首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.

OBJECTIVE:

To investigate the antifibrotic effects of crocetin in scleroderma fibroblasts and in sclerotic mice.

METHODS:

Skin fibroblasts that were isolated from three systemic scleroderma (SSc) patients and three healthy subjects were treated with crocetin (0.1, 1 or 10 μM). Cell proliferation was measured with an MTT assay. Alpha-smooth muscle actin was detected via an immunohistochemical method. Alpha 1 (I) procollagen (COL1A1), alpha 1 (III) procollagen (COL3A1), matrix metalloproteinase (MMP)-1 and tissue inhibitor of matrix metalloproteinase (TIMP)-1 mRNA levels were measured using real-time PCR. SSc mice were established by the subcutaneous injection of bleomycin. Crocetin (50 mg/kg/d) was injected intraperitoneally for 14 days. Dermal thickness and lung fibrosis were assessed with Masson''s trichrome staining. Plasma ET-1 was detected with an enzyme-linked immunosorbent assay (ELISA). Skin and lung ET-1 and COL1A1 mRNA levels were measured via real-time PCR.

RESULTS:

Crocetin inhibited the proliferation of SSc and normal fibroblasts, an effect that increased with crocetin concentration and incubation time. Crocetin decreased the expression of α-SMA and the levels of mRNA for COL1A1, COL3A1 and matrix metalloproteinase-1, while crocetin increased TIMP-1 mRNA levels in both SSc and normal fibroblasts. Skin and lung fibrosis was induced, and the levels of ET-1 in the plasma, skin and lungs were elevated in bleomycin-injected mice. Crocetin alleviated the thickening of the dermis and lung fibrosis; decreased COL1A1 mRNA levels in the skin and lung; and simultaneously decreased ET-1 concentrations in the plasma and ET-1 mRNA levels in the skin and lungs of the bleomycin-induced sclerotic mice, especially during the early phase (weeks 1-3).

CONCLUSION:

Crocetin inhibits cell proliferation, differentiation and collagen production in SSc fibroblasts. Crocetin alleviates skin and lung fibrosis in a bleomycin-induced SSc mouse model, in part due to a reduction in ET-1.  相似文献   

3.

OBJECTIVES:

To evaluate the effects of antidepressants and pilocarpine on the quantity of myoepithelial cells and on the proliferation index of the epithelial cells of rat parotid glands.

INTRODUCTION:

Hyposalivation, xerostomia, and alterations in saliva composition are important clinical side effects related to the use of antidepressants.

METHODS:

Ninety male Wistar rats were allocated to nine groups. The control groups received saline for 30 (group C30) or 60 days (group C60) or pilocarpine for 60 days (group Pilo). The experimental groups were administered fluoxetine (group F30) or venlafaxine for 30 days (group V30); fluoxetine (group FS60) or venlafaxine (group VS60) with saline for 60 days; or fluoxetine (group FP60) or venlafaxine (group VP60) with pilocarpine for 60 days. Parotid gland specimens were processed, and the immunohistochemical expression of calponin and proliferating cell nuclear anti-antigen on the myoepithelial and parenchymal cells, respectively, was evaluated. Analysis of variance (ANOVA), Tukey HSD and Games-Howell tests were applied to detect differences among groups (p<0.05).

RESULTS:

Compared with the controls, chronic exposure to antidepressants was associated with an increase in the number of positively stained cells for calponin. In addition, venlafaxine administration for 30 days was associated with an increase in the number of positively stained cells for proliferating cell nuclear anti-antigen. Fluoxetine and pilocarpine (group FP60) induced a significant decrease in the number of positively stained cells for calponin compared with all other groups.

CONCLUSIONS:

The number of positively stained cells for calponin increased after chronic administration of antidepressants. The proliferation index of the epithelial cells of rat parotid glands was not altered by the use of antidepressants for 60 days.  相似文献   

4.
5.

