首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term low-dose macrolides alter response in patients with chronic sessile Pseudomonas aeruginosa colonization. We examined the effect of clarithromycin on 1) adherence of P. aeruginosa cells and 2) biofilm formation. A suspended-coupon continuous-flow biofilm reactor model was used. Adherent P. aeruginosa bacteria were established for 24 h, immediately followed by a 24-h continuous-flow operation (CFO) phase with serial sampling. In addition, the effect of clarithromycin on adherent biomass was assessed quantitatively using a colorimetric assay. Isolates preexposed to clarithromycin were more adherent to the suspended coupons than nonexposed isolates (P=0.021). After 2 h of CFO, a 1.30+/-0.86 log colony-forming unit (CFU)/cm(2) decrease was observed in controls compared with a 0.08+/-0.55 log CFU/cm(2) decrease in isolates exposed to clarithromycin. Furthermore, a concentration-dependent increase in biofilm biomass was observed with the addition of clarithromycin in a standard mucoid P. aeruginosa strain (1-64 microg/mL, P<0.001) and 44 clinical P. aeruginosa strains (2 or 32 microg/mL, P<0.001). Clarithromycin increased bacterial adherence to the suspended coupons, and increased biomass was observed in isolates treated with clarithromycin.  相似文献   

2.
Aminoglycosides are often used to treat severe infections with gram-positive organisms. Previous studies have shown concentration-dependent killing by aminoglycosides of gram-negative bacteria, but limited data are available for gram-positive bacteria. We compared the in vitro pharmacodynamics of gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa. Five S. aureus strains were examined (ATCC 29213 and four clinical isolates). Time-kill studies (TKS) in duplicate (baseline inocula of 10(7) CFU/ml) were conducted to evaluate bacterial killing in relation to increasing gentamicin concentrations (0 to 16 times the MIC). Serial samples were obtained over 24 h to quantify bacterial burden. Similar TKS with P. aeruginosa ATCC 27853 were conducted, and the time courses of the all bacterial strains were mathematically modeled for quantitative comparison. A dose fractionation study (using identical daily doses of gentamicin) in an in vitro hollow-fiber infection model (HFIM) over 5 days was subsequently used for data validation for the two ATCC strains. Model fits to the data were satisfactory; r(2) values for the S. aureus and P. aeruginosa ATCC strains were 0.915 and 0.956, respectively. Gentamicin was found to have a partially concentration-dependent killing effect against S. aureus; concentrations beyond four to 8 times the MIC did not result in significantly faster bacterial killing. In contrast, a concentration-dependent profile was demonstrated in suppressing P. aeruginosa regrowth after initial decline in bacterial burden. In HFIM, thrice-daily gentamicin dosing appeared to be superior to once-daily dosing for S. aureus, but they were similar for P. aeruginosa. Different killing profiles of gentamicin were demonstrated against S. aureus and P. aeruginosa. These results may guide optimal dosing strategies of gentamicin in S. aureus infections and warrant further investigations.  相似文献   

