamic light scattering and fluorescence measurements. When the BAC content ranged from 0.75 wt% to 0.2 wt% of the mass of NIPAAm, the diameters of the nanoparticles were less than 150 nm. The anti-cancer drug doxorubicin (Dox) and 1,6-diphenyl-1,3,5-hexatriene (DPH) were used as fluorescent probes to study the hydrophobicity of the cores of the nanoparticles; the results showed that the cores of the nanoparticles were hydrophobic enough to sequester Dox and DPH. The nanoparticles with 0.5 wt% BAC stored at room temperature were stable up to 2 weeks, even at dilute concentrations. The degradation of BAC by reducing agent beta-mercaptoethanol was investigated, and the nanoparticles were not detectable 14 days after adding beta-mercaptoethanol.  相似文献   

8.
Human fetal mesenchymal stem cells as vehicles for gene delivery   总被引:13,自引:0,他引:13  
First-trimester fetal blood contains a readily expandable population of stem cells, human fetal mesenchymal stem cells (hfMSCs), which might be exploited for autologous intrauterine gene therapy. We investigated the self-renewal and differentiation of hfMSCs after transduction with onco-retroviral and lentiviral vectors. After transduction with either a MoMuLV retrovirus or an HIV-1-based lentiviral vector carrying the ss-galactosidase and green fluorescent reporter gene, respectively, transgene expression, self-renewal, and differentiation capabilities were assessed 2 and 14 weeks later. Transduction with the lentiviral vector resulted in higher efficiencies than with the MoMuLV-based vector (mean, 97.7 +/- 1.4% versus 80.2 +/- 5.4%; p = .02). Transgene expression was maintained with lentiviral-transduced cells (94.6 +/- 2.6%) but decreased over 14 weeks in culture with onco-retroviral-transduced cells (48.3 +/- 3.9%). The self-renewal capability of these cells and their ability to undergo osteogenic, adipogenic, and myogenic differentiation was unimpaired after transduction with either vector. Finally, clonal expansion of lentivirally modified cells was expanded over 20 population doublings with maintenance of multiline age differentiation capacity. These results suggest that hfMSCs may be suitable targets for ex vivo genetic manipulation with onco-retroviral or lentiviral vectors without affecting their stem cell properties.  相似文献   

9.
Poly(N-isopropylacrylamide)-grafted gelatin (PNIPAM-gelatin) can be used as a thermoresponsive cell-adhesive matrix and mold-releasable material for shape-engineered tissues. An example of such a tissue with predetermined shape is realized by fabrication of a tubular endothelial cell construct. A solution containing a mixture of PNIPAM-gelatin and PNIPAM was coated on the luminal surface of a glass capillary tube. After air-drying, endothelial cells were seeded and cultured for four days at 37 degrees C. The infusion of the culture medium into the tube at 20 degrees C resulted in the spontaneous detachment and removal of a tubular vascular tissue composed of endothelial cells and supramolecularly organized extracellular matrices produced by endothelial cells on the basal side of the tissue. The potential use of a thermoresponsive cell-adhesive and mold-releasable material in complex-shaped tissue-engineered devices is discussed.  相似文献   

10.
We developed a novel selective cell-separation method based on using a poly(N-isopropylacrylamide)-graft-polypropylene (PNIPAAm-g-PP) membrane containing adsorbed monoclonal antibody specific to the target cell. This membrane was prepared by plasma-induced polymerization and soaking in an antibody solution at 37 degrees C. Poly(N-isopropylacrylamide) has a thermoresponsive phase transition: at 32 degrees C water-insoluble (hydrophobic) and water-soluble (hydrophilic) states interconvert. Adsorption of antibody onto PNIPAAm-g-PP membrane at 37 degrees C and its desorption at 4 degrees C was verified by fluorescence-microscopy of the PNIPAAm-g-PP membrane after soaking it in fluorescein-conjugated goat anti-mouse IgG in phosphate-buffered saline. PNIPAAm-g-PP membranes containing adsorbed anti-mouse CD80 monoclonal antibody preferentially captured mouse-CD80 transfected cells at 37 degrees C compared with membranes lacking antibody or containing anti-mouse CD86 monoclonal antibody. Detachment of captured cells from PNIPAAm-g-PP membranes was facilitated by washing at 4 degrees C because of the thermoresponsive phase transition of PNIPAAm. With this method, mouse CD80- or mouse CD86-transfected cells were enriched from a 1:1 cell suspension to 72% or 66%, simply and with high yield.  相似文献   

