首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Patients treated with cranial radiation are at risk of GH deficiency (GHD). We evaluated somatotroph responsiveness to maximal provocative tests exploring the GH releasable pool in relation to the impact of radiation damage to the hypothalamic-pituitary unit. The GH-releasing effect of GHRH plus GH secretagogue [GH-releasing peptide (GHRP)-6] (GHRH+GHRP-6) was studied in 22 adult patients (age, 23.2 +/- 1.4 yr; 8 female and 14 male; mean body mass index, 22.6 +/- 0.7 kg/m(2)) who received cranial radiation for primary brain tumor distant from hypothalamic-pituitary region 7.6 +/- 0.7 yr before GH testing. Two stimulatory tests for GH secretion were employed: insulin tolerance test (ITT, 0.15 IU/kg regular insulin i.v. bolus); and GHRH+GHRP-6 test: GHRH (Geref Serono, Madrid, Spain; l microg/kg) plus GHRP-6 (CLINALFA, Laufelingen, Switzerland; 1 microg/kg) as i.v. bolus. Serum GH was measured (Delphia; Perkin Elmer, Wallac, Turku, Finland) at -30, -15, 0, 15, 30, 45, 60, 90, and 120 min. Anterior pituitary function was normal in all except in 1 female with hyperprolactinemia. Twelve out of 22 irradiated patients were GH-deficient (GHD) with both tests. Eleven out of 22 (50%) irradiated patients were severely GHD, according to the ITT (GH < 3 microg/liter; mean GH peak, 1.5 +/- 0.5 microg/liter). In 9 irradiated patients, in whom ITT was performed as well, mean peak GH after the GHRH+GHRP-6 test was 6.2 +/- 0.8 microg/liter, which is considered as severe GHD, according to our own cut-off for the test (peak GH < 10 microg/liter). GH responses to both tests were highly concordant, but the differential in the GH peak concentrations between GHD and non-GHD irradiated patients was significantly larger for the GHRH+GHRP-6 test than that for the ITT. The 2 discordant responses, i.e. poor response to the ITT and good response to the GHRH+GHRP-6 test, were found in 1 hyperprolactinemic female patient and in 1 other female. One irradiated patient was diagnosed as GHD only with the combined test, because ITT was contraindicated because of epilepsy. PRL and cortisol responses to ITT were normal in all irradiated patients and did not depend on the GH status. IGF-I levels were not informative or discriminative between the GHD and non-GHD irradiated adult patients. In conclusion, the use of GH secretagogues plus GHRH is an easy, reliable and accurate way of assessing GH secretion in cranially irradiated patients. Impairment of the GH releasable pool in the irradiated patients, with a maximal provocative test, reflects alterations in the hypothalamic-pituitary unit caused by radiotherapy.  相似文献   

2.
In thyrotoxicosis there is an impaired GH response to GHRH, normal GH responsiveness to GHRP-6 and lack of synergistic GH response after simultaneous administration of both peptides. We have previously shown that the GHRH-induced GH release in these patients increases after an acute reduction of circulating T3 values with administration of iopanoic acid, a compound that inhibits peripheral conversion of T4 to T3. We have now studied the effect of a decrease in serum T3 levels on the GH response to GHRP-6 (1 microg/kg) plus GHRH (100 microg) in 9 hyperthyroid patients before and after 15 days of treatment with iopanoic acid (3 g every 3 days) and propylthiouracil (600 mg/day). Nine normal subjects were also studied. In all hyperthyroid patients iopanoic acid induced a rapid decrease and normalisation of serum T3 levels. In these subjects peak GH (microg/l; mean +/- SE) and AUC (microg/l x 120 min) values after GHRP-6 plus GHRH were significantly higher on day 15 compared to pretreatment values (peak, 18.3 +/- 3.0 vs 13.4 +/- 1.9; AUC, 1227.9 +/- 212.9 vs 968.5 +/- 160.4; p<0.05). Despite the significant enhancement of the GH responsiveness to GHRP-6 plus GHRH after treatment with iopanoic acid, this response remained significantly blunted when compared to controls both in terms of peak GH (18.3 +/- 3.0 vs 83.7 +/- 15.2; p<0.05) and AUC values (1227.9 +/- 212.9 vs 4956.5 +/- 889.3; p<0.05). In conclusion, our results show that an acute decrease of circulating T3 levels enhances, but does not normalise, the GH response to GHRP-6 plus GHRH in thyrotoxicosis. This could suggest that circulating T3 does not have a major role in the mechanisms involved in the synergistic effect of these peptides.  相似文献   

3.
OBJECTIVE: Obesity is characterized by low basal levels of growth hormone (GH) and impeded GH release. However, the main problem arises in the diagnosis of GH deficiency in adults, as all accepted cut-offs in the diagnostic tests of GH reserve are no longer valid in obese subjects. In this work, the role of obesity in the GH response elicited by the GHRH + GHRP-6 test was assessed in a large population of obese and nonobese subjects. PATIENTS: GHRH + GHRP-6-induced GH peaks were evaluated in 542 subjects. One hundred and five were healthy obese, 50 were morbid obese, and 261 were nonobese (both normal weight and overweight). One hundred and seventy-six GH-deficient patients (obese and nonobese) were also studied. RESULTS: A regression analysis of the 366 subjects with normal pituitary function indicated that adiposity had a negative effect on the elicited GH peak (r = -0.503, P < 0.0001). A receiver operating characteristic (ROC) curve analysis showed that in subjects with a BMI < or =35, the currently accepted cut-offs of the GHRH + GHRP-6 test (GH peaks > or =20 microg/l: normal secretion; GH peaks < or =10 microg/l: GH deficiency), were fully operative. However, in subjects with a BMI > 35, normality was indicated by GH peaks > or =15 microg/l and GH deficiency by peaks < or =5 microg/l (1 microg/l = 2.6 mU/l). CONCLUSIONS: This study confirms: (a) that the combined provocative test is adequate to separate normal and GH-deficient subjects; (b) the negative effect of obesity on GH secretion; (c) that obesity accounts for 25% of the reduction of GH release; and (d) that present cut-off values are applicable to normal weight, overweight and grade I obesity subjects, whereas in obese subjects with a BMI exceeding 35, all the normative limits of the GHRH-GHRP +6 test must be reduced by 5 microg/l.  相似文献   

