首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ketoconazole and itraconazole were tested in a multilaboratory study to establish quality control (QC) guidelines for yeast antifungal susceptibility testing. Two isolates that had been previously identified as QC isolates for amphotericin B, fluconazole, and flucytosine (Candida parapsilosis ATCC 22019 and Candida krusei ATCC 6258) were tested in accordance with the National Committee for Clinical Laboratory Standards M27-P guidelines. Each isolate was tested 20 times with the two antifungal agents in the five laboratories by using a lot of RPMI 1640 unique to each laboratory as well as a lot common to all five laboratories, thus generating 200 MICs per drug per organism. Overall, 96 to 99% of the MICs for each drug fell within the desired 3-log2 dilution range (mode +/- 1 log2 dilution). By using these data, 3-log2 dilution QC ranges encompassing 98% of the observed MICs for three of the organism-drug combinations and 94% of the observed MICs for the fourth combination were established. These QC ranges are 0.064 to 0.25 micrograms/ml for both ketoconazole and itraconazole against C. parapsilosis ATCC 22019 and 0.125 to 0.5 micrograms/ml for both ketoconazole and itraconazole against C. krusei ATCC 6258.  相似文献   

2.
An evaluation of broth dilution antifungal susceptibility tests was performed by determining both the micro- and macrodilution MICs of amphotericin B, flucytosine, fluconazole, ketoconazole, and cilofungin against 38 isolates of Candida albicans, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Cryptococcus neoformans, and Torulopsis glabrata. The following preliminary antifungal working group recommendations of the National Committee for Clinical Laboratory Standards for broth macrodilution tests with antifungal agents were used: inocula standardized to 1 x 10(4) to 5 x 10(4) CFU/ml with a spectrophotometer, RPMI 1640 medium buffered with morpholinopropanesulfonic acid (pH 7.0), incubation at 35 degrees C for 24 to 48 h, and an additive drug dilution procedure. Broth microdilution MICs were higher (two or more dilutions) than broth macrodilution MICs for all isolates tested with amphotericin B and for most isolates tested with ketoconazole, fluconazole, and cilofungin. MICs of flucytosine were the same by both techniques or lower by the broth microdilution test except in tests with C. neoformans. However, the only statistically significant differences between the two tests were observed with amphotericin B against all isolates (P = 0.01 to 0.07), ketoconazole against C. neoformans (P = 0.01 to 0.02), and cilofungin against C. albicans (P = 0.05 to 0.14). Tests performed with less dense inocula (1 x 10(3) to 5 x 10(3] produced similar results.  相似文献   

3.
Amphotericin B, fluconazole, and flucytosine (5FC) were tested in a multilaboratory study to establish quality control (QC) guidelines for yeast antifungal susceptibility testing. Ten candidate QC strains were tested in accordance with National Committee for Clinical Laboratory Standards M27-P guidelines against the three antifungal agents in each of six laboratories. Each laboratory was assigned a unique lot of RPMI 1640 broth medium as well as a lot of RPMI 1640 common to all of the laboratories. The candidate QC strains were tested 20 times each against the three antifungal agents in both unique and common lots of RPMI 1640. A minimum of 220 MICs per drug per organism were generated during the study. Overall, 95% of the MICs of amphotericin B, fluconazole, and 5FC fell within the desired 3 log2-dilution range (mode +/- 1 log2 dilution). Excellent performance with all three drugs was observed for Candida parapsilosis ATCC 22019 and C. krusei ATCC 6258. With these strains, on-scale 3 log2-dilution ranges encompassing 96 to 99% of the MICs of all three drugs were established. These two strains are recommended for QC testing of amphotericin B, fluconazole, and 5FC. Reference ranges were also established for an additional four strains for use in method development and for training. Four strains failed to perform adequately for recommendation as either QC or reference strains.  相似文献   