3.
We evaluated the bactericidal activity of RP 59500 (quinupristin-dalfopristin) against fibrin-platelet clots (FPC) infected with two clinical isolates of Staphylococcus aureus, one constitutively erythromycin and methicillin resistant (S. aureus AW7) and one erythromycin and methicillin susceptible (S. aureus 1199), in an in vitro pharmacodynamic infection model. RP 59500 was administered by continuous infusion (peak steady-state concentration of 6 microg/ml) or intermittent infusion (simulated regimens of 7.5 mg/kg of body weight every 6 h (q6h) q8h, and q12h. FPCs were infected with S. aureus to achieve an initial bacterial density of 10(9) CFU/g. Model experiments were run in duplicate over 72 h. Two FPCs were removed from each model at 0, 12, 24, 36, 48, and 72 h, and the bacterial densities (in CFU per gram) were determined and compared to those of growth control experiments. Additional samples were also removed from the model over the 72-h period for pharmacokinetic evaluation. All regimens significantly (P < or = 0.01) decreased bacterial densities in the infected FPCs for both isolates compared to growth controls. This occurred even though MBCs were equal to or greater than the RP 59500 concentrations achieved in the models. There were no significant differences found between the dosing frequencies and levels of killing when examining each isolate separately. However, examination of the residual bacterial densities (CFU per gram at 72 h) and visual inspection of the overall killing effect (killing curve plots over 72 h) clearly demonstrated a more favorable bactericidal activity against 1199 than against the AW7 isolate. This was most apparent when the q8h and the q12h AW7 regimens were compared to all 1199 treatment regimens by measuring the 72-h bacterial densities (P < or = 0.01). Killing (99.9%) was not achieved against the AW7 isolate. However, a 99.9% kill was demonstrated for all dosing regimens against the 1199 isolate. The area under the concentration-time curve from 0 to 24 h was found to be significantly correlated with reduction in bacterial density for the AW7 isolate (r = 0.74, P = 0.04). No resistance was detected during any experiment for either isolate. RP 59500 efficacy against constitutively erythromycin- and methicillin-resistant S. aureus may be improved by increasing organism exposure to RP 59500 as a function of dosing frequency.  相似文献   

4.
An in vitro chemostat system in which Pseudomonas aeruginosa can be cultivated at a slow growth rate and under iron limitation conditions was used to study the susceptibilities of sessile bacteria of mucoid and nonmucoid P. aeruginosa strains to tobramycin and piperacillin. Planktonic cells of both mucoid and nonmucoid P. aeruginosa strains were susceptible to tobramycin and piperacillin. None of the cells was found to be viable after 2 h of exposure to 200 micrograms of piperacillin plus 10 micrograms of tobramycin per ml. Young sessile bacteria were slightly more resistant to piperacillin or tobramycin than the planktonic cells were. However, eradication of young sessile bacteria could be achieved with a combination of piperacillin and tobramycin. None of these young biofilm bacteria were found to be viable after a 2-h exposure to 200 micrograms of piperacillin plus 10 micrograms of tobramycin per ml. Old sessile bacteria were very resistant to these antibiotics. Eradication of old sessile bacteria could not be achieved with either tobramycin (200 micrograms/ml) or piperacillin (200 micrograms/ml) alone. Combination of higher concentrations of tobramycin with piperacillin resulted in an enhancement of killing of the old sessile bacteria. Exposure of old sessile bacteria to 200 micrograms of piperacillin plus 100 micrograms of tobramycin per ml resulted in the reduction of the viable count to approximately 0.02%. The data suggest that the eradication of biofilm-associated infections is best carried out as early as possible. Enhanced activities against the sessile bacteria were achieved when higher concentrations of aminoglycosides were combined with beta-lactam antibiotics.  相似文献   

5.
The activities of three antibiotics in both Mueller-Hinton broth (MHB) and pooled human urine were compared by using an in vitro pharmacodynamic model. Clinical and reference strains of Escherichia coli were exposed to antibiotics at concentrations achievable in human urine. The rate of bacterial killing (time to a reduction of 3 log10 CFU/ml) and the extent of bacterial killing at 24 h were examined. Between MHB and urine, there were no significant differences in the rate or extent of bacterial killing for both ampicillin and ciprofloxacin. For trimethoprim-sulfamethoxazole there was no significant difference in the extent of bacterial killing in urine compared with that in MHB (P > 0.1); however, there was a significant decrease in the rate of bacterial killing in urine compared with that in MHB (P < 0.001). We conclude that with ampicillin and ciprofloxacin, activity against E. coli in MHB is predictive of the effects in human urine. The activity of trimethoprim-sulfamethoxazole in MHB predicts the extent but not the rate of bacterial killing in human urine.  相似文献   