4.
OBJECTIVE: The diagnosis of GH deficiency in adults should be made using provocative testing of GH secretion. The insulin tolerance test (ITT) is recommended as the gold standard investigation. Because of the risk of serious complications, patients with epilepsy or known ischemic heart disease should not undergo this test. GHRP-6 is a synthetic hexapeptide that releases GH by binding to specific hypothalamic and pituitary receptors. We assessed the diagnostic capability of GH stimulation by GHRP-6 alone or in combination with GHRH in comparison to the results of an ITT. DESIGN: Twenty patients underwent an ITT for suspected pituitary or adrenal disease. Either GHRP-6 (1 microg/kg) alone, or GHRP-6 in combination with GHRH (1 microg/kg) were administered on different days. Blood samples were obtained during a subsequent 90-min period for measurement of GH. RESULTS: Ten patients had a GH peak response of less than 3 microg/l during ITT and were considered growth hormone deficient (GHD). The GH mean peak (+/-S.E.M., range) in this group was 0.7 microg/l (+/-0.3, 0.1-2.9) compared with 14.5 microg/l (+/-3.5, 3.8-40.8) in the group of patients with a GH peak response of more than 3 microg/l (growth hormone sufficient (GS)). For the GHRP-6 test, the GH mean peak was 1.3 microg/l (+/-0.6, 0.1-6.7) in the GHD group versus 25.7 microg/l (+/-5.5, 7.7-54.2) in the GS group. After GHRP-6+GHRH, the GH mean peaks were 4.0 microg/l (+/-1.3, 0.2-11.9) versus 54.7 microg/l (+/-11.1, 13.9-136.0) respectively. During administration of GHRP-6, the only side effects observed were flush symptoms. CONCLUSIONS: Peak GH levels below 7 microg/l for the GHRP-6 test and below 13 microg/l for the combined GHRP-6+GHRH test identified all patients with GH deficiency correctly as defined by ITT. The results suggest that testing with GHRP-6 or GHRP-6+GHRH is as sensitive and specific as an ITT for the diagnosis of adult GH deficiency.  相似文献   

5.
OBJECTIVES: Somatostatin (SS) may not merely be inhibitory to GH secretion but, under appropriate temporal conditions, may act in a paradoxically positive manner to sensitize somatotroph responsiveness to GH-releasing hormone (GHRH). SS infusion withdrawal (SSIW) produces a rebound GH rise in humans and increases GHRH-induced GH release. Theoretically, SSIW leaves the somatotroph cell in a situation of low endogenous SS. In obesity, there is markedly decreased GH secretion. In both children and adults, the greater the body mass index (BMI), the lower the GH response to provocative stimuli. It has been postulated that increased hypothalamic somatostatin secretion is the main mechanism responsible for the blunted GH secretion of obesity. There are no data evaluating GH responsiveness to SSIW plus GHRH in obese adults. The aim of the present study was to evaluate the GH response to SSIW plus GHRH in a group of control subjects and a group of obese patients. PATIENTS AND MEASUREMENTS: Seven obese patients (six female, one male) with a BMI of 36.1 +/- 7.7 kg/m2 were studied. As a control group, seven normal subjects (six female, one male) with a BMI of 20.3 +/- 0.9 kg/m2 were also studied. Two tests were performed. On one day, somatostatin (SS) i.v. infusion (500 microg from 0-90 min) was performed followed by a placebo i.v. bolus 90 min after SS withdrawal (SSIW). On another day, SS i.v. infusion (500 microg from 0-90 min) was performed followed by a GHRH (100 microg) i.v. bolus 90 min after SS withdrawal. A second group of seven obese patients (six female, one male) with a BMI of 32.2 +/- 2.3 kg/m2 were studied. As a second control group, seven normal healthy subjects (six female, one male) with a BMI of 20.1 +/- 0.6 kg/m2 were also studied. On one day, saline infusion was performed followed by a placebo i.v. bolus at 90 min. On another day, saline infusion was performed followed by a GHRH (100 microg) i.v. bolus at 90 min. Blood samples were taken at appropriate intervals for determination of GH. Serum GH was measured by chemiluminescent immunometric assay. Statistical analysis was performed by Wilcoxon and Mann-Whitney tests. RESULTS: GHRH-induced GH secretion in normal subjects showed a mean peak of 15.8 +/- 2.1 microg/l. Normal control subjects had a mean peak of 3.1 +/- 1.5 microg/l after SSIW-induced GH secretion. When GHRH was administered after SSIW there was an increased GH secretion with a mean peak of 23.3 +/- 4.4 microg/l, significantly greater than the response after SSIW alone (P < 0.05) and GHRH alone (P < 0.05). GHRH-induced GH secretion in obese patients was decreased with a mean peak of 3.9 +/- 1.5 microg/l. In obese patients, GH secretion after SSIW was markedly decreased with a mean peak of 1.0 +/- 0.4 microg/l. When GHRH was administered after SSIW, an increase in GH secretion was observed with a mean peak of 4.3 +/- 0.9 microg/l, significantly greater than SSIW alone (P < 0.05) but not GHRH alone (P = NS), and significantly less than in normal subjects (P < 0.05). CONCLUSIONS: This study demonstrates a significantly blunted peak GH response to somatostatin infusion withdrawal plus GHRH in obese patients compared to normal subjects. In this theoretical situation of decreased somatostatinergic tone, there is persistence of GH hyposecretion in obesity, suggesting the existence of multiple defects responsible for decreased GH secretion in obesity. We also found that in obese patients, in contrast to normal subjects, SSIW did not increase GHRH-induced GH secretion.  相似文献   

