首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intermediate and deep layers of the monkey superior colliculus (SC) comprise a retinotopically organized map for eye movements. The rostral end of this map, corresponding to the representation of the fovea, contains neurons that have been referred to as "fixation cells" because they discharge tonically during active fixation and pause during the generation of most saccades. These neurons also possess movement fields and are most active for targets close to the fixation point. Because the parafoveal locations encoded by these neurons are also important for guiding pursuit eye movements, we studied these neurons in two monkeys as they generated smooth pursuit. We found that fixation cells exhibit the same directional preferences during pursuit as during small saccades-they increase their discharge during movements toward the contralateral side and decrease their discharge during movements toward the ipsilateral side. This pursuit-related activity could be observed during saccade-free pursuit and was not predictive of small saccades that often accompanied pursuit. When we plotted the discharge rate from individual neurons during pursuit as a function of the position error associated with the moving target, we found tuning curves with peaks within a few degrees contralateral of the fovea. We compared these pursuit-related tuning curves from each neuron to the tuning curves for a saccade task from which we separately measured the visual, delay, and peri-saccadic activity. We found the highest and most consistent correlation with the delay activity recorded while the monkey viewed parafoveal stimuli during fixation. The directional preferences exhibited during pursuit can therefore be attributed to the tuning of these neurons for contralateral locations near the fovea. These results support the idea that fixation cells are the rostral extension of the buildup neurons found in the more caudal colliculus and that their activity conveys information about the size of the mismatch between a parafoveal stimulus and the currently foveated location. Because the generation of pursuit requires a break from fixation, the pursuit-related activity indicates that these neurons are not strictly involved with maintaining fixation. Conversely, because activity during the delay period was found for many neurons even when no eye movement was made, these neurons are also not obligatorily related to the generation of a movement. Thus the tonic activity of these rostral neurons provides a potential position-error signal rather than a motor command-a principle that may be applicable to buildup neurons elsewhere in the SC.  相似文献   

2.
Neurons in the intermediate and deep layers of the rostral superior colliculus (SC) of monkeys are active during attentive fixation, small saccades, and smooth-pursuit eye movements. Alterations of SC activity have been shown to alter saccades and fixation, but similar manipulations have not been shown to influence smooth-pursuit eye movements. Therefore we both activated (electrical stimulation) and inactivated (reversible chemical injection) rostral SC neurons to establish a causal role for the activity of these neurons in smooth pursuit. First, we stimulated the rostral SC during pursuit initiation as well as pursuit maintenance. For pursuit initiation, stimulation of the rostral SC suppressed pursuit to ipsiversive moving targets primarily and had modest effects on contraversive pursuit. The effect of stimulation on pursuit varied with the location of the stimulation with the most rostral sites producing the most effective inhibition of ipsiversive pursuit. Stimulation was more effective on higher pursuit speeds than on lower and did not evoke smooth-pursuit eye movements during fixation. As with the effects on pursuit initiation, ipsiversive maintained pursuit was suppressed, whereas contraversive pursuit was less affected. The stimulation effect on smooth pursuit did not result from a generalized inhibition because the suppression of smooth pursuit was greater than the suppression of smooth eye movements evoked by head rotations (vestibular-ocular reflex). Nor was the stimulation effect due to the activation of superficial layer visual neurons rather than the intermediate layers of the SC because stimulation of the superficial layers produced effects opposite to those found with intermediate layer stimulation. Second, we inactivated the rostral SC with muscimol and found that contraversive pursuit initiation was reduced and ipsiversive pursuit was increased slightly, changes that were opposite to those resulting from stimulation. The results of both the stimulation and the muscimol injection experiments on pursuit are consistent with the effects of these activation and inactivation experiments on saccades, and the effects on pursuit are consistent with the hypothesis that the SC provides a position signal that is used by the smooth-pursuit eye-movement system.  相似文献   