4.
This report presents a semisolid agar antifungal susceptibility (SAAS) method for the rapid susceptibility screening of yeasts and molds. The reproducibility and accuracy of the SAAS method were assessed by comparing the MICs of amphotericin B and fluconazole obtained for 10 candidate quality control (QC) American Type Culture Collection yeast strains in >/=15 replicates with those found by six independent laboratories using the National Committee for Clinical Laboratory Standards (NCCLS) M27-P broth macrodilution method (M. A. Pfaller et al., J. Clin. Microbiol. 33:1104-1107, 1995). Overall, 96% of MICs for both drugs fell within 1 log(2) dilution of the modal MIC for each strain. The MICs for amphotericin B showed 99% agreement with the NCCLS proposed QC ranges within 1 log(2) dilution. Likewise, the MICs for fluconazole at >/=75% growth reduction showed 99% agreement for seven strains. Three strains, Candida albicans ATCC 24333 and ATCC 76615 and Candida tropicalis ATCC 750, showed a less sharp fluconazole endpoint at >/=75% growth reduction, but at >50% growth reduction, the agreement was 98% within 1 log(2) dilution of the proposed range. The MIC agreement within the proposed range for the suggested QC strains Candida parapsilosis ATCC 22019 and Candida krusei ATCC 6258 was 100% for fluconazole and 100% within 1 log(2) dilution of the proposed range for amphotericin B. The SAAS method demonstrated the susceptibility or resistance of 25 clinical isolates of filamentous fungi such as Aspergillus fumigatus to amphotericin B, itraconazole, and fluconazole, usually within 48 h. Although the results are preliminary, this SAAS method is promising as a rapid and cost-effective screen and is worthy of concerted investigation.  相似文献   

5.
The performance of the Etest (AB BIODISK, Solna, Sweden) for direct antifungal susceptibility testing of yeasts in positive blood cultures was compared with that of the macrodilution method for determining the MICs of five antifungal agents. Culture broths with blood from bottles positive for yeasts were inoculated directly onto plates for susceptibility testing with the Etest, and the MICs were read after 24 and 48 h of incubation. A total of 141 positive blood cultures (72 cultures of Candida albicans, 31 of Candida tropicalis, 14 of Candida glabrata, 11 of Candida parapsilosis, 3 of Candida krusei, and 3 of Cryptococcus neoformans, 4 miscellaneous yeast species, and 3 mixed cultures) were tested, and the rates of MIC agreement (+/-1 log(2) dilution) between the direct Etest (at 24 and 48 h, respectively) and macrodilution methods were as follows: amphotericin B, 81.8 and 93.5%; flucytosine, 84.8 and 87.7%; fluconazole, 89.4 and 85.5%; itraconazole, 69.7 and 63.8%; ketoconazole, 87.9 and 79.0%. By a large-sample t test, the difference in log(2) dilution between the direct Etest and the macrodilution method was found to be small (P < 0.05). The lone exceptions were ketoconazole at 48 h of incubation and itraconazole at both 24 and 48 h of incubation (P > 0.05). By Tukey's multiple comparisons, the difference between the direct Etest (48 h) and reference methods among different species was found to be less than 1 log(2) dilution. When the MICs were translated into interpretive susceptibility, the minor errors caused by the direct Etest (at 24 and 48 h, respectively) were as follows: flucytosine, 2.3 and 1.4%; fluconazole, 3.0 and 3.6%; itraconazole, 21.2 and 21.3%. Itraconazole also produced an additional 3.0 and 3.6% major errors as determined by the direct Etest at 24 and 48 h, respectively. It was concluded that, except for itraconazole, the Etest method was feasible for direct susceptibility testing of blood cultures positive for yeasts. The method is simple, and the results could be read between 24 and 48 h after direct inoculation, whenever the inhibition zones were discernible.  相似文献   