6.
GH release is increased by reducing circulating free fatty acids (FFAs). Aging is associated with decreased plasma GH concentrations. We evaluated GH releasing capacity in nine healthy elderly men after administration of GH-releasing peptide 2 (GHRP-2), with or without pretreatment with the antilipolytic drug acipimox, and compared the GHRP-2-induced GH release with the response to GHRH. The area under the curve (AUC) of the GH response after GHRP-2 alone was 4.8 times higher compared with GHRH alone (1834 +/- 255 vs. 382 +/- 78 microg/L.60 min, P: < 0.001). Acipimox, which reduced FFAs from 607 micromol/L to 180 micromol/L, increased the GH AUC to 1087 after GHRH and to 2956 microg/L.60 min after GHRP-2 (P: < 0.01). The AUC after acipimox/GHRP-2 were positively correlated with the AUC after GHRP-2 alone (r = 0.93, P: < 0.01); this was also observed between acipimox/GHRH and GHRH alone (r = 0.73, P: = 0.03). Significant negative correlations were observed between basal FFAs and AUC after GHRH or GHRP-2 after combining the data with and without acipimox (r = 0.58, P: = 0.01 and r = 0.48, P: = 0.04, respectively), and between basal FFAs and GH at t = 0 (r = -0.44, P: = 0.001). Interestingly, GHRP-2 administration was followed by a significant early rise in plasma FFAs by 60% (P = 0.01), indicating an acute lipolytic effect. In conclusion, reduction of circulating FFAs strongly enhances GHRP-2-stimulated GH release in elderly men. The data indicate that the decreased GH release associated with aging can be reversed by acipimox and that the pituitary GH secretory capacity in elderly men is still sufficient.  相似文献   

7.
BACKGROUND: In type 1 diabetes mellitus (DM1), high GH basal levels and exaggerated responses to several stimuli have been described. Acipimox is an antilipolytic drug that produces an acute reduction of free fatty acids (FFA). The aim of this study was to evaluate the effect of the reduction of plasma FFA with acipimox, alone or in combination with GHRH, on GH secretion in DM1. METHODS: Six type 1 diabetic patients were studied (three women, three men), mean age of 30 +/- 2.1 years, body mass index (BMI) 23.1 +/- 1.5 kg/m2. As a control group, six normal healthy subjects of similar age, sex and weight were studied. Each patient and control received GHRH [1 microg/kg intravenously (i.v.) at min 180], acipimox (250 mg orally at min 0 and 120) and GHRH plus acipimox on three separated days. Subjects served as their own control. Blood samples were taken at appropriate intervals for determination of GH, FFA and glucose. RESULT: In control subjects, the GH area under the curve (AUC; microg/l x 120 min) was for acipimox-treated 1339 +/- 292 and 1528 +/- 330 for GHRH-induced secretion. The GH AUC after the administration of GHRH plus acipimox was 3031 +/- 669, significantly greater than the response after acipimox alone (P<0.05) or GHRH alone (P<0.05). In diabetic patients, the GH AUC was for acipimox-treated 2516 +/- 606 and 1821 +/- 311 for GHRH-induced secretion. The GH AUC after the administration of GHRH plus acipimox was 7311 +/- 1154, significantly greater than the response after acipimox alone (P<0.05) or GHRH alone (P<0.05). The GH response after acipimox was increased in diabetic when compared with normal (P<0.05), with a GH AUC of 1339 +/- 292 and 2515 +/- 606 for normal subjects and diabetic patients, respectively. The GH response after acipimox plus GHRH was increased in diabetic when compared with normal (P<0.05), with a GH AUC of 3031 +/- 669 and 7311 +/- 1154 for normal subjects and diabetic patients, respectively. The administration of acipimox induced a FFA reduction during the entire test. CONCLUSIONS: Reduction of free fatty acids with acipimox is a stimulus for GH secretion in DM1. The combined administration of GHRH plus acipimox induces a markedly increased GH secretion in type 1 diabetic patients when compared with normal subjects. These data suggest that patients with DM1 exhibit a greater GH secretory capacity than control subjects, despite the fact that endogenous FFA levels seems to exert a greater inhibitory effect on GH secretion in these patients.  相似文献   

8.
The aim of this study was to investigate the effect of two different glucose levels on GH response to the combined administration of GHRH+GHRP-6 in patients with type 2 diabetes. GH response to i.v. bolus of GHRH+GHRP-6 (100 mcg, each) was measured in 12 male patients with type 2 diabetes (mean age: 53.9+/-1.59 years; BMI: 25.58+/-0.39 kg/m(2); mean HbA(1c): 8.7+/-0.42%), during a euglycemic (mean glucose: 4.92+/-0.08 mmol) hyperinsulinemic clamp (insulin infusion rate of 100 mU/kg/h) and a hyperglycemic clamp (mean glucose: 12.19+/-0.11 mmol/l). There was no difference in basal GH levels between the hyperglycemic and euglycemic clamps (2.9+/-0.99 mU/l versus 1.48+/-0.44 mU/l; P>0.05). Peak GH response to GHRH+GHRP-6 during the hyperglycemic clamp was lower than in the englycemic clamp (112.45+/-14.45 mU/l versus 151.06+/-16.87 mU/l; P<0.05). Area under the GH curve was lower in the hyperglycemic than in the euglycemic clamp (6974.49+/-1001.95 mU/l/min versus 9560.75+/-1140.65 mU/l/min; P<0.05). It is concluded that hyperglycemia significantly reduces GH response to combined administration of GHRH+GHRP-6 in normal weight patients with type 2 diabetes. It is suggested that ambient glucose levels should be taken into account during interpretation of GH response to combined administration of GHRH+GHRP-6 in patients with type 2 diabetes.  相似文献   