11.
Jere D  Xu CX  Arote R  Yun CH  Cho MH  Cho CS 《Biomaterials》2008,29(16):2535-2547
Efficient delivery of small interfering RNA (siRNA) or small hairpin RNA (shRNA) is a critical concern in RNA interference (RNAi) studies. In the present study, we evaluated biodegradable poly(beta-amino ester) (PAE) carrier composed of low molecular weight polyethylenimine and poly(ethylene glycol) for si/shRNA delivery in lung cancer cells. PAE carrier successfully delivered EGFP (enhanced green fluorescence protein) siRNA (siGFP) and silenced EGFP expression. The silencing achieved with PAE carrier was found to be nearly 1.5 times superior and safer than standard PEI25K. Also, our PAE carrier exhibited superior Akt1 shRNA delivery (shAkt) and thereby silenced oncoprotein Akt1 efficiently. PAE-shAkt mediated Akt1 knock-down hindered cancer cell growth in Akt1 specific manner. Superior shAkt delivery and low cytotoxicity of PAE carrier promoted Akt1 knock-down specific apoptosis, while low delivery efficiency and high cytotoxicity of PEI25K carrier mainly exhibited undesirable necrosis. Moreover, basic cancer properties like cell proliferation, malignancy and metastasis were reduced more efficiently using PAE-shAkt system. These findings demonstrated the potential of PAE as an alternative to PEI25K in si/shRNA-based RNAi studies.  相似文献   

12.
Our group has previously created a functional neointestine that is capable of restoring absorptive function. However, the endogenous level of vascular endothelial growth factor (VEGF) is markedly reduced in the construct compared to native bowel. Therefore, we wanted to locally deliver VEGF in a sustained fashion to upregulate angiogenesis in the neointestine. Rat recombinant VEGF was encapsulated in poly(lactide-co-glycolide) microspheres by a double emulsion method. Release kinetics and bioactivity were determined in vitro. Tissue-engineered intestine was generated by seeding donor neonatal rat intestinal organoid units onto a biodegradable polyglycolic acid scaffold along with VEGF-containing or empty microspheres, and wrapped in the omentum of recipient rats. After 4 weeks, the neointestinal cysts were analyzed for morphometry, VEGF levels, epithelial proliferation, and capillary density. Sustained release of biologically active VEGF was confirmed by in vitro studies. Intestinal constructs with VEGF microspheres were significantly larger than those containing empty microspheres. Tissue VEGF levels were significantly higher in neointestine loaded with encapsulated VEGF compared to those without growth factor. Epithelial cellular proliferation and capillary density were significantly increased in the VEGF-containing neointestinal constructs compared to empty constructs. Tissue-engineered intestine responds to sustained delivery of VEGF by upregulating microvasculature and epithelial proliferation.  相似文献   

13.
Godbey WT  Wu KK  Mikos AG 《Biomaterials》2001,22(5):471-480
Poly(ethylenimine) (PEI) was used to transfect the endothelial cell line EA.hy 926, and the secreted levels of three gene products, tissue-type plasminogen activator (tPA), plasminogen activator inhibitor type 1 (PAI-1), and von Willebrand Factor (vWF), were assessed via ELISA. We found that the levels of these gene products in cell supernatants increased by factors up to 16.3 (tPA), 8.3 (PAI-1), or 6.7 (vWF) times the levels recorded for untreated cells, and roughly correlated with the percentage of cells that expressed the reporter plasmid. Transfections carried out using promotorless constructs of the same reporter plasmid also yielded increases in tPA, PAI-1, and vWF to similar extents. Additionally, data regarding cell viability were gathered and found to inversely relate to both the effectiveness of the PEI used for transfection and the secreted levels of the three mentioned products. There appeared to be two distinct types of cell death, resulting from the use of either free PEI (which acts within 2 h) or PEI/DNA complexes (which cause death 7-9 h after transfection). Cells were also transfected by poly(L-lysine) and liposomal carriers, and increases in secreted tPA similar to those seen with PEI-mediated transfection were observed for positively transfected cells. The results of these investigations indicate that non-viral gene delivery can induce a state of endothelial cell dysfunction, and that PEI-mediated transfection can lead to two distinct types of cell death.  相似文献   