6.
Rapid flow cytometric susceptibility testing of Candida albicans.   总被引:4,自引:0,他引:4       下载免费PDF全文
A rapid flow cytometric assay for in vitro antifungal drug susceptibility testing was developed by adapting the proposed reference method for broth macrodilution testing of yeasts. Membrane permeability changes caused by the antifungal agent were measured by flow cytometry using propidium iodide, a nucleic acid-binding fluorochrome largely excluded by the intact cell membrane. We determined the in vitro susceptibility of 31 Candida albicans isolates and two quality control strains (Candida parapsilosis ATCC 22019 and Candida krusei ATCC 6258) to amphotericin B and fluconazole. Amphotericin B MICs ranged from 0.03 to 2.0 microg/ml, while fluconazole MICs ranged from 0.125 to 128 microg/ml. This method results in clear-cut endpoints that were reproducible. Four-hour incubation was required for fluconazole, whereas a 2-h incubation was sufficient for amphotericin B to provide MICs comparable to the reference macrodilution method developed by the National Committee for Clinical Laboratory Standards Subcommittee on Antifungal Susceptibility Tests. Results of these studies show that flow cytometry provides a rapid and sensitive in vitro method for antifungal susceptibility testing of C. albicans.  相似文献   

7.
A comparative study of broth macro- and microdilution methods for susceptibility testing of fluconazole, itraconazole, flucytosine, and amphotericin B was conducted with 273 yeasts. The clinical isolates included 100 Candida albicans, 28 Candida tropicalis, 25 Candida parapsilosis, 15 Candida lusitaniae, 15 Candida krusei, 50 Cryptococcus neoformans var. neoformans, 25 Torulopsis (Candida) glabrata, and 15 Trichosporon beigelii strains. Both methods were performed according to the National Committee for Clinical Laboratory Standards' (NCCLS) recommendations (document M27-P). For fluconazole, itraconazole, and flucytosine, the endpoint was the tube that showed 80% growth inhibition compared with the growth control for the macrodilution method and the well with slightly hazy turbidity (score 1) compared with the growth control for the microdilution method. For amphotericin B, the endpoint was the tube and/or well in which there was absence of growth. For the reference macrodilution method, the MICs were determined after 48 h of incubation for Candida spp., T. glabrata, and T. beigelii and after 72 h for C. neoformans var. neoformans. For the microdilution method, either the first-day MICs (24 h for all isolates other than C. neoformans and 48 h for C. neoformans var. neoformans) or the second-day MICs (48 and 72 h, respectively) were evaluated. The agreement within one doubling dilution of the macrodilution reference for all drugs was higher with the second-day MICs than with the first-day MICs for the microdilution test for most of the tested strains. General agreement was 92% for fluconazole, 85.7% for itraconazole, 98.3% for flucytosine, and 96.4% for amphotericin B. For C. neoformans var. neoformans and T. beigelii, the agreement of the first-day reading was higher than that of the second-day reading for fluconazole (94 versus 92%, respectively, for C. neoformans var. neoformans, and 86.7 versus 80%, respectively, for T. beigelii). Our studies indicate that the microdilution technique performed following the NCCLS guidelines with a second-day reading is a valid alternative method for testing fluconazole, itraconazole, flucytosine, and amphotericin B against these eight species of yeasts.  相似文献   

8.
The National Committee for Clinical Laboratory Standards has developed a proposed standard method for in vitro antifungal susceptibility testing of yeast isolates (National Committee for Clinical Laboratory Standards, document M27-P, 1992). In order for antifungal testing by the M27-P method to be accepted, reliable quality control (QC) performance criteria must be developed. In the present study, five laboratories tested 10 candidate QC strains 20 times each against three antifungal agents: amphotericin B, fluconazole, and 5-fluorocytosine. All sites conformed to the M27-P standards and used a common lot of tube dilution reagents and RPMI 1640 broth medium. Overall, 98% of MIC results with amphotericin B, 95% with fluconazole, and 92% with 5-fluorocytosine fell within the desired 3-log2 dilution range (mode +/- 1 log2 dilution). Excellent performance with all three antifungal agents was observed for six strains: Candida albicans ATCC 90028, Candida parapsilosis ATCC 90018, C. parapsilosis ATCC 22019, Candida krusei ATCC 6258, Candida tropicalis ATCC 750, and Saccharomyces cerevisiae ATCC 9763. With these strains, 3-log2 dilution ranges encompassing 94 to 100% of MICs for all three drugs were established. Additional studies with multiple lots of RPMI 1640 test medium will be required to establish definitive QC ranges.  相似文献   