9.
OBJECTIVE AND DESIGN: Ageing and obesity result in decreased activity of the GH/IGF-I axis and concomitant impaired GH responses to secretory stimuli. We therefore determined the validity of the GH cut-off value of 15.0 microg/l in the GH-releasing hormone (GHRH)/GH releasing peptide-6 (GHRP-6) test for the diagnosis of GH deficiency in elderly or severely obese men. METHODS: We performed a combined GHRH/GHRP-6 test in ten elderly men (mean age 74 years; mean body mass index (BMI) 24.6 kg/m(2)), nine obese men (mean age 47 years; mean BMI 40.6 kg/m(2)) and seven healthy male controls (mean age 51 years, mean BMI 24.3 kg/m(2)). After assessment of fasting plasma GH, IGF-I and IGF-binding protein-3 (IGFBP-3), GHRH (100 microg) and GHRP-6 (93 microg) were given intravenously as a bolus injection. Repeated GH measurements were performed for two hours. RESULTS: Both peak GH levels and areas under the curve (AUC) were significantly lower in the obese than in the controls (peak 13.2 vs 53.4 microg/l, P = 0.001; AUC 707 vs 3250 microg/l x 120 min; P = 0.001). Mean GH response in the elderly was lower than in the controls (peak 35.0 microg/l; AUC 2274 microg/l x 120 min), but this was not statistically significant. In contrast, GH peak levels in seven obese men remained below the cut-off level of 15.0 microg/l associated with severe GH deficiency. All others had GH peak levels exceeding this threshold. IGFBP-3 levels were significantly lower in the elderly than in the controls (1.35 vs 2.05 mg/l, P = 0.001). Baseline GH or IGF-I did not differ significantly between groups. CONCLUSIONS: GH responses following GHRH/GHRP-6 administration were significantly reduced in severely obese men, but were not significantly reduced in elderly men, despite a negative trend. Our data indicate that the cut-off GH level of 15.0 microg/l after GHRH + GHRP-6 administration for the diagnosis of severe GH deficiency cannot be used in severely obese men.  相似文献   

10.
Aim of the present study was to further clarify the negative GH auto-feedback mechanisms in childhood. To this goal we studied the effects of rhGH and/or GHRH administration on the GH response to GHRH or hexarelin (HEX), a peptidyl GH secretagogue, in normal short children. In 34 prepubertal children (12 girls and 22 boys, age 8.2- 14.2 yr) with normal short stature (normal height velocity and IGF-I levels) the following tests were performed: group A (no.=11): GHRH (GHRH 1 - 29, Geref, Serono; 1 microg/kg iv at 150 min) preceded by saline or GHRH at 0 min; group B (no.=6): GHRH preceded by saline or rhGH (0.005 IU/kg iv at 0 min); group C (no.=6): GHRH preceded by rhGH alone or combined with GHRH; group D (no.=6): HEX (2 microg/kg iv at 150 min) alone or preceded by rhGH. In group A, the GH response to GHRH was not modified by pre-treatment with GHRH (GH peak, mean+/-SEM: 16.7+/-2.9 vs 15.1+/-2.3 microg/l, respectively). In group B, the GH response to GHRH was clearly inhibited by rhGH (8.7+/-2.3 vs 38.8+/-4.5 microg/l, p<0.001); the GH rise after rhGH in group B overlapped with that after GHRH in group A. In group C, the GH response to GHRH after pre-treatment with rhGH (13.2+/-4.0 microg/l) was similar to that in group B and was not significantly modified by pre-treatment with rhGH+ GHRH (6.9+/-2.7 microg/l); the GH rise after rhGH+GHRH was higher (p<0.05) than that after rhGH alone. In group D, the GH response to HEX was significantly blunted by pre-treatment with rhGH (34.1+/-11.7 vs 51.2+/-17.9 microg/l, p<0.05). Our results demonstrate that in childhood the somatotroph response to GHRH is preserved after GHRH while it is inhibited after rhGH administration, which is also able to blunt the GH response to HEX. Thus, the somatostatin-mediated negative GH auto-feedback is already operative in childhood; the reason why the GHRH- induced GH rise is not inhibited by GHRH pre-treatment is unexplained.  相似文献   

11.
BACKGROUND: Leptin has recently been shown to have a stimulatory effect on basal GH secretion. However, the mechanisms by which leptin exert this effect are not yet clear. GHRH and GH-releasing peptide (GHRP)-6 are the two most potent GH secretagogues described to date. OBJECTIVE: To determine if leptin could also enhance in vivo GH responses to a maximal dose of GHRH. DESIGN: Leptin (10microg i.c.v.) or vehicle was administered at random before GHRH (10microg/kg i,v.) or GHRP-6 (50microg/kg i.v.), to freely-moving rats with food available ad libitum and to (48h) food-deprived rats. METHODS: Leptin and GH concentrations were measured by radioimmunoassay. Comparison between the different groups was assessed by the Mann-Whitney test. RESULTS: In comparison with fed rats, food-deprived rats showed a marked decrease in GH responses to GHRH as assessed by the area under the curve (5492+/-190ng/ml in fed rats and 1940+/-128ng/ml in fasted rats; P<0.05) and GHRP-6 (3695+/-450 in fed rats and 1432+/-229 in fasted rats; P<0.05). In comparison with its effects in vehicle-treated rats, leptin administered to food-deprived rats markedly increased GH responses to both GHRH (6625+/-613ng/ml; P<0.05) and GHRP-6 (5862+/-441ng/ml; P<0.05). CONCLUSIONS: These data suggest that the blunted GH response to GHRH and GHRP-6 in food-deprived rats is a functional and reversible state, and that the decreased leptin concentrations could be the primary defect responsible for the altered GH secretion in food-deprived rats.  相似文献   