14.
It was reported that cell-adhesive gelatin discs have been successfully used as delivery vehicles for intraocular grafting of bioengineered corneal endothelial cell sheets. Development of alternative biomaterials to bovine-based gelatin vehicles can potentially eliminate the risk of bovine spongiform encephalopathy. In the present work, to investigate whether it was appropriate for use as cell sheet delivery vehicles, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) cross-linked hyaluronic acid (HA) hydrogels were studied by determinations of morphological characteristic, mechanical and thermal property, water content, in vitro degradability and cytocompatibility. Glutaraldehyde (GTA) cross-linked HA samples were used for comparison. It was found that HA discs after cross-linking significantly increased its tensile stress but reduced its tensile strain, water uptake and enzymatic degradability. The results of differential scanning calorimetry demonstrated that cross-linking could lead to the alteration of polymer structure. In addition, the EDC-cross-linked HA discs had a smoother surface structure, a faster degradation rate and a relatively lower cytotoxicity as compared to the GTA cross-linked counterparts. It is concluded that EDC can be successfully applied for HA cross-linking to fabricate structurally stable, mechanically reinforced, readily deformable, transparent and cytocompatible HA hydrogel discs with the potential to be applied as delivery vehicles for corneal endothelial cell therapy.  相似文献   

15.
This study investigated the behavioral mechanisms underlying the anxiogenic, or anxiolytic mediated effects of CCK(2) receptor mediated agonist (CCK-4) and antagonist drugs (LY225910, LY288513, CR2945) in PVG hooded and Sprague-Dawley (SD) rats using the elevated plus maze test apparatus. In addition, the effects of a CCK(1) antagonist (CR1409) were investigated for its possible mediation in anxiety behavior between PVG hooded and SD rats. PVG hooded rats treated with CCK-4, decreased the time spent in the open arm and increased the time spent in the closed arm and correspondingly showed increase in the number of entries in the open arms while the number of entries in closed arm was insignificant, whereas SD rats decreased the time spent in the closed arm, while other parameters remained insignificant. PVG hooded rats administered with various CCK(2) antagonists (LY225910, LY288513, and CR2945) significantly increased the time spent in the open arm and correspondingly decreased the time spent in the closed arm, while the number of entries in the open or closed arm was insignificant, in contrast, SD rats failed to show any reliable significance. PVG hooded rats administered with the CCK(1) antagonist (CR1409), failed to show any reliable significance, in contrast, SD rats significantly increased the time spent in the open arm. The strain differences observed in this study suggests that CCK plays mainly as a neuromodulator, in which the various CCK(2) antagonists may not affect baseline anxiety state, but instead they modulate heightened states of anxiety through differential effects of CCK(1)/CCK(2) receptors.  相似文献   

16.
聚异丙基丙烯酰胺(PNIPAAm)是一种新型的智能高分子材料。PNIPAAm大分子侧链上由于同时具有亲水性的酰胺基和疏水性的异丙基而具有良好的温敏性能,同时它还显现出良好的生物相容性和无细胞毒性等特性,可作为理想的细胞外基质材料应用于组织工程领域。本文综述国内外关于PNIPAAm及其衍生物在组织工程中的研究及应用情况。  相似文献   

17.
Hsiue GH  Guu JA  Cheng CC 《Biomaterials》2001,22(13):1763-1769
This work investigates pilocarpine trapped in a matrix diffusion-controlled drug delivery system using hydrophilic inserts of Poly(2-hydroxyethyl methacrylate) (pHEMA) to ensure an increased bioavailability of pilocarpine and prolong the length of time in which the medication remains in the eyes of the test subjects. The physical and chemical properties of pilocarpine were investigated to elucidate the mechanism of drug-polymer interaction and the effect on drug release behavior of controlled release polymeric devices. In vitro release studies indicated that pilocarpine continued to be released from the inserts for a 24 h period. The results of intraocular pressure tests performed on albino rabbits were consistent with the observed in vitro behavior. The pressure decrease was significant for a period longer than 48 h. It confirms that the inserts, as sustainable releasing devices, are promising carriers for ophthalmic drug delivery systems.  相似文献   