9.
Broth microdilution susceptibility tests of Candida species have now been standardized by the National Committee for Clinical Laboratory Standards (NCCLS). An eight-laboratory collaborative study was carried out in order to document reproducibility of tests of Candida parapsilosis ATCC 22019 and Candida krusei ATCC 6258 by the NCCLS method. Replicate broth microdilution tests were used to define control limits for 24- and 48-h MICs of amphotericin B, flucytosine, fluconazole, voriconazole, ketoconazole, itraconazole, caspofungin (MK 0991), ravuconazole (BMS 207147), posaconazole (SCH 56592), and LY 303366.  相似文献   

10.
In vitro susceptibilities were determined for 56 Candida albicans isolates obtained from the oral cavities of 41 patients with human immunodeficiency virus infection. The agents tested included fluconazole, itraconazole, ketoconazole, flucytosine, and amphotericin B. MICs were determined by the broth microdilution technique following National Committee for Clinical Laboratory Standards document M27-P (M27-P micro), a broth microdilution technique using high-resolution medium (HR micro), and the Etest with solidified yeast-nitrogen base agar. The in vitro findings were correlated with in vivo response to fluconazole therapy for oropharyngeal candidiasis. For all C. albicans isolates from patients with oropharyngeal candidiasis not responding to fluconazole MICs were found to be > or = 6.25 micrograms/ml by the M27-P micro method and > or = 25 micrograms/ml by the HR micro method as well as the Etest. However, for several C. albicans isolates from patients who responded to fluconazole therapy MICs found to be above the suggested breakpoints of resistance. The appropriate rank order of best agreement between the M27-P micro method and HR micro method was amphotericin B > fluconazole > flucytosine > ketoconazole > itraconazole. The appropriate rank order with best agreement between the M27-P micro method and the Etest was flucytosine > amphotericin B > fluconazole > ketoconazole > or = itraconazole. It could be concluded that a good correlation between in vitro resistance and clinical failure was found with all methods. However, the test methods used in this study did not necessarily predict clinical response to therapy with fluconazole.  相似文献   

11.
A comparative evaluation of the macrodilution method and the Alamar colorimetric method for the susceptibility testing of amphotericin B, fluconazole, and flucytosine was conducted with 134 pathogenic yeasts. The clinical isolates included 28 Candida albicans, 17 Candida tropicalis, 15 Candida parapsilosis, 12 Candida krusei, 10 Candida lusitaniae, 9 Candida guilliermondii, 18 Torulopsis glabrata, and 25 Cryptococcus neoformans isolates. The macrodilution method was performed and interpreted according to the recommendations of the National Committee for Clinical Laboratory Standards (document M27-P), and the Alamar colorimetric method was performed according to the manufacturer's instructions. For the Alamar colorimetric method, MICs were determined at 24 and 48 h of incubation for Candida species and T. glabrata and at 48 and 72 h of incubation for C. neoformans. The overall agreement within +/- 1 dilution for Candida species and T. glabrata against the three antifungal agents was generally good, with the values for amphotericin B, fluconazole, and flucytosine being 85.3, 77.9, and 86.2%, respectively, at the 24-h readings and 69.3, 65.2, and 97.2%, respectively, at the 48-h readings. Most disagreement was noted with fluconazole against C. tropicalis and T. glabrata. Our studies indicate that determination of MICs at 24 h by the Alamar colorimetric method is a valid alternate method for testing amphotericin B, fluconazole, and flucytosine against Candida species but not for testing fluconazole against C. tropicalis and T. glabrata. For flucytosine, much better agreement can be demonstrated against Candida species and T. glabrata at the 48-h readings by the Alamar method.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The PASCO antifungal susceptibility test system, developed in collaboration with a commercial company, is a broth microdilution assay which is faster and easier to use than the reference broth microdilution test performed according to the National Committee for Clinical Laboratory Standards (NCCLS) document M27-A guidelines. Advantages of the PASCO system include the system's inclusion of quality-controlled, premade antifungal panels containing 10, twofold serial dilutions of drugs and a one-step inoculation system whereby all wells are simultaneously inoculated in a single step. For the prototype panel, we chose eight antifungal agents for in vitro testing (amphotericin B, flucytosine, fluconazole, ketoconazole, itraconazole, clotrimazole, miconazole, and terconazole) and compared the results with those of the NCCLS method for testing 74 yeast isolates (14 Candida albicans, 10 Candida glabrata, 10 Candida tropicalis, 10 Candida krusei, 10 Candida dubliniensis, 10 Candida parapsilosis, and 10 Cryptococcus neoformans isolates). The overall agreements between the methods were 91% for fluconazole, 89% for amphotericin B and ketoconazole, 85% for itraconazole, 80% for flucytosine, 77% for terconazole, 66% for miconazole, and 53% for clotrimazole. In contrast to the M27-A reference method, the PASCO method classified as resistant seven itraconazole-susceptible isolates (9%), two fluconazole-susceptible isolates (3%), and three flucytosine-susceptible isolates (4%), representing 12 major errors. In addition, it classified two fluconazole-resistant isolates (3%) and one flucytosine-resistant isolate (1%) as susceptible, representing three very major errors. Overall, the agreement between the methods was greater than or equal to 80% for four of the seven species tested (C. dubliniensis, C. glabrata, C. krusei, and C. neoformans). The lowest agreement between methods was observed for miconazole and clotrimazole and for C. krusei isolates tested against terconazole. When the data for miconazole and clotrimazole were removed from the analysis, agreement was >/=80% for all seven species tested. Therefore, the PASCO method is a suitable alternative procedure for the testing of the antifungal susceptibilities of the medically important Candida spp. and C. neoformans against a range of antifungal agents with the exceptions only of miconazole and clotrimazole and of terconazole against C. krusei isolates.  相似文献   