12.
OBJECTIVE: Reduction of plasma free fatty acids leads to enhanced GH response after stimulation by GH-releasing hormone (GHRH). We studied the clinical usefulness of combined administration of acipimox and GHRH for the diagnosis of GH deficiency. DESIGN: We evaluated 35 patients [mean age 53.0 years; mean body mass index (BMI) 26.7 kg/m2] after pituitary surgery. We compared GH responses after acipimox and GHRH with the GH response during an insulin tolerance test (ITT) and, in a subgroup of 12 patients, with the GHRH/arginine test. The acipimox/GHRH test was additionally performed in 21 control subjects (mean age 53.8 years; mean BMI 24.7 kg/m2). RESULTS: In the patients, the mean (+/- SEM) peak GH was almost four-fold higher after acipimox/GHRH (6.94 +/- 1.07 microg/l, range 0.46-23.1; P < 0.001) and after GHRH/arginine (8.32 +/- 1.23 microg/l, range 1.1-49.2; P < 0.001) than after ITT (1.84 +/- 0.46 microg/l, range 0.01-11.9). According to the ITT, 29 patients were severely GH deficient (peak GH < 3.0 microg/l). Peak GH levels after acipimox/GHRH in controls ranged from 7.5 to 78.4 microg/l (mean 29.3 +/- 3.5). GH peak values during the acipimox/GHRH test were significantly correlated with values from the ITT (r = 0.63, P < 0.01) and GHRH/arginine test (r = 0.87, P < 0.001). Areas under the curve were also correlated. According to generally accepted cut-off peak GH levels for the ITT and GHRH/arginine test, a GH peak exceeding 11.2 micro g/l excludes severe GH deficiency after acipimox/GHRH. Our control data indicate that the cut-off level is lower at older age. CONCLUSIONS: The acipimox/GHRH test leads to GH responses similar to those of the GHRH/arginine test, and to higher peak GH values if compared with the ITT. The acipimox/GHRH test is a potential additional tool to detect GH deficiency in patients with pituitary disease, in particular in patients with a perturbation of fatty acid metabolism.  相似文献   

13.
The hormonal diagnosis of GH deficiency in childhood is conventionally based on the GH response to at least two provocative stimuli. Among these, arginine (ARG) has long been considered a classical, centrally mediated stimulus of GH secretion. ARG is also able to potentiate the GH response to GHRH, likely inhibiting hypothalamic somatostatin; this combined test is one of the most potent to explore the maximal secretory capacity of somatotroph cells. Based on these premises, we verified whether the sequential administration of ARG and ARG+GHRH could be feasible as single step provocative test to evaluate the GH releasable pool in short children. To this goal, 48 normal short children (35 M and 13 F, 12.0+/-0.4 yr, PS 1: 255 II-IV: 23) underwent a test with ARG (0.5 g/kg i.v. from 0 to +30 min) followed by a coadministration of ARG (from +120 to 150 min) plus GHRH (1 microg/kg i.v. at +120 min). ARG alone elicited a clear GH response (mean peak vs baseline: 12.1+/-1.7 vs 2.0+/-0.4 microg/l, p<0.001, Cmax range 12-51.0 microg/l). Following this GH rise, the hormonal levels at +120 min approached to baseline levels (4.2+/-0.8 microg/l) but then showed marked response to the coadministration of ARG+GHRH. The GH peak following ARG+GHRH (mean peak: 47.8+/-3.3 microg/l, p<0.001; Cmax 22.4-150.0 microg/l) was clearly higher (p<0.001) than that recorded after ARG alone. The GH responses to both ARG and ARG+GHRH were independent of gender, puberty, height velocity, body mass index (BMI) and IGF-I levels. Nine normal short children (16%) had GH peaks lower than 7 microg/l after ARG alone, while none showed GH peak below 20 microg/l after ARG+GHRH. Thus, ARG alone is a good stimulus of GH secretion but false positive responses frequently occur in normal short children. ARG+GHRH is a more potent stimulus giving no false positive responses even after previous challenge with ARG alone. Testing with sequential administration of ARG and ARG+GHRH may allow the single step evaluation of the somatotroph response to central and pituitary stimuli in short children.  相似文献   