6.
The colonization of uropathogenic bacteria on urinary catheters resulting in biofilm formation frequently leads to the infection of surrounding tissue and often requires removal of the catheter. Infections associated with biofilms are difficult to treat since they may be more than 1,000 times more resistant to antibiotics than their planktonic counterparts. We have developed an antibiofilm composition comprising an N-acetyl-D-glucosamine-1-phosphate acetyltransferase (GlmU) inhibitor and protamine sulfate, a cationic polypeptide. The antibiofilm activity of GlmU inhibitors, such as iodoacetamide (IDA), N-ethyl maleimide (NEM), and NEM analogs, including N-phenyl maleimide, N,N'-(1,2-phenylene)dimaleimide (oPDM), and N-(1-pyrenyl)maleimide (PyrM), was tested against that of catheter-associated uropathogens. Both IDA and NEM inhibited biofilm formation in Escherichia coli. All NEM analogs showed antibiofilm activity against clinical isolates of E. coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus epidermidis, and Enterococcus faecalis. The combination of oPDM with protamine sulfate (PS) enhanced its antibiofilm activity and reduced its effective concentration to as low as 12.5 microM. In addition, we found that the in vitro inhibitory activity of oPDM-plus-PS-coated silicone catheters against P. aeruginosa and S. epidermidis colonization was superior to that of catheters coated with silver hydrogel. Confocal scanning laser microscopy further confirmed that the oPDM-plus-PS-coated silicone catheters were almost free from bacterial colonization. Thus, a broad-spectrum antibiofilm composition comprising a GlmU inhibitor and protamine sulfate shows promise for use in anti-infective coatings for medical devices, including urinary catheters.  相似文献   

7.
The activity of methacycline against microbial L-forms and their parent bacteria was compared with that of oxytetracycline, chlortetracycline, tetracycline, and demethylchlortetracycline, as well as with that of 22 other antibiotics which included examples of major groups of antibiotics. The L-forms and bacteria used were Streptococcus faecalis, S. faecium, S. faecalis var. zymogenes, Staphylococcus aureus (three strains), Proteus mirabilis (two strains), Pseudomonas aeruginosa, Escherichia coli (two strains), Sarcina flava, Serratia marcescens, and Klebsiella pneumoniae. The five tetracyclines had similar activities and were more active against L-forms than bacterial forms, except that the bacterial form of S. flava was more susceptible than the L-form. In general, other antibiotics (except the penicillins) were more active against L-forms than bacterial forms. There were certain exceptions where the bacterial form was more susceptible than the L-form. These included the effect of polymyxin B and colistin on P. aeruginosa, E. coli, and P. mirabilis, and the effect of gentamicin on P. aeruginosa, E. coli, S. flava, and S. marcescens.  相似文献   

8.
The post-antibiotic effect (PAE) of lomefloxacin against Escherichia coli and Pseudomonas aeruginosa was determined and compared with various other antibiotics. All the quinolones tested, and chloramphenicol and gentamicin, possessed PAE activity. At 10 x MIC and 30 min exposure, the PAEs against E. coli were 1.6, 1.3, and 1.8 h for lomefloxacin, ciprofloxacin and norfloxacin respectively, and for P. aeruginosa the equivalent PAEs were 1.1, 1 and 0.5 h. The lomefloxacin PAE was dose-dependent and exposure for 5 min was sufficient to give optimal PAE at high concentrations of lomefloxacin. Such brief exposure rapidly blocked bacterial nucleic acid biosynthesis. Lomefloxacin pretreated bacteria were more susceptible to killing by PMN than untreated bacteria. Optimum enhancement of phagocytic killing of E. coli occurred when exposure to lomefloxacin was associated with an 80% decrease in cfu during pretreatment. Maximum PMN activity against P. aeruginosa occurred when bacteria were exposed to lomefloxacin producing change in cfu of +0.2 log10 to -0.7 log10. These results indicate that phenotypic changes of P. aeruginosa and E. coli exposed to lomefloxacin render the bacteria more susceptible to phagocytic killing.  相似文献   