3.
Recent studies have indicated that the superior colliculus (SC), traditionally considered to be saccade-related, may play a role in the coding of eye movements in both direction and depth. Similarly, it has been suggested that omnidirectional pause neurons are not only involved in the initiation of saccades, but can also modulate vergence eye movements. These new developments provide a challenge for current oculomotor models that attempt to describe saccade-vergence coordination and the neural mechanisms that may be involved. In this paper, we have attempted to study these aspects further by investigating the role of the rostral pole of the SC in the control of vergence eye movements. It is well-known that, by applying long-duration electrical stimulation to rostral sites in the monkey SC, saccadic responses can be prevented and interrupted. We have made use of these properties to extend this paradigm to eye movements that contain a substantial depth component. We found that electrical intervention in the rostral region also has a clear effect on vergence. For an eye movement to a near target, stimulation leads to a significant suppression and change in dynamics of the pure vergence response during the period of stimulation, but the depth component cannot be prevented entirely. When these paradigms are implemented for 3D refixations, the saccade is inactivated, as expected, while the vergence component is often suppressed more than in the case of the pure vergence. The data lead us to conclude that the rostral SC, presumably indirectly via connections with the pause neurons, can affect vergence control for both pure vergence and combined 3D responses. Suppression of the depth component is incomplete, in contrast to the directional movement, and is often different in magnitude for 3D refixations and pure vergence responses. The results are discussed in connection with current models for saccade-vergence interaction.  相似文献   

4.
5.
6.
7.
Summary It has been noted in a variety of studies in both humans and monkeys that saccades made during smooth pursuit eye movements are usually quite accurate. Since saccades are known to be planned on the basis of neuronal information existing at some interval of time before the actual onset of the movement, it is generally accepted that some sort of prediction or use of visual motion velocity is combined with static position error in the execution of these saccades to moving targets. However, statistical treatment of this response in humans has provided evidence for alternative mechanisms, including a strategy of saccading ahead in the direction of target motion without any incorporation of actual speed information about target motion in the response. We reinvestigated this question quantitatively in the monkey on a large data base of saccades. We found evidence that supports the hypothesis that information about target speed per se is used in this species in the production of saccades to moving targets. Multiple linear regression analysis supported the hypothesis that information about the position error and the target velocity that exists at about 100 ms prior to the saccade onset are both required to provide a statistical explanation of saccade size during pursuit eye movements under the conditions of our experiments.  相似文献   

8.
Results of our previous studies suggest that the circumscribed area in the rostral superior colliculus (SC) of the cat is involved in the control of accommodation. Accommodation is closely linked with vergence eye movements. In this study, we investigated whether or not vergence eye movements are evoked by microstimulation of the rostral SC in the cat. In addition, we studied the effect of chemical inhibition of the rostral SC on visually guided vergence eye movements. This study was conducted on three cats, weighing 2.5-3.5 kg. The animals were trained to carry out visually guided saccade and convergence tasks. Eye movements were measured using search coils placed on both eyes. We recorded eye movements evoked by microstimulation of the rostral SC in the alert cats. Muscimol was injected into the rostral SC, and the effect of SC inactivation on visually guided vergence eye movements was investigated. Convergence eye movements were evoked by low-current stimulation (< 30 microA) of a circumscribed area in the intermediate layers of the rostral SC on one side. Spontaneous saccades were interrupted by the stimulation of the low-threshold area for evoking convergence. Visually guided convergence eye movements were severely diminished by the injection of muscimol into the low-threshold area for evoking convergence of the SC. The rostral SC is related to the control of vergence eye movements as well as accommodation. The rostral SC may be involved in the functional linkage between accommodation, convergence and visual fixation.  相似文献   

9.
Summary 452 single neurons from the superior colliculus were recorded in awake and non-paralysed cats. 75 neurons were obtained from cats with unrestrained horizontal head movements.228 neurons remained unaffected by saccadic eye movements. Eye movement related discharge followed the onset of saccades in 156 neurons either only in the presence of a visual pattern (92 neurons) or in darkness, too (64 neurons). The latter reaction type probably depends on eye muscle afferents.In 48 neurons eye movement related activity preceded the onset of eye movements. 12 neurons fired in synchrony with eye movements of any direction (type I). 30 neurons were excited during contralaterally directed eye versions within or into the contralateral head related hemifield. They were inhibited when the eyes moved within or into the ipsilateral head related hemifield (type II). 6 neurons with constant maintained activity during fixation were inhibited by ipsilaterally directed saccades, but remained unaffected by contralateral eye movements.Head movement related discharge followed the onset of head movements in 20 neurons only in presence of a visual pattern and also in darkness in 6 neurons. Ipsilateral head movements or postures strongly suppressed maintained activity and visual responsiveness of some neurons.15 neurons discharged in synchrony with and prior to contralateral head movements. Ipsilateral head movements inhibited these neurons. Activation or inhibition were usually related to movement and to posture, exceptionally to movement or to posture.Electrical stimulation of recording sites of these neurons through the recording microelectrode elicits contralateral head movements.  相似文献   