13.
A commercially prepared frozen broth microdilution panel (Trek Diagnostic Systems, Westlake, Ohio) was compared with a reference microdilution panel for antifungal susceptibility testing of two quality control (QC) strains and 99 clinical isolates of Candida spp. The antifungal agents tested included amphotericin B, flucytosine, fluconazole, itraconazole, posaconazole, ravuconazole, and voriconazole. Microdilution testing was performed according to NCCLS recommendations. MIC endpoints were read visually after 48 h of incubation and were assessed independently for each microdilution panel. The MICs for the QC strains were within published limits for both the reference and Trek microdilution panels. Discrepancies among MIC endpoints of no more than 2 dilutions were used to calculate the percent agreement. Acceptable levels of agreement between the Trek and reference panels were observed for all antifungal agents tested against the 99 clinical isolates. The overall agreement for each antifungal agent ranged from 96% for ravuconazole to 100% for amphotericin B. The Trek microdilution panel appears to be a viable alternative to frozen microdilution panels prepared in-house.  相似文献   

14.
Fungal infections have dramatically increased in recent years, along with the increase of drug-resistant isolates in immunocompromised patients. Ninety eight Candida species obtained from blood cultures at the Tri-Service General Hospital, Taiwan, from 1998 to 2000 were studied. These included 50 Candida albicans, 13 Candida glabrata, 24 Candida tropicalis and 11 Candida parapsilosis isolates. To investigate their susceptibility to commonly used antifungal drugs, minimum inhibitory concentrations (MIC) of amphotericin B, fluconazole, flucytosine, and ketoconazole were determined. Both the National Committee for Clinical Laboratory Standards reference broth macrodilution method and E-test were used in parallel. Ninety five isolates (95/98, 96.94%) were susceptible to amphotericin B at a concentration < or = 1 microg/mL. All isolates (100%, 98/98) were susceptible to flucytosine. Approximately 30% of these Candida isolates were resistant to fluconazole. The MIC for 90% of isolates (MIC90) values for both methods for these isolates were 0.5 microg/mL for amphotericin B, 32 microg/mL for fluconazole, 0.25 microg/mL for flucytosine (0.125 microg/mL by E-test method), and 4 microg/mL for ketoconazole. MIC for 50% of isolates (MIC50) values for these agents were 0.25, 2, 0.06, and 0.06 microg/mL, respectively. The essential agreement of MIC values within 2 dilutions for the 2 methods was 99.0% for amphotericin B, 90.8% for ketoconazole, 92.9% for fluconazole, and 91.8% for flucytosine. This study showed that E-test has equivalent performance to the broth macrodilution method and can be used as an alternative MIC technique for antifungal susceptibility testing.  相似文献   

