首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The circulating concentration of insulin-like growth factor-I (IGF-I) is regulated by both its rate of synthesis and its ability to form stable complexes with IGF-binding proteins (IGFBPs). An equilibrium between IGF-I and IGFBPs is thought to help maintain muscle protein balance. In contrast, catabolic conditions disrupt the IGF system and result in the loss of skeletal muscle protein. We have examined the mechanisms by which tumour necrosis factor alpha (TNFalpha), a catabolic cytokine, alters the IGF system. Conscious rats were infused intravenously with recombinant human TNFalpha or vehicle for 24 h. TNFalpha decreased the concentration of both total and free IGF-I in the plasma (30-40%). This change was associated with a reduction in IGF-I mRNA expression in liver (39%), gastrocnemius (73%), soleus (46%) and heart (63%), but a 2.5-fold increase in the whole kidney. In contrast, TNFalpha did not alter IGF-II mRNA expression in skeletal muscle. TNFalpha also increased IGFBP-1 in the blood (4-fold) and this response was associated with an increase in IGFBP-1 mRNA expression in both liver (3-fold) and kidney (9-fold). In contrast, IGFBP-3 levels in the blood were reduced 38% in response to the infusion of TNFalpha. This change was accompanied by a 60-80% reduction of IGFBP-3 mRNA in liver and kidney but no significant change in muscle. Hepatic mRNA levels of the acid-labile subunit were also reduced by TNFalpha (46%). Finally, tissue expression of mac25 (also referred to IGFBP-related protein-1) mRNA was increased in gastrocnemius (50%) but remained unchanged in liver and kidney. These results more fully characterize the changes in various elements of the IGF system and, thereby, provide potential mechanisms for the alterations in the circulating IGF system as well as for changes in tissue metabolism observed during catabolic insults associated with increased TNFalpha expression.  相似文献   

2.
Insulin-like growth factors (IGF-I and IGF-II) are potent mitogenic and differentiating peptides which are synthesized by many fetal tissues. In the circulation and tissue fluids, IGFs are bound to binding proteins (BPs) which not only function as carrier proteins, but also inhibit or modulate the biological actions of IGFs. We have previously shown that prolonged hypoxia in the ovine fetus induced by the reduction of maternal uterine blood flow for 24 h causes a reduction in the DNA synthesis rate in selected fetal tissues. To determine if this effect is due to alterations in the local synthesis of tissue IGFs and their binding proteins or to changes in systemic concentrations of IGFs and IGFBPs, we have investigated the abundance of mRNAs encoding IGFs and IGFBPs in selected tissues and changes in plasma IGFs and IGFBPs. Ovine fetuses (115-120 days gestation; n = 6) underwent 24 h of hypoxia by the reduction of maternal uterine blood flow (RUBF). Controls (n = 6) underwent the same surgical procedure without RUBF. Serial plasma samples were collected before, during, and after the experiment, and tissues were collected at the end of 24 h. Mean plasma IGF-I and IGF-II concentrations tended to be lower in hypoxic fetuses than in controls during the course of hypoxia, but these differences were not statistically significant. Tissue mRNA levels for IGF-I and IGF-II in lung, muscle, thymus, and kidney were similar in control and hypoxic fetuses after 24 h of hypoxia. The relative abundance of liver IGF-I and IGF-II mRNAs was lower in hypoxic fetuses, but only IGF-I mRNA levels were significantly different from the control values (P < 0.05). Compared to control fetuses, IGFBP-1 mRNA levels in the liver of hypoxic fetuses were increased 3- to 7-fold, and IGFBP-1 mRNA expression was induced in kidneys of some hypoxic fetuses (two of six). In addition, IGFBP-2 mRNA levels were decreased in the liver (50%) and kidney (30%) of hypoxic fetuses. The increase in liver IGFBP-1 mRNA abundance and the decrease in liver and kidney IGFBP-2 mRNA abundance were accompanied by an increase in IGFBP-1 levels and a decrease in IGFBP-2 levels in fetal plasma. No changes were observed in either plasma levels or tissue mRNA abundance for IGFBP-3. Analysis of the time course of changes in plasma revealed that the changes in IGFBP-1 and IGFBP-2 occurred within 4 h of hypoxia.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