9.
目的研究临床分离的铜绿假单胞菌对消毒剂的抗力水平,了解耐抗生素铜绿假单胞菌与消毒剂抗药性的相互关系。方法采用纸片扩散法和悬液定量杀菌试验方法,以铜绿假单胞菌标准株作比较进行了实验室观察。结果30株铜绿假单孢菌中,对β-内酰胺复合物(青霉素类)耐药率为100%,对氯霉素耐药率为90%;耐药率最低者是碳青霉素类为19.67%。含苯扎溴铵400 mg/L消毒液作用7 m in,对30株临床分离铜绿假单胞菌杀灭对数值<5.00者占43.33%;含400 mg/L本扎溴铵对铜绿假单胞菌标准株作用7m in,杀灭对数值全部<5.00。含有效氯200 mg/L的含氯消毒剂对临床分离的铜绿假单胞菌作用7 m in,杀灭对数值<5.00的菌株占10%,仍有部分不合格;对标准株作用3 m in杀灭对数值均>5.00即全部合格。有效碘75mg/L的碘伏消毒液对临床分离铜绿假单胞菌作用7 m in,杀灭对数值<5.00的菌株占16.67%,有部分不合格;对标准株作用5 m in杀灭对数值均>5.00即全部合格。结论具有对抗生素耐药率高、多重耐药特性的临床分离的铜绿假单胞菌对苯扎溴铵抗力水平与标准菌株一致,对碘伏和含氯消毒剂抗力水平略高于标准菌株。  相似文献   

10.
Although the exact role of quorum sensing (QS) in various stages of biofilm formation, maturation, and dispersal and in biofilm resistance is not entirely clear, the use of QS inhibitors (QSI) has been proposed as a potential antibiofilm strategy. We have investigated whether QSI enhance the susceptibility of bacterial biofilms to treatment with conventional antimicrobial agents. The QSI used in our study target the acyl-homoserine lactone-based QS system present in Pseudomonas aeruginosa and Burkholderia cepacia complex organisms (baicalin hydrate, cinnamaldehyde) or the peptide-based system present in Staphylococcus aureus (hamamelitannin). The effect of tobramycin (P. aeruginosa, B. cepacia complex) and clindamycin or vancomycin (S. aureus), alone or in combination with QSI, was evaluated in various in vitro and in vivo biofilm model systems, including two invertebrate models and one mouse pulmonary infection model. In vitro the combined use of an antibiotic and a QSI generally resulted in increased killing compared to killing by an antibiotic alone, although reductions were strain and model dependent. A significantly higher fraction of infected Galleria mellonella larvae and Caenorhabditis elegans survived infection following combined treatment, compared to treatment with an antibiotic alone. Finally, the combined use of tobramycin and baicalin hydrate reduced the microbial load in the lungs of BALB/c mice infected with Burkholderia cenocepacia more than tobramycin treatment alone. Our data suggest that QSI may increase the success of antibiotic treatment by increasing the susceptibility of bacterial biofilms and/or by increasing host survival following infection.  相似文献   

11.
BACKGROUND: The bactericidal effect of some antibiotic and antineoplastic agents commonly used in clinical practice was investigated to analyse whether the combinations act synergistically, have indifferent or antagonistic antibacterial effects compared to the effect of the antibiotics alone. METHODS: The rate of killing of meropenem, ceftazidime and tobramycin was studied against six different strains of Staphylococcus aureus and Escherichia coli, and the results were compared to the rate of killing of the antibiotics in combination with the cytostatic drugs doxorubicin, etoposide and 5-fluorouracil (5-FU). RESULTS: Tobramycin showed synergy against two strains of S. aureus after 3 h in the presence of 5-FU and against one strain of S. aureus in the presence of doxorubicin. Meropenem induced an antagonistic bactericidal effect against one isolate of S. aureus after 24 h. Ceftazidime expressed an indifferent bactericidal effect together with the cytostatic agents. The antineoplastic agents had no impact on the bacterial killing of any of the antibiotics against E. coli. CONCLUSIONS: Tobramycin expressed a significantly better bactericidal effect against S. aureus after 3 h in the presence of doxorubicin and 5-FU than tobramycin alone. Meropenem expressed antagonism against one clinical strain of S. aureus, but the cytostatic drugs did not affect the killing of other strains tested. Ceftazidime expressed indifferent bactericidal activity together with the antineoplastic agents.  相似文献   