15.
An interlaboratory evaluation (two centers) of the Etest method was conducted for testing the antifungal susceptibilities of yeasts. The MICs of amphotericin B, fluconazole, flucytosine, itraconazole, and ketoconazole were determined for 83 isolates of Candida spp., Cryptococcus neoformans, and Torulopsis glabrata. Two buffered (phosphate buffer) culture media were evaluated: solidified RPMI 1640 medium with 2% glucose and Casitone agar. MIC endpoints were determined after both 24 and 48 h of incubation at 35 degrees C. Analysis of 3,420 MICs demonstrated higher interlaboratory agreement (percentage of MIC pairs within a 2-dilution range) with Casitone medium than with RPMI 1640 medium when testing amphotericin B (84 to 90% versus 1 to 4%), itraconazole (87% versus 63 to 74%), and ketoconazole (94 to 96% versus 88 to 90%). In contrast, better interlaboratory reproducibility was determined between fluconazole MIC pairs when RPMI 1640 medium rather than Casitone medium was used (96 to 98% versus 77 to 90%). Comparison of the flucytosine MICs obtained with RPMI 1640 medium revealed greater than 80% reproducibility. The study suggests the potential value of the Etest as a convenient alternative method for testing the susceptibilities of yeasts. It also indicates the need for further optimization of medium formulations and MIC endpoint criteria to improve interlaboratory agreement.  相似文献   

16.
The use of Etest strips for antimicrobial susceptibility testing is a new and promising method with broad applications in microbiology. Since these strips contain a predefined continuous gradient of a drug, it is possible to obtain a reproducible, quantitative MIC reading. We performed a prospective and double-blinded study to compare the Etest and National Committee for Clinical Laboratory Standards (Villanova, Pa.) broth macrodilution methods for determining the MICs of fluconazole, itraconazole, and ketoconazole for 100 clinical isolates (25 Candida albicans, 25 Cryptococcus neoformans var. neoformans, 20 Torulopsis [Candida] glabrata, 15 Candida tropicalis, and 15 Candida parapsilosis). The Etest method was performed according to the manufacturer's instructions, and the reference method was performed according to National Committee for Clinical Laboratory Standards document M27-P guidelines. Despite differences between results for some species-drug combinations, Etest and macrobroth MICs were, in general, in good agreement. The MIC agreement rates for the two methods, within +/- 1 dilution, were 71% for ketoconazole, 80% for fluconazole, and 84% for itraconazole. According to our data, Etest has potential utility as an alternative method.  相似文献   

17.
We determined the in vitro susceptibilities of 314 strains of Candida spp., representing 13 species rarely isolated from blood, to posaconazole and voriconazole as well as four licensed systemic antifungal agents (amphotericin B, flucytosine, fluconazole, and itraconazole). The organisms included 153 isolates of C. krusei, 67 isolates of C. lusitaniae, 48 isolates of C. guilliermondii, 10 isolates of C. famata, 10 isolates of C. kefyr, 6 isolates of C. pelliculosa, 5 isolates of C. rugosa, 4 isolates of C. lipolytica, 3 isolates of C. dubliniensis, 3 isolates of C. inconspicua, 2 isolates of C. sake, and 1 isolate each of C. lambica, C. norvegensis, and C. zeylanoides. MIC determinations were made by the National Committee for Clinical Laboratory Standards reference broth microdilution method and Etest (amphotericin B). Resistance to both amphotericin B and fluconazole was observed in strains of C. krusei, C. lusitaniae, C. guilliermondii, C. inconspicua, and C. sake. Resistance to amphotericin B, but not to fluconazole, was also observed among isolates of C. kefyr and C. rugosa. Posaconazole and voriconazole were active (MIC, < or = 1 micro g/ml) against 94 to 100% of these isolates. In contrast to the more common species of Candida causing bloodstream infection, these rare species appear to be less susceptible to the currently licensed systemic antifungal agents, with the exception of voriconazole. Continued surveillance will be necessary to detect the emergence of these species as more prevalent, resistant pathogens. The new triazoles appear to offer acceptable coverage of uncommon Candida sp. bloodstream infections.  相似文献   