14.
Classical provocative stimuli of GH secretion such as insulin-induced hypoglycaemia, arginine, clonidine, glucagon and levodopa have been widely used in clinical practice for approximately 30 years. On the other hand, in the last 10 years new potent stimuli of GH secretion have been proposed, but an extensive comparison with the classical ones has rarely been performed, at least in adults. In order to compare the GH-releasing activity of old and new provocative stimuli of GH secretion, and to define the normative values of the GH response, in 178 normal adults (95 males, 83 females; age range: 20-50 years, all within +/-15% of their ideal body weight), we studied the GH response to: insulin-induced hypoglycaemia (ITT, 0.1IU/kg i.v.), arginine (ARG, 0.5g/kg i.v.), clonidine (CLO, 300 microg/kg p.o.), glucagon (GLU, 1mg i.m.), pyridostigmine (PD, 120mg p.o.), galanin (GAL, 80pmol/kg per min), GH-releasing hormone (GHRH, 1 microg/kg i.v.), GHRH+ARG, GHRH+PD, hexarelin, a GH-releasing protein (HEX, 2 microg/kg i.v.) and GHRH+HEX (0.25 microg/kg i.v.). The mean (+/-s.e.m.) peak GH response to ITT (21.8+/-2.8, range: 3.0-84.0 microg/l) was similar to those to ARG (18.0+/-1.6, range: 2.9-39.5 microg/l) or GLU (20. 5+/-2.2, range: 10.6-36.9 microg/l) which, in turn, were higher (P<0. 001) than those to CLO (8.2+/-1.6, range: 0.3-21.5 microg/l), PD (9. 6+/-1.1, range: 2.2-33.0 microg/l) and GAL (9.3+/-1.1, range: 3.9-18. 3 microg/l). The GH response to GHRH (19.1+/-1.5, range: 2.7-55.0 microg/l) was similar to those after ITT, ARG or GLU but clearly lower than those after GHRH+ARG (65.9+/-5.5, range: 13.8-171.0 microg/l) and GHRH+PD (50.2+/-4.6, range: 17.7-134.5 microg/l) which, in turn, were similar. The GH response to HEX (55.3+/-5.5, range: 13.9-163.5 microg/l) was similar to those after GHRH+ARG and GHRH+PD but lower (P<0.001) than that after GHRH+HEX (86.0+/-4.3, range: 49. 0-125.0 microg/l) which was the most potent stimulus of GH secretion. In this adult population the third centile limits of peak GH response to various stimuli were the following: ITT: 5.3; ARG: 2.9; CLO: 1.5; GLU: 7.6; PD: 2.2; GAL: 4.0; GHRH: 5.0; GHRH+ARG: 17.8; GHRH+PD: 17.9; HEX: 21.6; GHRH+HEX: 57.1. These results confirm that, among classical provocative tests of GH secretion, ITT followed by ARG and GLU are the most potent ones and possess clear limits of normality. GHRH+ARG or PD and HEX are strong stimuli of GH secretion which, however, is maximally stimulated by a combination of GHRH and a low dose of HEX. It is recommended that each test is used with appropriate cut-off limits.  相似文献   

15.
GH deficiency (GHD) in adults must be shown by provocative testing of GH secretion. Insulin-induced hypoglycemia (ITT) is the test of choice, and severe GHD, treated with recombinant human GH replacement, is defined by a GH peak response to ITT of less than 3 microg/L. GHRH plus arginine (ARG) is a more provocative test and is as sensitive as ITT provided that appropriate cut-off limits are assumed. GH secretagogues are a family of peptidyl and nonpeptidyl GH-releasing molecules that strongly stimulate GH secretion and, even at low doses, truly synergize with GHRH. Our aim was to verify the diagnostic reliability of the hexarelin (HEX; 0.25 microg/kg, iv) and GHRH (1 microg/kg, iv) test for the diagnosis of adult GHD. To this goal, in the present study we 1) defined the normal ranges of the GH response to GHRH+HEX in a group of normal young adult volunteers (NS; n = 25; 18 men and 7 women; age, 28.5+/-0.6 yr) and in 11 of them verified its reproducibility in a second session, and 2) compared the GH response to GHRH+HEXwith that to ITT in a group of normal subjects (n = 33; 12 men and 21 women; age, 34.1+/-1.5 yr) and hypopituitaric adults with GHD (n = 19; 10 men and 9 women; age, 39.9+/-2.2 yr; GH peak <5 microg/L after ITT). The GH response to GHRH+ARG was also evaluated in all GHD and in 77 normal subjects (40 men and 37 women; age, 28.1+/-0.6 yr). The mean GH peak after GHRH+HEX in NS was 83.6+/-4.5 microg/L; the third and first percentile limits of the normal GH response were 55.5 and 51.2 microg/L, respectively). The GH response to GHRH+HEX in NS showed good intraindividual reproducibility. In GHD the mean GH peak after GHRH+HEX (2.6+/-0.7 microg/L) was similar to that after GHRH+ARG (3.6+/-1.0 microg/L), and both were higher (P < 0.001) than that after ITT (0.6+/-0.1 microg/L); the GH responses to GHRH+HEX were positively associated with those to ITT and GHRH+ARG. Analyzing individual GH responses, 100% had severe GHD after ITT (GH peak, <3 microg/L). After GHRH+HEX all GHD had GH peaks below the third percentile limit of normality appropriate for this test (i.e. 55.5 microg/L). Thirteen of 19 (68.4%) GHD subjects had GH peaks below 3 microg/L after GHRH+HEX but all 19 (100%) had GH peaks below the first percentile limit of normality (i.e. 51.2 microg/L). The GH responses to GHRH+HEX were highly concordant with those after GHRH+ARG. In conclusion, the present results define normal limits of the GH response to stimulation with low dose HEX+GHRH in normal adults and show that this test is as sensitive as ITT for the diagnosis of adult GHD provided that appropriate cut-off limits are considered.  相似文献   