12.
Previous studies employing time-kill methods have observed synergistic effects against methicillin-resistant Staphylococcus aureus (MRSA) when a β-lactam is combined with vancomycin. However, these time-kill studies have neglected the importance of human-simulated exposures. We evaluated the effect of human simulated exposures of vancomycin at 1 g every 8 h (q8h) in combination with cefazolin at 1 g q8h against various MRSA isolates. Four clinical isolates (two MRSA isolates [vancomycin MICs, 0.5 and 2.0 μg/ml], a heterogeneous vancomycin-intermediate S. aureus [hVISA] isolate [MIC, 2.0 μg/ml], and a vancomycin-intermediate S. aureus [VISA] isolate [MIC, 8.0 μg/ml]) were evaluated in an in vitro pharmacodynamic model with a starting inoculum of 10(6) or 10(8) CFU/ml. Bacterial density was measured over 48 to 72 h. Time-kill curves were constructed, and the area under the bacterial killing and regrowth curve (AUBC) was calculated. During 10(6) CFU/ml studies, combination therapy achieved greater log(10) CFU/ml changes than vancomycin alone at 12 h (-4.31 ± 0.58 versus -2.80 ± 0.59, P < 0.001), but not at 48 h. Combination therapy significantly reduced the AUBC from 0 to 48 h (122 ± 14) compared with vancomycin alone (148 ± 22, P = 0.017). Similar results were observed during 10(8) CFU/ml studies, where combination therapy achieved greater log(10) CFU/ml changes at 12 h than vancomycin alone (-4.00 ± 0.20 versus -1.10 ± 0.04, P < 0.001) and significantly reduced the AUBC (275 ± 30 versus 429 ± 37, P < 0.001) after 72 h of incubation. In this study, the combination of vancomycin and cefazolin at human-simulated exposures improved the rate of kill against these MRSA isolates and resulted in greater overall antibacterial effect, but no differences in bacterial density were observed by the end of the experiments.  相似文献   

13.
The pharmacodynamics of moxifloxacin against Streptococcus pneumoniae and Pseudomonas aeruginosa were investigated in a pharmacokinetic infection model. Three strains of S. pneumoniae, moxifloxacin, and two strains of P. aeruginosa were used. Antibacterial effect and emergence of resistance were measured for both species over a 72-h period using an initial inoculum of about 10(8) CFU/ml. At equivalent area under the curve (AUC)/MIC ratios, S. pneumoniae was cleared from the model while P. aeruginosa was not. For S. pneumoniae, the area under the bacterial kill curve up to 72 h could be related to AUC/MIC ratio using an inhibitory maximum effect (E(max)) model (concentration required for 50% E(max) [EC(50)], 45 +/- 22; r(2), 0.97). For P. aeruginosa even at the highest AUC/MIC ratio (427), bacterial clearance was insufficient for the EC(50) to be calculated. Emergence of resistance occurred with P. aeruginosa but not to any significant extent with S. pneumoniae. Emergence of resistance in P. aeruginosa as measured by population analysis profile (PAP-AUC) was dependent on drug exposure and time of exposure. In weighted least-squares regression analysis AUC/MIC ratio was predictive of PAP-AUC. When emergence of resistance was measured by the time for the colony counts on media containing antibiotic to increase by 2 logs, again AUC/MIC was the best predictor of emergence of resistance. However, for both experiments using S. pneumoniae and P. aeruginosa the correlation between all the pharmacodynamic parameters was high. These data indicate that for a given fluoroquinolone the magnitude of the AUC/MIC ratio for antibacterial effect is dependent on the bacterial species. Emergence of resistance is dependent on (i) species, (ii) duration of drug exposure, and (iii) drug exposure. A single AUC/MIC ratio magnitude is not adequate to predict antibacterial effect or emergence of resistance for all bacterial species.  相似文献   