Purpose

This study aimed to investigate whether Müllerian inhibiting substance (MIS) in combination with calcitriol modulates proliferation and apoptosis of human ovarian cancer (OCa) cell lines (SKOV3, OVCAR3, and OVCA433) and identify the signaling pathway by which MIS mediates apoptosis.

Materials and Methods

OCa cell lines were treated with MIS in the absence or presence of calcitriol. Cell viability and proliferation were evaluated using the Cell Counting Kit-8 assay and apoptosis was evaluated by DNA fragmentation assay. Western blot and enzyme-linked immunosorbent assay were used to determine the signaling pathway.

Results

The cells showed specific staining for the MIS type II receptor. Treatment of OCa cells with MIS and calcitriol led to dose- and time-dependent inhibition of cell growth and survival. The combination treatment significantly suppressed cell growth, down-regulated the expression of B-cell lymphoma 2 (Bcl-2), and up-regulated the expressions of Bcl-2 associated X protein, caspase-3, and caspase-9 through the extracellular signal-regulated kinase signaling pathway.

Conclusion

These results, coupled with a much-needed decrease in the toxic side effects of currently employed therapeutic agents, provide a strong rationale for testing the therapeutic potential of MIS, alone or in combination with calcitriol, in the treatment of OCa.  相似文献   

6.

Purpose

Apoptosis of vascular endothelial cells is a type of endothelial damage that is associated with the pathogenesis of cardiovascular diseases such as atherosclerosis. Heterotrimeric GTP-binding proteins (G proteins), including the alpha 12 subunit of G protein (Gα12), have been found to modulate cellular proliferation, differentiation, and apoptosis of numerous cell types. However, the role of Gα12 in the regulation of apoptosis of vascular cells has not been elucidated. We investigated the role of Gα12 in serum withdrawal-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and its underlying mechanisms.

Materials and Methods

HUVECs were transfected with Gα12 small-interfering RNA (siRNA) to knockdown the endogenous Gα12 expression and were serum-deprived for 6 h to induce apoptosis. The apoptosis of HUVECs were assessed by Western blotting and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expressions of microRNAs were analyzed by quantitative real-time PCR.

Results

Knockdown of Gα12 with siRNA augmented the serum withdrawal-induced apoptosis of HUVECs and markedly repressed the expression of microRNA-155 (miR-155). Serum withdrawal-induced apoptosis of HUVECs was inhibited by the overexpression of miR-155 and increased significantly due to the inhibition of miR-155. Notably, the elevation of miR-155 expression prevented increased apoptosis of Gα12-deficient HUVECs.

Conclusion

From these results, we conclude that Gα12 protects HUVECs from serum withdrawal-induced apoptosis by retaining miR-155 expression. This suggests that Gα12 might play a protective role in vascular endothelial cells by regulating the expression of microRNAs.  相似文献   

7.

Background

Progressive fibrosis accompanies all chronic renal disease, connective tissue growth factor (CTGF,) and platelet-derived growth factor-B, (PDGF-B,) play important roles in extra-cellular matrix abnormal accumulation, while endothelin-1 (ET-1) nitric oxide (NO,) are related to endothelial dysfunction, which mediates the progression of renal fibrosis. Shenqi Detoxification Granule (SDG), a traditional Chinese herbal formula, has been used for treatment of chronic renal failure in clinic for many years.

Materials and Methods

In order to evaluate the efficacy, and explore the mechanism of SDG to inhibit the progression of renal fibrosis, study was carried out using the adenine-induced Wister rats as the CRF model, and losartan as postive control drug. Levels of serum creatinine [Scr], and blood urea nitrogen (BUN), albumin (ALB), 24hrs, urine protein (24hUP), triacylglycerol (TG), and cholesterol (CHO), together with ET-1, and NO were detected. Pathological changes of renal tissues were observed by HE, staining. In addition, CTGF and PDGF-B expression were analyzed by immuno-histo-chemistry.

Results

The results indicated that SDG can effectively reduce Scr, BUN, 24hUP, TG, and CHO levels, increase ALB levels, inhibit renal tissue damage in CRF rats, and the mechanism maybe reduce PDGF-B, CTGF expression and ET-1/NO.