18.
We compared the in vitro activity of six antifungal agents against 62 isolates of Candida dubliniensis by the Clinical Laboratory Standards Institute (CLSI [formerly National Committee for the Clinical Laboratory Standards]) M27-A2, Sensititre YeastOne, disk diffusion, and Etest methods and we studied the effect of the time of reading. For the azoles, voriconazole was the most potent in vitro followed by fluconazole, ketoconazole, and itraconazole. All the isolates were susceptible to amphotericin B and flucytosine. The highest rate of resistance was obtained against itraconazole with a high number of isolates defined as susceptible dose-dependent. At 24 hr, 100% of the isolates were susceptible to ketoconazole, amphotericin B, and flucytosine, 98% susceptible to voriconazole and fluconazole, and 95% for itraconazole. At 48 hr, 100% of the isolates remained susceptible for flucytosine and amphotericin B, 95% for voriconazole, 93% for fluconazole, 90% for ketoconazole, and 82% for itraconazole. The agreement between the CLSI and the other methods was better at 24 than 48 hr.  相似文献   

19.
Epidemiology of candidemia in a Turkish tertiary care hospital   总被引:2,自引:0,他引:2  
In order to determine the local epidemiology of candidemia, Candida strains isolated between 1994 and 2000 were identified to species level; antifungal resistance patterns and DNA fingerprints were analyzed. Identification of Candida strains (n: 140) was performed with germ tube test and carbohydrate assimilation reactions. Minimal inhibitory concentrations were determined using a commercial test for 5-flucytosine and the broth macrodilution method according to NCCLS for fluconazole and amphotericin B. Molecular relatedness was determined by restriction endonuclease analysis of genomic DNA followed by probe hybridization. C. albicans (37.2%), C. parapsilosis (32.2%), and C. tropicalis (12.2%) comprised 114 (81.4%) of 140 isolates. Susceptibility tests did not reveal resistance to amphotericin B in any of the Candida isolates. Fluconazole resistance was detected in one isolate of C. krusei, and 5-flucytosine resistance in two C. tropicalis isolates and one C. albicans isolate. Significantly higher frequency of clusters with identical strains in C. parapsilosis and C. tropicalis was detected compared to C. albicans. Pediatric wards are particularly important in the nosocomial transmission of non-albicans candida species.  相似文献   

20.
We report the first case of Cryptococcus laurentii meningitis and a rare case of Cryptococcus albidus cryptococcaemia in AIDS patients. Both infections were treated with amphotericin B and flucytosine. The C. laurentii meningitis was controlled after 2 weeks of treatment with no evidence of infection 20 months later. The patient with C. albidus cryptococcaemia, despite the amphotericin B/flucytosine combination therapy, died on the 14th day of treatment. The minimum inhibitory concentrations (MICs) for C. laurentii, as determined by Etest on RPMI 1640 agar, were 0.25 microg ml(-1) of amphotericin B, 1.25 microg ml(-1) flucytosine, 4 microg ml(-1) fluconazole, 0.50 microg ml(-1) itraconazole and 1.0 microg ml(-1) of ketoconazole. The MIC of amphotericin B for C. albidus was 0.5 microg ml(-1), flucytosine 1.25 microg ml(-1), fluzonazole 4 microg ml(-1), itraconazole 0.5 microg ml(-1) and ketonazole 0.25 microg ml(-1). The agreement of the amphotericin B MIC values obtained in antibiotic medium 3 by the broth microdilution method, with those obtained on casitone medium by Etest, was within a two-dilution range for both isolates. C. laurentii may cause meningitis and may also involve the lungs in AIDS patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号