16.
We have recently presented experimental evidence indicating that insulin has a physiologic inhibitory effect on growth hormone (GH) release in healthy humans. The aim of the present study was to determine whether in obesity, which is characterized by hyperinsulinemia and blunted GH release, insulin contributes to the GH defect. To this aim, we used a simplified experimental protocol previously used in healthy humans to isolate the effect of insulin by removing the interference of free fatty acids (FFAs), which are known to block GH release. Six obese subjects (four men and two women; age, 30.8 +/- 5.2 years; body mass index, 36.8 +/- 2.8 kg/m2 [mean +/- SE]) and six normal subjects (four men and two women; age, 25.8 +/- 1.9 years; body mass index, 22.7 +/- 1.1 kg/m2) received intravenous (i.v.) GH-releasing hormone (GHRH) 0.6 microg/kg under three experimental conditions: (1) i.v. 0.9% NaCl infusion and oral placebo, (2) i.v. 0.9% NaCl infusion and oral acipimox, an antilipolytic agent able to reduce FFA levels (250 mg at 6 and 2 hours before GHRH), and (3) euglycemic-hyperinsulinemic clamp (insulin infusion rate, 0.4 mU x kg(-1) x min(-1)). As expected, after placebo, the GH response to GHRH was lower for obese subjects versus normals (488 +/- 139 v 1,755 +/- 412 microg/L x 120 min, P < .05). Acipimox markedly reduced FFA levels and produced a mild reduction of insulin levels; under these conditions, the GH response to GHRH was increased in both groups, remaining lower in obese versus normal subjects (1,842 +/- 360 v 4,871 +/- 1,286 microg/L x 120 min, P < .05). In both groups, insulin infusion yielded insulin levels usually observed under postprandial conditions and reduced circulating FFA to the levels observed after acipimox administration. Again, the GH response to GHRH was lower for obese subjects versus normals (380 +/- 40 v 1,075 +/- 206 microg/L x 120 min, P < .05), and in both groups, it was significantly lower than the corresponding response after acipimox. In obese subjects, as previously reported in normals, the GH response to GHRH was inversely correlated with the mean serum insulin (r = -.70, P < .01). In conclusion, our data indicate that in the obese, as in normal subjects, the GH response to GHRH is a function of insulin levels. The finding that after both the acipimox treatment and the insulin clamp the obese still show higher insulin levels and a lower GH response to GHRH than normal subjects suggests that hyperinsulinemia is a major determinant of the reduced GH release associated with obesity.  相似文献   

17.
The growth hormone (GH) response to GH-releasing hormone (GHRH) in patients with non-insulin-dependent diabetes mellitus (NIDDM) was found to be either decreased or normal. The recent introduction of a new and potent GH stimulus, GH-releasing peptide-6 (GHRP-6), allowed further investigation of the functional properties of somatotropes in a variety of metabolic diseases. The aim of the present study was to investigate the response of GH to GHRP-6, GHRH, and GHRP-6 + GHRH in NIDDM patients. Twenty-one patients with NIDDM were divided into two groups: group A, normal weight (body mass index [BMI], 23.31+/-0.62 kg/m2); and group B, overweight (BMI, 27.62+/-0.72 kg/m2). Eight normal-weight control subjects (group C) were studied. Each subject received GHRP-6 (90 microg intravenously [i.v.]), GHRH (100 microg i.v.), and GHRP-6 + GHRH on three separate occasions. There was no difference between the GH response after GHRP-6 in groups A, B, and C in terms of the GH peak (50.95+/-11.55, 51.96+/-7.71, and 70.07+/-15.59 mU/L, P>.05) and the area under the curve (AUC) for GH (2,340.06+/-617.36, 2,684.54+/-560.57, 3,462.78+/-1,223.53 mU/L/120 min, P>.05). A decreased GH response to GHRH was found in group B in comparison to group A (B v A: peak GH response, 8.25+/-1.90 v 22.19+/-8.81, P<.05; AUC GH, 479.62+/-84.0 v 1,443.21+/-743.76, P<.05). There was no difference in the GH response between group A and group C (peak GH response, 22.19+/-8.81 v 26.42+/-6.71, P>.05; AUC, 1,443.21+/-743.76 v 1,476.51+/-386.56, P>.05). There was a significant difference between the same parameters in group B versus group C (8.25+/-1.90 v 26.42+/-6.71, P<.05; AUC, 479.62+/-84.0 v 1,476.51+/-386.56, P<.05). The combined administration of GHRP-6 + GHRH elicited a synergistic GH response in NIDDM patients and controls. There was a significant difference between groups A and B for the GH peak (96.49+/-9.80 v 68.38+/-8.25, P<.05), whereas there was no difference for the AUC (5,111.13+/-703.77 v 3,425.95+/-459.67, P>.05). There was no difference in the peak GH after the combined test between group A and group C (96.49+/-9.80 v 139.82+/-24.16, P>.05), whereas the peak GH in the same test was significantly decreased in group B in comparison to group C (68.38+/-8.25 v 139.82+/-24.16, P<.05). The AUC for GH after combined GHRP-6 + GHRH in group A versus group C was not significantly different (5,111.13+/-703.77 v 9,274.71+/-1,541.46, P>.05), whereas there was a significant difference for the same test between group B and group C (3,425.95+/-459.67 v 9,274.71+/-1,541.46, P<.05). Our results demonstrate that normal-weight NIDDM patients have a preserved GH response to GHRP-6, GHRH, and GHRP-6 + GHRH, and overweight NIDDM patients have a blunted response to GHRH and GHRP-6 + GHRH. The preserved GH response to GHRP-6 in both diabetic groups suggests that the secretory potential of somatotropes is preserved in NIDDM patients. The impairment of the GH response to GHRH in overweight NIDDM patients could be a functional defect due to the obesity, since it could be overridden by administration of GHRP-6.  相似文献   