BACKGROUND: The purpose of the present study was to determine whether acute alcohol (EtOH) intoxication impairs the signal transduction pathway used to coordinate insulin-like growth factor (IGF)-I stimulation of myocardial protein synthesis. METHODS: Rats were injected intraperitoneally with EtOH or saline. After 2.5 h, IGF-I or saline was injected intravenously and the heart was excised at 2 min or 20 min. Additional rats were pretreated with RU486 or tumor necrosis factor (TNF) binding protein (BP) to assess the importance of elevations in glucocorticoids or TNF, respectively, as endogenous modulators of IGF-I signal transduction. RESULTS: EtOH did not alter the total amount or tyrosine phosphorylation of the IGF-I receptor, IRS-1 or PKB under basal or IGF-stimulated conditions. However, EtOH attenuated the ability of IGF-I to phosphorylate ribosomal S6 kinase (S6K)-1 on residues T389 ( approximately 62%) and T421/S424 ( approximately 40%), and also reduced ribosomal protein S6 phosphorylation. Under basal conditions, EtOH altered the distribution of eukaryotic initiation factor (eIF) 4E, as evidenced by a decreased amount of the active eIF4E.eIF4G complex (53%), an increased amount of inactive eIF4E.4E-BP1 complex ( approximately 3-fold), and decreased phosphorylation of 4E-BP1 (56%). EtOH also impaired the ability of IGF-I to reverse the above-mentioned changes in the eIF4E system. Pretreatment of rats with RU486 or TNFBP was unable to attenuate the EtOH-induced changes in either eIF4E distribution or the phosphorylation state of 4E-BP1, S6K1 or S6. CONCLUSIONS: These data indicate that acute EtOH intoxication alters selected aspects of translational control in the heart under basal conditions. Furthermore, despite appropriate stimulation of IGF-I receptor, IRS-1 and PKB, EtOH impairs IGF-I signaling via S6K1 and 4E-BP1 pathways, and this defect is regulated in a glucocorticoid- and TNF-independent manner. This IGF-I resistance may represent a participating mechanism by which alcohol limits protein synthesis in heart.  相似文献   

4.
Chronic ethanol enhances ectodomain shedding in T cells and monocytes   总被引:1,自引:0,他引:1  
BACKGROUND: Chronic ethanol (EtOH) has been shown to augment tumor necrosis factor (TNF)-alpha production, and this has been associated with EtOH-induced liver injury. We have recently described a chronic in vitro cell culture model where chronic ethanol exposure results in significantly augmented TNF production in Mono Mac 6 cells, a human monocytic cell line. This enhanced TNF production was redox regulated and associated with increased levels of TNF messenger RNA (mRNA) as well as increased processing of TNF by TNF converting enzyme (TACE), the enzymatic activity of which is regulated by the cellular redox state. We hypothesized that chronic ethanol through oxidative stress activates TACE-mediated ectodomain shedding of the preformed substrates p75 and p55 TNF receptors in Mono Mac 6 cells and L-selectin in Jurkat T cells. METHODS: Mono Mac 6 or Jurkat T cells were treated with EtOH (0, 50, or 100 mM) for 4 to 6 days. Shedding of p75 and p55 TNF receptors (Mono Mac 6 cells) or L-selectin (Jurkat T cells) was induced by stimulation with lipopolysaccharide and phorbol myristate acetate for Mono Mac 6 cells and PMA alone for Jurkat T cells. Shedding was assessed by enzyme-linked immunosorbent assay for shed molecules in the cell supernatant as well as the cell-associated proteins recovered from cell pellets. Steady-state mRNA levels for p75 TNF receptor and L-selectin were determined by ribonuclease protection assay. Cell surface L-selectin and TACE were measured by flow cytometry, and cell associated p55 and p75 TNF receptors were measured by enzyme-linked immunosorbent assay. RESULTS: Chronic EtOH exposure for 6 days resulted in a significant dose-dependent increase in shedding of p75 and p55 TNF receptors from Mono Mac 6 cells and L-selectin from Jurkat T-cells. The enhanced shedding was correlated with an alcohol-induced increase in mRNA levels and cell surface protein levels for these TACE substrates. Although chronic EtOH exposure increased the total amount of p75 and p55 TNF receptor and L-selectin shed into the media, the efficiency of shedding was suppressed by EtOH. In the case of Mono Mac 6 cells, the EtOH exposure increased superoxide production. Inhibition of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase and hydrogen peroxide partially prevented the increased production of p75 TNF receptor in these cells. CONCLUSIONS: These results suggest that chronic EtOH up-regulates p75 and p55 TNF receptors on monocytes and L-selectin on T-cells. However, the TACE-mediated shedding efficiency of these substrates may be inhibited in the presence of EtOH. These results may have implications in monocyte signaling and T-cell trafficking, which may, in part, contribute to immune dysregulation associated with chronic ethanol.  相似文献   

5.