14.
Bacterial infection may complicate pulmonary oxygen (O2) toxicity, and animals exposed to high O2 concentrations show depressed in vivo pulmonary bacterial inactivation. Therefore, in vitro studies were undertaken to define the mechanism by which O2 alters pulmonary antibacterial activity. Normal and BCG pretreated rabbits were exposed to 100% O2 for 24, 48, and 72-h periods. Pulmonary alveolar macrophages (PAM) were obtained from the experimental animals and from nonoxygen exposed controls by bronchopulmonary lavage. O2 exposure did not alter cell yield or morphology. PAMs were suspended in 10% serum-buffer, and phagocytosis of (14C)Staphylococcus aureus 502A and (14C)Pseudomonas aeruginosa was measured. Comparison of the precent uptake of the 14C-labeled S. aureus after a 60-min incubation period demonstrated that normal PAMs exposed to O2 for 48 h showed a statistically significant increase in phagocytosis when compared to their controls (43.5 vs. 29.2%). A similar, but smaller increase was seen after 24-h O2 exposures. 48 and 72-h O2 exposures produced no significant changes in phagocytosis in PAMs from BCG-stimulated rabbits. Normal PAMs also showed an increased phagocytosis of Ps. aeruginosa after 48-h oxygen exposure. No impairment of in vitro bactericidal activity against either S. aureus 502A or Ps. aeruginosa could be demonstrated in PAMs from normal rabbits exposed to O2 for 48 h. These results indicate that the in vitrophagocytic and bactericidal capacity of the rabbit PAM is relatively resistant to the toxic effects of oxygen, and that imparied in vivo activity may possibly be mediated by effects other than irreversible metabolic damage to these cells. The mechanism for the observed stimulation of phagocytosis remains to be determined.  相似文献   

15.
Studies on bacterial metabolism during the postantibiotic effect (PAE) period are limited but might provide insight into the nature of the PAE. We evaluated the rate of DNA synthesis in bacteria during the PAE period after a 1-h exposure of organisms in the logarithmic growth phase to various antibiotics. Staphylococcus aureus ATCC 25923 was exposed to vancomycin, dicloxacillin, rifampin, and ciprofloxacin; Escherichia coli ATCC 25922 was exposed to gentamicin, tobramycin, rifampin, imipenem, and ciprofloxacin; and Pseudomonas aeruginosa ATCC 25783 was exposed to imipenem, tobramycin, and ciprofloxacin. DNA synthesis was determined by measuring the rate of [3H]thymidine incorporation in S. aureus and E. coli and [3H]adenine incorporation in P. aeruginosa. DNA synthesis in S. aureus was suppressed during the PAE phase with vancomycin, dicloxacillin, and rifampin, it was suppressed in E. coli with rifampin, and it was suppressed in P. aeruginosa after exposure to tobramycin. Conversely, DNA synthesis was relatively enhanced in the gram-negative bacilli after exposure to imipenem and in all three species after exposure to ciprofloxacin. However, DNA synthesis in E. coli was only minimally affected after exposure to tobramycin and gentamicin. The differences in DNA synthesis observed after exposure to various antimicrobial agents suggest multiple mechanisms for the PAE.  相似文献   