18.
Cho JH  Kim SH  Park KD  Jung MC  Yang WI  Han SW  Noh JY  Lee JW 《Biomaterials》2004,25(26):5743-5751
Poly(N-isopropylacrylamide) (PNIPAAm) is known to be thermally responsive material and has a lower critical solution temperature (LCST, 32 degrees C) at which a macromolecular transition from a hydrophilic to a hydrophobic structure occurs. Chitosan is a useful natural polymeric biomaterial due to its biocompatibility and biodegradable properties. It has good characteristics for cell attachment, proliferation and viability. The aim of this study was to assess the ability to differentiate from mesenchymal stem cells (MSCs) to chondrocytes and mass formation using a newly developed injectable material, a thermosensitive (water-soluble chitosan-g-PNIPAAm) gel, and evaluate cartilage formation in vivo after injecting a cell-thermosensitive gel complex. The MSCs were cultured in the chitosan-PNIPAAm in vitro. Fluorescence-activated cell sort analysis, viability test, collagen type I, II, X formation and the aggrecan levels were examined. These cultured cells can be easily recovered from a copolymer gel by simply lowering the temperature. An animal study was performed to assess cartilage formation in the submucosal layer of the bladder of rabbits. The cartilage formation could be detected. This can be used to treat vesicoureteral reflux or reflux esophagitis by the effective mass effect. This is a simple method (sol-gel technique in LCST), and good cartilage formation occurs in the bladder tissue.  相似文献   

19.
Anastomotic intimal hyperplasia (IH) is a major cause of both autologous vein and synthetic vascular graft failure. We have previously published data suggesting that cyclosporin may reduce the development of IH in a canine model. However, systemic administration of cyclosporin could create serious adverse effects. Therefore, it is our long-term goal to test the hypothesis that the controlled local release of cyclosporin from a polymeric vascular wrap will prevent the development of IH. To test this hypothesis, we developed a controlled release vascular wrap (sheet/ring) using a poly(ethylene glycol) (PEG) hydrogel. Sterilization of the polymers was performed using the ethylene oxide and hydrogen peroxide sterilization methods. It was found that except for one combination (8000 molecular weight and 1:1 crosslinking ratio), the differences in the swelling ratios for the sterilized and unsterilized hydrogels were not statistically significant. Release studies from unsterilized and ethylene oxide-sterilized PEG hydrogels were conducted. It was found that release lasted for approximately 50 h for sterilized as well as unsterilized PEG hydrogels. Acute animal studies, to test the deployment of both the polymeric sheets and rings to the adventitial surface of native arteries and veins, were completed successfully.  相似文献   

20.
An implant may release a drug either by diffusion concurrent with dissolution of the polymeric implant material without depolymerization (Type A) or by bioerosion involving depolymerization (Type B). The Type A material may induce immune response, while the erosion of Type B polymer releases fragments which could cause toxicity problems. It is proposed that a combination of the two types of polymers may attenuate the intensity of immune response and toxicity, because the presence of one in an implant of the same weight reduces the amount of the other. However, it is important to determine first, if sustained delivery may be achieved by such an implant. In this study, partially hydrolyzed poly(vinyl acetate) (PVA) and polycaprolactone (PCL) were chosen as the model Type A, and B polymers, respectively, to evaluate this objective in vitro. Pellet discs were prepared to assess the effects of compression, proportion of PVA to PCL, acetyl content of PVA, PCL hydrolysis catalyst and drug loading, using methylene blue (MB) as a model drug. Results showed that sustained delivery could be effected, but PCL erosion did not occur as planned. Therefore, PCL served only as a passive component of the implant, while PVA was eroded with the release of MB. Consequently, it was inferred that a polymer may not be required as a passive component, which suggested the use of other compounds of known biocompatibility. Tests with insulin in a compressed solid admixture with cholesterol showed that reduction of hyperglycemia in diabetic Wistar rat could be effected reproducibly for at least 2 weeks. Thus, the present study, originally planned to test a proposed concept, indicates that many nonpolymeric materials of known biocompatibility may be suitable for drug delivery implants as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号