10.
A fundamental problem in the generation of goal-directed behaviour is caused by the inevitable latency of biological sensory systems. Behaviour which is fully synchronised with the triggering sensory event can only be executed if the occurrence of this event can be predicted based on prior information. Smooth-pursuit eye movements are a classical and well-established example of goal-directed behaviour. The execution of these eye movements is thought to be very closely linked to the processing of visual motion signals. Here, we show that healthy human subjects as well as trained rhesus monkeys are able to initiate smooth-pursuit eye movements in anticipation of a moving target. These anticipatory pursuit eye movements are scaled to the velocity of the expected target. Furthermore, we can exclude the possibility that anticipatory pursuit is simply an after-pursuit of the previous trial. Visually-guided pursuit is only marginally affected by the presence of a structured background. However, the presence of a structured background severely impedes the ability to perform anticipatory pursuit. More generally, our data provide additional evidence that the cognitive oculomotor repertoires of human and monkeys are similar, at least with respect of smooth-pursuit in the prediction of an appearing target.  相似文献   

11.
Saccadic eye movements of different sizes and directions are represented in an orderly topographic map across the intermediate and deep layers of the superior colliculus (SC), where large saccades are encoded caudally and small saccades rostrally. Based on experiments in the cat, it has been suggested that saccades are initiated by a hill of activity at the caudal site appropriate for a particular saccade. As the saccade evolves and the remaining distance to the target, the motor error, decreases, the hill moves rostrally across successive SC sites responsible for saccades of increasingly smaller amplitudes. When the hill reaches the "fixation zone" in the rostral SC, the saccade is terminated. A moving hill of activity has also been posited for the monkey, in which it is supposed to be transported via so-called build-up neurons (BUNs), which have a prelude of activity that culminates in a burst for saccades. However, several studies using a variety of approaches have yet to provide conclusive evidence for or against a moving hill. The moving hill scenario predicts that during a large saccade the burst of a BUN in the rostral SC will be delayed until the motor error remaining in the evolving saccade is equal to the saccadic amplitude for which that BUN discharges best, i.e., its optimal amplitude. Therefore a plot of the burst lead preceding the "optimal" motor error against the time of occurrence of the optimal motor error should have a slope of zero. A slope of -1 indicates no moving hill. For our 20 BUNs, we used three measures of burst timing: the leads to the onset, peak, and center of the burst. The average slopes of these relations were -1.09, -0.79, and -0.58, respectively. For individual BUNs, the slopes of all three relations always differed significantly from zero. Although the peak and center leads fall between -1 and 0, a hill of activity moving rostrally at a rate indicated by either of these slopes would arrive at the fixation zone much too late to terminate the saccade at the appropriate time. Calculating our same three timing measures from averaged data leads us to the same conclusion. Thus our data do not support the moving hill model. However, we argue in the DISCUSSION that the constant lead of the burst onset relative to saccade onset (approximately 27 ms) suggests that the BUNs may help to trigger the saccade.  相似文献   