16.
Thrombin-induced platelet microbicidal protein-1 (tPMP-1) and human neutrophil defensin-1 (HNP-1) are small, cationic antimicrobial peptides. These peptides exert potent in vitro microbicidal activity against a broad spectrum of human pathogens, including Staphylococcus aureus. Evidence suggests that tPMP-1 and HNP-1 target and disrupt the bacterial membrane. However, it is not yet clear whether membrane disruption itself is sufficient to kill the bacterium or whether subsequent, presumably intracellular, events are also involved in killing. We investigated the staphylocidal activities of tPMP-1 and HNP-1 in the presence or absence of pretreatment with antibiotics that differ in their mechanisms of action. The staphylocidal effects of tPMP-1 and HNP-1 on control cells (no antibiotic pretreatment) were rapid and concentration dependent. Pretreatment of S. aureus with either penicillin or vancomycin (bacterial cell wall synthesis inhibitors) significantly enhanced the anti-S. aureus effects of tPMP-1 compared with the effects against the respective control cells over the entire tPMP-1 concentration range tested (P < 0.05). Similarly, S. aureus cells pretreated with these antibiotics were more susceptible to HNP-1 than control cells, although the difference in the effects against cells that received penicillin pretreatment did not reach statistical significance (P < 0.05 for cells that received vancomycin pretreatment versus effects against control cells). Studies with isogenic pairs of strains with normal or deficient autolytic enzyme activities demonstrated that enhancement of S. aureus killing by cationic peptides and cell wall-active agents could not be ascribed to a predominant role of autolytic enzyme activation. Pretreatment of S. aureus cells with tetracycline, a 30S ribosomal subunit inhibitor, significantly decreased the staphylocidal effect of tPMP-1 over a wide peptide concentration range (0.16 to 1.25 microgram/ml) (P < 0.05). Furthermore, pretreatment with novobiocin (an inhibitor of bacterial DNA gyrase subunit B) and with azithromycin, quinupristin, or dalfopristin (50S ribosomal subunit protein synthesis inhibitors) essentially blocked the S. aureus killing resulting from exposure to tPMP-1 or HNP-1 at most concentrations compared with the effects against the respective control cells (P < 0.05 for a tPMP-1 concentration range of 0.31 to 1.25 microgram/ml and for an HNP-1 concentration range of 6.25 to 50 microgram/ml). These findings suggest that tPMP-1 and HNP-1 exert anti-S. aureus activities through mechanisms involving both the cell membrane and intracellular targets.  相似文献   

17.
M Arpi 《Chemotherapy》1988,34(5):393-400
Time-kill studies and synergy testing were performed with blood culture isolates from 80 patients with septicemia. Ten isolates each of Escherichia coli, Proteus mirabilis, indole-positive Proteus, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas aeruginosa, Staphylococcus aureus, and coagulase-negative staphylococci were included. The isolates were tested against netilmicin, piperacillin, cefoxitin, cefuroxime, and cefotaxime, alone and in different combinations. Cefotaxime was the most active agent against Enterobacteriaceae, whereas netilmicin was the most active agent against P. aeruginosa and staphylococci. The most active antibiotic combinations were netilmicin-cefotaxime and netilmicin-piperacillin, where a synergistic activity was observed in 68 and 61%, respectively. The highest synergistic activity was against Enterobacteriaceae, but the netilmicin-cefotaxime combination also acted synergistically against more than half of the S. aureus isolates. A relatively low synergistic activity was noted against P. aeruginosa. No case of antagonism was observed. Subinhibitory concentrations of netilmicin, in combination with a greater than or equal to MIC concentration of one of the tested beta-lactam antibiotics, significantly improved the killing of the isolates. Netilmicin exerted a more rapid and pronounced bacterial reduction than the beta-lactam antibiotics tested.  相似文献   

18.
OBJECTIVES: To investigate appropriate antimicrobial agents, the optimal concentration and treatment duration for the antibiotic lock technique (ALT) to treat catheter-related infections caused by Staphylococcus epidermidis and Staphylococcus aureus. METHODS: We evaluated the bacterial killing activity of vancomycin, teicoplanin, ciprofloxacin, rifampicin, cefazolin, gentamicin, nafcillin and erythromycin against biofilms formed by two strains of S. aureus and two strains of S. epidermidis. The effectiveness of the antibiotic lock was assayed after exposure to antibiotics (1, 5 and 10 mg/mL) for 1, 3, 5, 7, 10 or 14 days using an in vitro model of biofilms on polyurethane film. RESULTS: The biofilms were completely sterile after exposure to vancomycin (5 mg/mL) for 5 days and teicoplanin (5 and 10 mg/mL) for 7 days. Ciprofloxacin and rifampicin (both 5 mg/mL) achieved eradication of the biofilms of both staphylococcal species more rapidly than vancomycin or teicoplanin. Significant biofilm eradication was not achieved with cefazolin, nafcillin, gentamicin and erythromycin at any of the time exposures examined. CONCLUSIONS: The data suggest that 5 mg/mL vancomycin, ciprofloxacin or rifampicin can eradicate S. epidermidis and S. aureus biofilms within 5 days. These findings warrant prospective clinical trials for the evaluation of the clinical efficacy of ALT for less than 10 days.  相似文献   