The insulin-like growth factor (IGF) system is an important regulator of fetal growth and differentiation. IGF bioavailability is modulated by IGF binding proteins (IGFBPs). We have generated six different antisera, directed to synthetic peptide fragments of mouse IGFBP-1 through -6. The specificity of the produced antisera was demonstrated by enzyme-linked immunosorbent assay, Western blotting, and by immunohistochemistry on sections of mouse embryos of 13.5 days post coitum. Specificity for the IGFBP-2 through -6 antisera also was confirmed immunohistochemically in liver and lung of corresponding gene deletion (knock-out) mutant mice and wild-type litter mates. Immunohistochemistry and messenger RNA (mRNA) in situ hybridization on sections of mouse embryos of 13.5 days post coitum revealed tissue-specific expression patterns for the six IGFBPs. The only site of IGFBP-1 protein and mRNA production was the liver. IGFBP-2, -4, and -5 protein and mRNA were detected in various organs and tissues. IGFBP-3 and -6 protein and mRNA levels were low. In several tissues, such as lung, liver, kidney, and tongue, more than one IGFBP (protein and mRNA) could be detected. Differences between mRNA and protein localization were extensive for IGFBP-3, -5, and -6, suggesting that these IGFBPs are secreted and transported. These results confirm the different spatial localization of the IGFBPs, on the mRNA and protein level. The overlapping mRNA and protein localization for IGFBP-2 and -4, on the other hand, may indicate that these IGFBPs also function in an auto- or paracrine manner.  相似文献   

6.
IGF-binding proteins (IGFBPs) modulate the effects of the IGFs, major stimulators of vertebrate growth and development. In mammals, IGFBP-1 inhibits the actions of IGF-I. Rapid increases in circulating IGFBP-1 occur during catabolic states. Insulin and glucocorticoids are the primary regulators of circulating IGFBP-1 in mammals. Insulin inhibits and glucocorticoids stimulate hepatocyte IGFBP-1 gene expression and production. A 22 kDa IGFBP in salmon blood also increases during catabolic states and has recently been identified as an IGFBP-1 homolog. We examined the hormonal regulation of salmon IGFBP-1 mRNA levels and protein secretion in primary cultured salmon hepatocytes. The glucocorticoid agonist dexamethasone progressively increased hepatocyte IGFBP-1 mRNA levels (eightfold) and medium IGFBP-1 immunoreactivity over concentrations comparable with stressed circulating cortisol levels (10(-9) -10(-6) M). GH progressively reduced IGFBP-1 mRNA levels (0.3-fold) and medium IGFBP-1 immunoreactivity over physiological concentrations (5 x 10(-11)-5 x 10(-9) M). Unexpectedly, insulin slightly increased hepatocyte IGFBP-1 mRNA (1.4-fold) and did not change medium IGFBP-1 immunoreactivity over physiological concentrations and above (10(-9) -10(-6) M). Triiodothyronine had no effect on hepatocyte IGFBP-1 mRNA, whereas glucagon increased IGFBP-1 mRNA (2.2-fold) at supraphysiological concentrations (10(-6) M). This study suggests that the major inhibitory role of insulin in the regulation of liver IGFBP-1 production in mammals is not found in salmon. However, regulation of salmon liver IGFBP-1 production by other metabolic hormones is similar to what is found in mammals.  相似文献   

7.