12.
The caudal superior colliculus (SC) contains movement neurons that fire during saccades and the rostral SC contains fixation neurons that fire during visual fixation, suggesting potentially different functions for these 2 regions. To study whether these areas might have different projections, we characterized synaptic inputs from the rostral and caudal SC to inhibitory burst neurons (IBNs) in anesthetized cats. We recorded intracellular potentials from neurons in the IBN region and identified them as IBNs based on their antidromic activation from the contralateral abducens nucleus and short-latency excitation from the contralateral caudal SC and/or single-cell morphology. IBNs received disynaptic inhibition from the ipsilateral caudal SC and disynaptic inhibition from the rostral SC on both sides. Stimulation of the contralateral IBN region evoked monosynaptic inhibition in IBNs, which was enhanced by preconditioning stimulation of the ipsilateral caudal SC. A midline section between the IBN regions eliminated inhibition from the ipsilateral caudal SC, but inhibition from the rostral SC remained unaffected, indicating that the latter inhibition was mediated by inhibitory interneurons other than IBNs. A transverse section of the brain stem rostral to the pause neuron (PN) region eliminated inhibition from the rostral SC, suggesting that this inhibition is mediated by PNs. These results indicate that the most rostral SC inhibits bilateral IBNs, most likely via PNs, and the more caudal SC exerts monosynaptic excitation on contralateral IBNs and antagonistic inhibition on ipsilateral IBNs via contralateral IBNs. The most rostral SC may play roles in maintaining fixation by inhibition of burst neurons and facilitating saccadic initiation by releasing their inhibition.  相似文献   

13.
14.
15.
16.
17.
18.
The superior colliculus (SC) has long been known to be important for the control of saccades, and recent findings indicate that the rostral SC (rSC) plays some role in pursuit as well. The recent finding that the prelude activity of some SC neurons exhibits directional selectivity suggests that the rSC might process visual motion signals relevant for the control of pursuit. We have now tested the activity of buildup neurons in the rSC during the passive viewing of motion stimuli placed within their response field and also during the previewing of visual motion stimuli that were subsequently tracked with pursuit eye movements. We found that rSC buildup neurons typically responded well to motion stimuli, but that they exhibited essentially no selectivity for the direction or speed of visual motion, and that they also responded well to stationary flickering dots. However, during the previewing of visual motion prior to the onset of pursuit, many neurons did exhibit a buildup of activity similar to that exhibited before saccades. These results are inconsistent with the notion that the rSC mediates visual motion signals used to drive pursuit, but instead support the idea that visual motion signals can be used by rSC neurons as part of a mechanism for selecting targets for pursuit and saccades.  相似文献   

19.
Perturbation of combined saccade-vergence movements by microstimulation in monkey superior colliculus. This study investigated the role of the monkey superior colliculus (SC) in the control of visually (V)-guided combined saccade-vergence movements by assessing the perturbing effects of microstimulation. We elicited an electrical saccade (E) by stimulation (in 20% of trials) in the SC while the monkey was preparing a V-guided movement to a near target. The target was aligned such that E- and V-induced saccades had similar amplitudes but different directions and such that V-induced saccades had a significant vergence component (saccades to a near target). The onset of the E-stimulus was varied from immediately after V-target onset to after V-saccade onset. E-control trials, where stimulation was applied during fixation of a V-target, yielded the expected saccade but no vergence. By contrast, early perturbation trials, where the E-stimulus was applied soon after the onset of the V-target, caused an E-triggered response with a clear vergence component toward the V-target. Midflight perturbation, timed to occur just after the monkey initiated the movement toward the target, markedly curtailed the ongoing vergence component during the saccade. Examination of pooled responses from both types of perturbation trials showed weighted-averaging effects between E- and V-stimuli in both saccade and fast vergence components. Both components exhibited a progression from E- to V-dominance as the E-stimulus was delayed further. This study shows that artificial intervention in the SC, while a three-dimensional (3D) refixation is being prepared or is ongoing, can affect the timing (WHEN) and the metric specification (WHERE) of both saccades and vergence. To explain this we interpret the absence of overt vergence in the E-controls as being caused by a zero-vergence change command rather than reflecting the mere absence of a collicular vergence signal. In the perturbation trials, the E-evoked zero-vergence signal competes with the V-initiated saccade-vergence signal, thereby giving rise to a compromised 3D response. This effect would be expected if the population of movement cells at each SC site is tuned in 3D, combining the well-known topographical code for direction and amplitude with a nontopographical depth representation. On E-stimulation, the local population would yield a net saccade signal caused by the topography, but the cells coding for different depths would be excited equally, causing the vergence change to be zero.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号