Conclusion

Shenqi Detoxification Granule is a beneficial treatment for chronic renal failure.  相似文献   

8.

Purpose

Thyroid cancer is the most common malignancy in Korean females and can be treated with good prognosis. However, drugs to treat aggressive types of thyroid cancer such as poorly differentiated or anaplastic thyroid cancer have not yet been established. To that end, we analyzed the effects of berberine on human thyroid cancer cell lines to determine whether this compound is useful in the treatment of aggressive thyroid cancer.

Materials and Methods

The two thyroid cancer cell lines 8505C and TPC1, under adherent culture conditions, were treated with berberine and analyzed for changes in cell growth, cell cycle duration, and degree of apoptosis.

Results

Following berberine treatment, both cell lines showed a dose-dependent reduction in growth rate. 8505C cells showed significantly increased levels of apoptosis following berberine treatment, whereas TPC1 cells showed cell cycle arrest at the G0/G1 phase. Immunobloting of p-27 expression following berberine treatment showed that berberine induced a little up-regulation of p-27 in 8505c cells but relatively high up-regulation of p-27 in TPC1 cells.

Conclusion

These results suggest that berberine treatment of thyroid cancer can inhibit proliferation through apoptosis and/or cell cycle arrest. Thus, berberine may be a novel anticancer drug for the treatment of poorly differentiated or anaplastic thyroid cancer.  相似文献   

9.

Backgroud

Cantharidin, and its derivatives can not only inhibit the proliferation of tumor cells, but can also induce tumor cell apoptosis. It shows cantharidin exhibits a wide range of reactivity in anticancer. The objective of this paper was to study the inhibitory effect of sodium cantharidinate on human hepatoma HepG2 cells.

Materials and Methods

MTT assay was used to detect the proliferation of HepG2 cells, and immunohisto-chemical method was used to detect the change in VEGF, protein level, and to determine the inhibitory effect of sodium cantharidinate on human hepatoma HepG2 cells.

Results

As results, sodium cantharidinate significantly inhibited the growth of HepG2 cells in a time-and dose-dependent manner.

Conclusion

We conclude that sodium cantharidinate has an inhibitory effect on human hepatoma HepG2 cells.  相似文献   

10.
11.

Background

Angiocidin plays a key role in angiogenesis and tumor progression. High angiocidin expression is detected in some kind of solid tumors and tumor vascular endothelial cells. Several reports have shown the inhibition of angiogenesis and tumor growth caused by angiocidin. However, the role of angiocidin in liver cancers growth is still unclear.

Objectives

To examine angiocidin expression in SMMC-7221 and HepG2 cells and the role of angiocidin in liver cancer cell growth.

Methods

RT-PCR and western blot are used in this study to detect angiocidin expression. SiRNA and MTT experiments are used in exploring the role of angiocidin in tumor cell growth.

Results

Our study showed high angiocidin expression in two kinds of liver cancer cells. Angiocidin protein production in HepG2 cells were reduced significantly by siRNA. When HepG2 cells were transfected with siRNA-angiocidin, these cells showed very low proliferation activity compared with control cells. Our study suggests that reduction of angiocidin may contribute to decreased proliferation activity in liver cancer cells.

Conclusion

Angiocidin is highly expressed in liver cancer cells, and it may play a key role in tumor growth of liver cancers.  相似文献   

12.

Background

To observe the inhibition effects of the Buthus matensii Karsch (BmK) scorpion venom extracts on the growth of human breast cancer MCF-7 cells, and to explore its mechanisms.

Methods

Two common tumor cells (SMMC7721, MCF-7) were examined for the one which wasmore sensitivity to scorpion venom by MTT method. Cell cycle was determined by flow cytometry. Immunocytochemistry was applied to detect apoptosis-related protein Caspase-3 and Bcl-2 levels, while the expression of cell cycle-related protein Cyclin D1 was shown by Western blotting.