The IGF system is one of the most important endocrine and paracrine growth factor systems that regulate fetal and placental growth. We hypothesized that intrauterine growth restriction (IUGR) in guinea pigs is mediated by the altered expression of IGFs and/or IGF binding protein (BP) mRNAs in tissues and is related to growth of specific tissues. IUGR was induced by unilateral uterine artery ligation on day 30 of gestation, and fetal plasma, amniotic fluid and tissue samples were collected at 55-57 days (term about 68 days) from paired IUGR and control fetuses (n=6). Western ligand blotting and immunoblotting were used to compare IGFBP levels in plasma and amniotic fluid. Total RNA was extracted from placenta and fetal tissues, and the relative abundance of IGF-II and IGFBP-1-6 mRNA was determined by Northern blotting, using species-specific probes where available. IUGR fetuses had decreased (P<0.01, by Student's t-test) placental weight and body weight with an increase in the brain:liver weight ratio. The principal IGFBPs in fetal plasma migrated at 40-35, 30 and 25 kDa and were identified as IGFBP-3, -2 and -4 respectively. IUGR was associated with elevated plasma IGFBP-2 and IGFBP-4 and reduced IGFBP-3 levels. IGFBPs were detected at low levels in amniotic fluid of control fetuses but at higher levels in IUGR fetuses. In IUGR placentae, there was a small increase in IGFBP-4 mRNA (P<0.05). IGFBP-2 mRNA increased (P<0.001) in liver of IUGR fetuses. IGF-II and IGFBP mRNA expression did not change in fetal muscle. The results are consistent with reduced IGF action, directly or through inhibition by IGFBPs, particularly by circulating and tissue IGFBP-2, as a potential causal factor in decreased growth of the placenta and certain fetal tissues.  相似文献   

8.
9.
10.
Previous studies of the GH-IGF system gene expression in growth plate using immunohistochemistry and in situ hybridization have yielded conflicting results. We therefore studied the spatial and temporal patterns of mRNA expression of the GH-IGF system in the rat proximal tibial growth plate quantitatively. Growth plates were microdissected into individual zones. RNA was extracted, reverse transcribed and analyzed by real-time PCR. In 1-week-old animals, IGF-I mRNA expression was minimal in growth plate compared with perichondrium, metaphyseal bone, muscle, and liver (70-, 130-, 215-, and 400-fold less). In contrast, IGF-II mRNA was expressed at higher levels than in bone and liver (65- and 2-fold). IGF-II expression was higher in the proliferative and resting zones compared with the hypertrophic zone (P < 0.001). GH receptor and type 1 and 2 IGF receptors were expressed throughout the growth plate. Expression of IGF-binding proteins (IGFBPs)-1 through -6 mRNA was low throughout the growth plate compared with perichondrium and bone. With increasing age (3-, 6-, 9-, and 12-week castrated rats), IGF-I mRNA levels increased in the proliferative zone (PZ) but remained at least tenfold lower than levels in perichondrium and bone. IGF-II mRNA decreased dramatically in PZ (780-fold; P < 0.001) whereas, type 2 IGF receptor and IGFBP-1, IGFBP-2, IGFBP-3, and IGFBP-4 increased significantly with age in growth plate and/or surrounding perichondrium and bone. These data suggest that IGF-I protein in the growth plate is not produced primarily by the chondrocytes themselves. Instead, it derives from surrounding perichondrium and bone. In addition, the decrease in growth velocity that occurs with age may be caused, in part, by decreasing expression of IGF-II and increasing expression of type 2 IGF receptor and multiple IGFBPs.  相似文献   

11.