18.
The GH response to provocative stimuli in obese is often as low as in panhypopituitaric patients with severe GHD; however, IGF-I levels are normal or slightly reduced. In 53 patients with simple obesity (11 M and 42 F, age: 40.3+/-1.6 yr, BMI: 39.1+/-1.0 Kg/m2), we evaluated the GH response to GHRH (1 microg/kg iv)+arginine (ARG, 0.5 g/kg iv), and total IGF-I levels. The mean (+/-SE) GH peak after GHRH+ARG was markedly lower (74% reduction, p<0.0001) in obese (16.8+/-2.0 microg/l) than in normal subjects (62.7+/-4.3 microg/l). IGF-I levels in obese patients (134.0+/-7.6 microg/l) were lower (33% reduction, p<0.001) than in normal subjects (200.8+/-5.7 microg/l). Taking into account the 3rd centile limit of normal response, the GH response to GHRH+ARG was reduced in 62.3% (33/53) of the obese patients, and 21.2% (7/33) of them had low IGF-I levels. Assuming the 1st centile limit, it was reduced in 33.9% (18/53) obese subjects, and 22% (4/18) of them had low IGF-I levels. Considering 3.0 microg/L as arbitrary cut-off, the GH response was reduced in 5.7% (3/53) of the obese patients, and still one of them had low IGF-I levels. Our findings: a) confirm that the secretory capacity of somatotroph cells is often deeply impaired in obesity; b) demonstrate that IGF-I assay generally rules out severe impairment of GH/IGF-I axis in obese patients with marked reduction of the GH secretion; c) indicate that the percentage of obese patients with concomitant reduction of GH secretion and IGF-I levels is not negligible. Thus, IGF-I assay should be routinely performed in obese patients; those presenting with low IGF-I levels should undergo further evaluation of their hypothalamo-pituitary function and morphology, particularly in the presence of empty sella.  相似文献   

19.
OBJECTIVE: Acute administration of glucocorticoids stimulates GH secretion probably by a decrease in hypothalamic somatostatin release. GHRP-6 is a synthetic hexapeptide that increases GH secretion by a mechanism of action not yet fully known, but apparently not by inhibition of hypothalamic somatostatin release. The aim of this study was to evaluate the effect of acute dexamethasone administration on GH responsiveness to GHRP-6 in man. DESIGN: One group of subjects received iv GHRP-6 (1 microg/kg), GH-releasing hormone (GHRH; 100 microg), GHRH plus GHRP-6 or saline 3.5 h after oral acute dexamethasone administration (4 mg; at 0600 h). A second study group was treated with GHRP-6, GHRH or GHRP-6 plus GHRH after placebo ingestion, following the same protocol. PATIENTS: Sixteen normal subjects (mean age: 29 +/- 3.3 years), with normal BMI (22.4 +/- 2.0 kg/m2), were studied. Eight subjects received dexamethasone and the other eight were treated with placebo. MEASUREMENTS: Serum GH was measured by a two site monoclonal antibody immunofluorometric assay. RESULTS: In the placebo-treated subjects, mean peak GH (mU/l; mean +/- SE) and AUC (mU.min/l) values after GHRP-6 administration (peak: 43.8 +/- 9.0; AUC: 2262.0 +/- 459. 2) did not differ from those observed after GHRH injection (peak: 49. 8 +/- 12.0; AUC: 2903.4 +/- 872.6). The association of the two peptides markedly increased GH levels (peak: 172.4 +/- 34.2; AUC: 10393.0 +/- 1894.8) compared with the isolated administration of GHRP-6 or GHRH. In the subjects who received dexamethasone 3.5 h before saline injection, GH baseline values were significantly higher than those observed after 90 min of sampling (12.4 +/- 9.4 vs. 4.6 +/- 2.0). Mean GH peak and AUC values after GHRP-6 (peak: 78.8 +/- 11.0; AUC: 4114.6 +/- 588.2) and after GHRH administration (peak: 46.8 +/- 16.0; AUC: 3006.8 +/- 1010.0) did not differ significantly in the dexamethasone-treated subjects. In this study group, the administration of the two peptides together caused a significant increase in both peak (119.2 +/- 16.0) and AUC values (7377.0 +/- 937.2) compared with the response obtained after each peptide alone. When the two groups were compared, a significant increase in GH responsiveness to GHRP-6 was observed after dexamethasone administration compared with placebo. No differences in GH response to GHRH, or to the administration of the two peptides together, were seen between the two groups. CONCLUSIONS: Oral dexamethasone, at a dose of 4 mg, enhances GH releasing peptide-6-induced GH release when administered 3.5 h earlier. These results suggest that dexamethasone and GHRP-6 could act at different sites of GH releasing mechanisms. Further studies are necessary to elucidate these findings.  相似文献   

20.
OBJECTIVE: Previous studies have suggested that post-irradiation GH insufficiency results from a loss of GHRH secretion, since many patients were able to release GH following exogenous GHRH stimulation. However, supramaximal doses of GHRH were used and the response may decline with time after radiotherapy. We re-evaluated the GHRH dose-response curve in patients post cranial irradiation and in controls. DESIGN: Randomized controlled study. METHODS: Five adult male long-term survivors of childhood brain tumours (median age 21.8 years (18.4-26.7); 13.7 years (11.4-15.7) post-radiotherapy, >30Gy) and five matched controls were studied. An intravenous bolus of GHRH(1-29)NH(2) was administered in doses at the lower (0.05 microg/kg) and upper (0.15 microg/kg) range of the dose-response curves for young males, as well as the standard supramaximal dose (1. 0 microg/kg). GH was measured before stimulation, every 2min for the first hour and every 5min for the second hour. All studies were conducted in a random fashion. RESULTS: Significantly lower peak and area under the curve (AUC) GH concentrations occurred in the irradiated group using 0.15 microg/kg (median peak Irradiated, 4. 5mU/l vs median Controls, 37.4mU/l; P<0.01) and 1.0 microg/kg (median peak Irradiated, 4.8mU/l vs median Controls, 15.2mU/l; P<0. 05) GHRH(1-29)NH(2). In irradiated subjects there was an incremental rise in GH output with increasing doses of GHRH(1-29)NH(2 )(median AUC: 122mU/l.min vs 179mU/l.min vs 268mU/l.min; P=0.007) reflecting altered pituitary sensitivity and reduced responsiveness. CONCLUSION: The GH response to bolus GHRH(1-29)NH(2) is attenuated in adult long-term survivors of childhood brain tumours. This may reflect direct pituitary damage and/or the loss of the tropic effects of chronic GHRH deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号