Results

Our data indicated that MCF-7 was the more sensitive cell line to scorpion venom. The extracts of scorpion venom could inhibit the growth and proliferation of MCF-7 cells. Furthermore, the extract of scorpion venom induced apoptosis through Caspase-3 up-regulation while Bcl-2 down-regulation in MCF-7 cells. In addition, the extracts of scorpion venom blocked the cells from G0/G1 phase to S phase and decreased cell cycle-related protein Cyclin D1 level after drug intervention compared with the negative control group.

Conclusions

These results showed that the BmK scorpion venom extracts could inhibit the growth of MCF-7 cells by inducing apoptosis and blocking cell cycle in G0/G1 phase. The BmK scorpion venom extracts will be very valuable for the treatment of breast cancer.  相似文献   

13.

INTRODUCTION:

Gingiva fibromatosis is a relatively rare condition characterized by diffuse enlargement of the gingiva, which is caused by expansion and accumulation of the connective tissue.

OBJECTIVE:

The aim of the present study was to investigate proliferative and apoptotic biomarker expression in normal gingiva and two forms of gingival fibromatosis.

METHODS:

Archived tissue specimens of hereditary gingival fibromatosis, gingival fibromatosis and dental abnormality syndrome and normal gingiva were subject to morphological analysis and immunohistochemical staining. The results were analyzed statistically.

RESULTS:

Proteins associated with proliferation were found in the nuclei of epithelial cells from the basal and suprabasal layers, whereas apoptotic proteins were detected in the cytoplasm of the upper layers of the epithelium. Increased expressions of minichromosome maintenance proteins 2 and 5 were observed in the gingival fibromatosis and dental abnormality syndrome samples. In contrast, geminin expression was higher in normal gingiva samples. No difference in the expression of apoptotic proteins was observed among the groups.

CONCLUSION:

Our findings support a role for augmented proliferation of epithelial cells within the overgrown tissues associated with gingival fibromatosis or dental abnormality syndrome. However, our data suggest that different biological mechanisms may account for the pathogenesis of different types of gingival fibromatosis.  相似文献   

14.

Background

Cactus polysaccharides are the active components of Opuntia dillenii which have been used extensively in folk medicine. In this study, we investigate the anti-tumor effect of cactus polysaccharides on lung squamous carcinoma cells SK-MES-1.

Materials and Methods

The inhibitory effect of Cactus polysaccharides on lung squamous carcinoma cells were detected by MTT assay. Cell cycle was determined by flow cytometry and cell apoptosis was determined by AnnexinV assay. Western-blotting was applied to detect P53 and PTEN protein expression in the cells treated with cactus polysaccharides.

Results

Results showed that different concentrations of wild cactus polysaccharides prevent SK-MES-1 cells growth and induces S phase arrest. The data also revealed that cactus polysaccharides cause apoptosis in SK-MES-1 cells determined by Annexin-V assay. Furthermore, cactus polysaccharides induced growth arrest and apoptosis may be due to the increase of P53 and phosphatase and tension homolog deleted on chromosome ten (PTEN) protein.

Conclusion

Cactus polysaccharides have anti-tumor activity on lung squamous carcinoma cells.  相似文献   

15.

Background

Fucoidan is a high-molecular polysaccharide whose main constituent is sulfated fucose. We specifically focused on the anti-proliferation activity of fucoidan and examined the underlying mechanism in MKN45 gastric cancer cells.

Methods

MKN45 cell proliferation was analyzed by BrdU assay and fucoidan cytotoxicity was examined by LDH and clonogenic assays. The Agilent Human microarray kit was used to identify upregulated and downregulated genes in response to fucoidan, and western blot analyses evaluated cell cycle proteins.

Results

Fucoidan impeded the MKN45 cell cycle by approximately 50%, and inhibited cell proliferation.LDH assays showed no immediate cytotoxic effects of fucoidan at 24 h exposure, however longer time courses revealed cell growth inhibition at 4 days in a dose-dependent manner. Microarray analysis identified MAP3K5, or ASK1 (apoptosis signal-regulating kinase),which was upregulated by 1.38-fold upon fucoidan treatment.Fucoidan increased ASK1 protein levels, while reducing phosphorylated ASK1 levels. Reduction of ASK1 by siRNA decreased proliferation of MKN45 cells.