12.
13.
In previous studies we have shown that IGF-II stimulates basal as well as ACTH-induced cortisol secretion from adult human adrenocortical cells more potently than IGF-I, and that both IGFs predominantly stimulate androgen biosynthesis. The steroidogenic effect of IGF-I and IGF-II is mediated through interaction with the IGF-I receptor, and modified by locally produced IGF-binding proteins (IGFBPs). In the present study, we identified and characterized IGFBP synthesis in normal adult human adrenocortical cells in primary culture, and investigated the effect of ACTH and recombinant human IGF-I and -II on the regulation of IGFBP expression and secretion. Using RT-PCR, we identified the mRNA of all six high-affinity IGFBPs, in both adrenocortical tissue and monolayer cell cultures of adrenocortical cells. Using Western ligand and immunoblotting and two-dimensional Western ligand blotting we confirmed the secretion of IGFBP-1, -2, -3, -4 and -5 by adrenocortical cells in primary culture. The quantification of IGFBPs indicated that IGFBP-3 accounts for almost half the binding activity in conditioned medium of unstimulated cells (47%), followed by IGFBP-4 (20%), IGFBP-5 (15%), IGFBP-2 (12%) and IGFBP-1 (6%). After treatment with ACTH, the abundance of IGFBP-1 was upregulated significantly 2.6-fold, while IGFBP-3 was induced only slightly (1.3-fold). IGFBP-2, -4 and -5 remained unchanged. In contrast, IGF-I and -II (6.5 nM) predominantly induced the abundance of IGFBP-5 (2- and 1.6-fold respectively) and IGFBP-3 (2- and 1.7-fold respectively), while IGFBP-1, -2 and -4 were unaltered. The induction of IGFBP-1 and -5 by ACTH and IGFs, respectively, was paralleled by an increase in the amount of IGFBP-1 and -5 mRNA in these cells. In conclusion, all six high-affinity IGFBPs are expressed in the adult human adrenal gland, and the presence of at least five high-affinity IGFBPs has been demonstrated in conditioned medium of adult human adrenocortical cells. Furthermore, the expression and secretion of IGFBP-1 is upregulated by ACTH, whereas IGFBP-5 is induced by IGF-I and -II. Together with earlier findings, these results suggest that IGFBPs play an important modulatory role in the regulation of the differentiated adrenocortical function.  相似文献   

14.
15.
W S Cohick  D R Clemmons 《Endocrinology》1991,129(3):1347-1354
The Madin-Darby bovine kidney cell line was used to examine regulation of insulin-like growth factor binding protein (IGFBP) synthesis by epithelial cells. Ligand and immunoblot analysis of conditioned media indicated that IGFBP-2 was the predominant IGFBP secreted by untreated cells. Treatment with forskolin decreased secretion of IGFBP-2 by 75 +/- 3% and induced the appearance of IGFBP-3 and 24,000 Mr IGFBP. Although insulin alone did not induce the appearance of either band, in the presence of forskolin it increased the IGFBP-3 and 24,000 Mr bands 4.2 +/- 1.1 and 7.3 +/- 0.9-fold, respectively, above the values for forskolin treatment alone. Exposure to forskolin resulted in a 3-fold decrease in the abundance of IGFBP-2 messenger RNA (mRNA), and a 30-fold increase in IGFBP-3 mRNA. An additional 2- to 3-fold increase in IGFBP-3 mRNA was observed when cells were treated with insulin plus forskolin. Treatment with insulin plus forskolin increased cell number 2-fold, compared to small increases (26%) observed with forskolin treatment alone. Since treatment with IGF-I or -II did not result in similar responses to those of insulin, IGF analogs with differing affinities for IGFBP and IGF type I receptor were tested. B-chain IGF-I (decreased affinity for IGFBP) increased cell number and enhanced forskolin's effects on IGFBP-3 secretion and mRNA abundance to the same extent as insulin, whereas [Leu24,1-62]IGF-I (decreased affinity for the type I IGF receptor) did not. Therefore, activation of the type I IGF receptor was required to elicit increases in cell number and IGFBP synthesis and secretion, and the actions of IGF-I and II were likely blocked by binding to the large amounts of IGFBP-2 that were secreted. These results are in direct contrast to studies with human fibroblasts in which IGF-I and [Leu24,1-62]IGF-I stimulate IGFBP-3 secretion, whereas B-chain IGF-I has only a minimal effect. The ability to differentially regulate secretion of different forms of IGFBPs by epithelial cells and the finding that regulation is distinct from that of fibroblasts may have important implications for understanding mechanisms by which IGFs and IGFBPs interact to regulate epithelial cell growth.  相似文献   

16.