19.
Several aminoglycoside dosage regimens were studied in a kinetic in vitro model. Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus were exposed in serially placed artificial capillary units to netilmicin concentrations that changed based on human two-compartment pharmacokinetics. The same total dose per 24 h was administered as a continuous infusion (3.7 micrograms/ml) or in 1-h infusions given every 24 (24 micrograms/ml) or 8 h (8 micrograms/ml). The once daily administration showed the best response in terms of either faster killing of E. coli, K. pneumoniae, and S. aureus or greater reduction of the inocula of P. aeruginosa. After 28 h of treatment, however, all regimens reduced the nonpseudomonads by more than 99.99%, whereas all three P. aeruginosa strains regrew to greater than 10(8) CFU/ml due to selection of resistant subpopulations. In contrast to the bactericidal effect of the first dose, no killing occurred after subsequent doses if the ratio of peak drug concentration to MIC was low (less than or equal to 6). These results support the concept of administering high doses of aminoglycosides once every 24 h.  相似文献   

20.
The time-kill curve methodology was used to determine the pharmacodynamics of piperacillin, ciprofloxacin, piperacillin-tazobactam and the combinations piperacillin-ciprofloxacin and ciprofloxacin-piperacillin-tazobactam. Kill curve studies were performed for piperacillin, ciprofloxacin, and piperacillin-tazobactam at concentrations of 0.25 to 50 times the MICs for 13 strains of bacteria: four Pseudomonas aeruginosa, three Enterobacter cloacae, three Klebsiella pneumoniae, and three Staphylococcus aureus isolates (tazobactam concentrations of 0.5, 4, and 12 micrograms/ml). By using a sigmoid Emax model and nonlinear least squares regression, the 50% lethal concentrations and the maximum lethal rates of each agent were determined for each bacterial strain. For piperacillin-ciprofloxacin and ciprofloxacin-piperacillin-tazobactam, kill curve studies were performed with concentrations obtained by the fractional maximal effect method (R. C. Li, J. J. Schentag, and D. E. Nix, Antimicrob. Agents Chemother. 37:523-531, 1993) and from individual 50% lethal concentrations and maximum lethal rates. Ciprofloxacin-piperacillin-tazobactam was evaluated only against the four P. aeruginosa strains. Interactions between piperacillin and ciprofloxacin were generally additive. At physiologically relevant concentrations of piperacillin and ciprofloxacin, ciprofloxacin had the highest rates of killing against K. pneumoniae. Piperacillin-tazobactam (12 micrograms/ml) had the highest rate of killing against E. cloacae. Piperacillin-ciprofloxacin with relatively higher ciprofloxacin concentrations had the greatest killing rates against S. aureus. This combination had significantly higher killing rates than piperacillin (P < 0.002). For all the bacterial strains tested, killing rates by ciprofloxacin were significantly higher than those by piperacillin-tazobactam (4 and 12 micrograms/ml had significantly higher killing rates than piperacillin alone (P < 0.02 and P < 0.004, respectively). The effect of the combination of piperacillin-ciprofloxacin, in which piperacillin concentrations were relatively higher, was not statistically different from that of piperacillin alone (p > or = 0.71). The combination of ciprofloxacin-piperacillin-tazobactam achieved greater killing than other combinations or monotherapies against P. aeruginosa. The reduction in the initial inoculum was 1 to 4 logs greater with ciprofloxacin-piperacillin-tazobactam at 4 and 12 micrograms/ml than with any other agent or combination of agents. On the basis of the additive effects prevalently demonstrated in the in vitro study, the combinations of piperacillin-ciprofloxacin and piperacillin-tazobactam are rational therapeutic options. Greater killing of P. aeruginosa was demonstrated with ciprofloxacin-piperacillin--tazobactam. Since treatment failure of P. aeruginosa pneumonia is a significant problem, clinical studies are warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号