BACKGROUND: 4-Methylpyrazole (4-MP), a selective inhibitor of alcohol dehydrogenase (ADH), recently has been approved for clinical use in humans. The objective was to evaluate the use of 4-MP in human alcohol research and to study the effect of 4-MP on various parameters of alcohol metabolism during alcohol intoxication. METHODS: 4-MP (10-15 mg/kg orally) or placebo was given in double-blind fashion to 22 premenopausal women, 12 of whom were using oral contraceptives, and 13 men followed by intake of alcohol (0.5 g/kg orally) or placebo. RESULTS: A 30% to 40% decrease in the ethanol elimination rate was observed in the different groups during pretreatment with 4-MP. The alcohol-induced increase in plasma acetate was partially inhibited by 4-MP. A significant positive correlation was observed between the effect of 4-MP on the alcohol-induced lactate and acetate elevations. The acetaldehyde was nondetectable (<1 micromol/liter) in the peripheral venous blood during alcohol intoxication in both women and men. During alcohol intoxication, a decrease in breath acetaldehyde was found with 4-MP pretreatment in women but not in men. CONCLUSION: The alcohol-induced elevation in blood acetate level is caused, in part, by ADH-mediated ethanol oxidation. Although no evidence was found for measurable acetaldehyde levels in the peripheral venous blood during alcohol intoxication, the effect of 4-MP on breath acetaldehyde in women supports the view that ADH-mediated acetaldehyde elevations reflected in the airways, but too low to be detected in the peripheral venous blood, may occur in women during alcohol intoxication in the present experimental conditions.  相似文献   

17.
18.
The expression and regulation of insulin-like growth factor-binding proteins (IGFBPs) in developing avian vitreous humor and serum were compared. Vitreal IGF-I-binding activity was highest on embryonic day 6 [E-6; bound/free ratio (B/F), 0.22 +/- 0.019/50 microliters), decreased 10-fold between E-6 and E-19, and then remained stable through the remainder of embryonic development. In contrast, serum IGF-I binding increased 2-fold over this period, from a B/F of 0.380 +/- 0.056 (E-6) to a B/F of 0.89 +/- 0.18 (E-19). After hatching, serum IGF-I-binding activity continued to increase through posthatching week 12, while vitreal IGF-I binding increased only slightly and then remained constant. Although IGF-II binding in the vitreous humor and serum is 2- to 3-fold higher than that of IGF-I, the same pattern of developmental regulation was observed as with IGF-I. Western ligand blots revealed a vitreal 24-kilodalton (kDa) IGFBP that was absent from both embryonic and adult sera. Likewise, posthatching serum was found to contain a 70-kDa IGFBP absent in vitreous humor. Deglycosylation of vitreal and serum IGFBPs followed by Western ligand blotting revealed unique glycosylation patterns for vitreal and serum IGFBPs. One of the IGFBPs that is differentially glycosylated in vitreous and serum is a 33-kDa IGFBP that is precipitated with human IGFBP-2 antiserum. Northern blot analysis revealed the presence of IGFBP-2 mRNA in several embryonic ocular tissues as well as liver. The observations that vitreal and serum IGFBP levels are independently regulated during development and that IGFBPs from these two compartments have different molecular weights and glycosylation patterns suggest that the vitreal IGFBPs are not derived from serum. The presence of IGFBP-2 mRNA in ocular tissue surrounding the vitreal chamber supports the view that certain vitreal IGFBPs may be synthesized locally.  相似文献   

19.
Lang CH  Vary TC  Frost RA 《Endocrinology》2003,144(9):3922-3933
This study examined whether the acute elevation of IGF-binding protein-1 (IGFBP-1) decreases the plasma free IGF-I concentration and alters in vivo rates of muscle protein synthesis and glucose uptake. The plasma concentration of human IGFBP-1 was increased to approximately 95 ng/ml in conscious catheterized rats infused iv with human IGFBP-1 for 4 h. Infusion of IGFBP-1 also increased the concentration of endogenous (e.g. rat) IGFBP-1 in the blood, and this response was associated with a 2- to 3-fold elevation of IGFBP-1 mRNA in liver and kidney. IGFBP-1 did not significantly alter the plasma concentration of total IGF-I, but decreased circulating free IGF-I levels by about 50%. IGFBP-1 decreased protein synthesis in the predominantly fast-twitch gastrocnemius muscle (20%), and this change resulted from a decreased translational efficiency that was associated with a decreased phosphorylation of S6K1, but not 4E-BP1. Complementary studies demonstrated that IGFBP-1 also decreased the rates of protein synthesis under basal conditions and in response to stimulation by IGF-I when added in vitro to the fast-twitch epitrochlearis muscle. In contrast, IGFBP-1 did not alter in vivo-determined rates of protein synthesis in the slow-twitch soleus muscle, heart, liver, or kidney. The infusion of IGFBP-1 did not significantly alter the plasma glucose or lactate concentration or the whole body rate of glucose production or disposal. The above-mentioned changes were not mediated indirectly by changes in the plasma insulin or corticosterone concentrations, decreased high energy phosphate content in muscle, or hepatoxicity produced by the infused IGFBP-1. These results demonstrate that acute in vivo elevation in IGFBP-1, of the magnitude observed in various catabolic conditions, is capable of selectively decreasing protein synthesis in fast-twitch skeletal muscle and up-regulating the hepatic and renal syntheses of IGFBP-1 per se. Hence, elevations in circulating and tissue levels of IGFBP-1 may be an important mediator for the muscle catabolism observed in various stress conditions.  相似文献   

20.
BACKGROUND/AIMS: Catabolism is associated with decreased serum concentrations of insulin-like growth factor (IGF)-I and insulin-like growth factor binding protein (IGFBP)-3 associated with elevated IGFBP-3 protease activity and increased concentrations of IGFBP-1 and -4. The effects of the acute phase mediators interleukin (IL)-6, IL-1beta and tumor necrosis factor alpha (TNFalpha) on the biosynthesis of IGF-I and IGFBPs were studied in primary rat liver cells. METHODS: mRNA levels of IGF-I and of IGFBPs were analyzed by Northern blotting, secretion of IGFBPs by [(125)I]IGF-I ligand blotting. Proteolytic activity was measured using iodinated recombinant IGFBP-3 as the substrate. RESULTS: In hepatocytes, Kupffer cells (KC) and cocultures of hepatocytes with KC, IL-6 reduced IGF-I biosynthesis dose-dependently. IL-6 stimulated mRNA expression and protein secretion of IGFBP-1 and -4 in hepatocytes and that of IGFBP-3 in KC, respectively. In cocultures, biosynthesis of IGFBP-1, -3 and -4 was increased dose-dependently by IL-6, while the effects of IL-1beta or TNFalpha were less prominent. At neutral pH, proteolytic activity against IGFBP-3 was not detected in media of cocultures treated with IL-6. CONCLUSIONS: The alterations of IGF-I, IGFBP-1 and -4 observed in catabolism correlate with the effects of IL-6 on the biosynthesis of these components in primary rat liver cells, while a neutral IGFBP-3 protease was not detectable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号