Conclusion

Our findings show that fucoidan may suppress cellular proliferation and DNA synthesis in MKN45 cells by suppressing the ASK1-p38 signaling pathway through reduction of phosphorylated ASK1 levels.  相似文献   

16.

Background

Baicalin is a flavonoid compound that exerts specific pharmacological effect in attenuating the proliferation, migration, and apoptotic resistance of hypoxia-induced pulmonary artery smooth muscle cells (PASMCs). However, the underlying mechanism has not been fully elucidated yet. Although our previous studies had indicated that activation of A2aR attenuates CXCR expression, little is known about the relationship between A2aR and SDF-1/CXCR4 axis in hypoxic PASMCs. In this study, we aimed to investigate the effect of A2aR on the SDF-1/CXCR4 axis in hypoxic PASMCs, the mechanism underlying this effect, and whether baicalin exerts its protective functions though A2aR.

Methods

Rat PASMCs were cultured under normoxia/hypoxia and divided into nine groups: normoxia, hypoxia, hypoxia + AMD3100 (a CXCR4 antagonist), hypoxia + baicalin, hypoxia + negative virus, normoxia + A2aR knockdown, hypoxia + A2aR knockdown, hypoxia + CGS21680 (an A2aR agonist), and hypoxia + A2aR knockdown + baicalin. Lentiviral transfection methods were used to establish the A2aR knockdown model in PASMCs. Cells were incubated under hypoxic conditions for 24 h. Expression levels of A2aR, SDF-1, and CXCR4 were detected using RT-qPCR and western blot. The proliferation and migration rate were observed via CCK-8 and Transwell methods. Cell cycle distribution and cell apoptosis were measured by flow cytometry (FCM) and the In-Situ Cell Death Detection kit (Fluorescein).

Results

Under hypoxic conditions, levels of A2aR, SDF-1, and CXCR4 were significantly increased compared to those under normoxia. The trend of SDF-1 and CXCR4 being inhibited when A2aR is up-regulated was more obvious in the baicalin intervention group. Baicalin directly enhanced A2aR expression, and A2aR knockdown weakened the function of baicalin. SDF-1 and CXCR4 expression levels were increased in the hypoxia + A2aR knockdown group, as were the proliferation and migration rates of PASMCs, while the apoptotic rate was decreased. Baicalin and CGS21680 showed opposite effects.

Conclusions

Our data indicate that baicalin efficiently attenuates hypoxia-induced PASMC proliferation, migration, and apoptotic resistance, as well as SDF-1 secretion, by up-regulating A2aR and down-regulating the SDF-1/CXCR4 axis.
  相似文献   

17.
18.

Background

Cutaneous mastocytosis is a disorder characterized by the proliferation of mast cells in the skin. Melanoma inhibitory activity (MIA) is a serum marker for malignant melanoma. However, it has not been known on MIA expression of cutaneous mastocytosis.

Methods

We investigated the expression of MIA in 4 child patients with cutaneous mastocytosis immunohistochemically and serum MIA level in 1 patient by enzyme-linked immunosorbent assay.

Results

Histopathological examination revealed diffuse mast cell infiltration in the dermis. MIA was positive for infiltrating mast cells in all patients. Serum level of MIA was elevated in 1 patient.

Conclusion

Although it was difficult to assess the significance of elevated serum levels of MIA in child patients, MIA was expressed on infiltrating mast cells in our study. Based on our findings, mast cell-derived MIA might be related to the formation of pigmented regions in cutaneous mastocytosis.  相似文献   

19.

OBJECTIVES:

MiRNAs are intrinsic RNAs that interfere with protein translation. Few studies on the synergistic effects of miRNAs have been reported. Both miR-424 and miR-381 have been individually reported to be involved in carcinogenesis. They share a common putative target, WEE1, which is described as an inhibitor of G2/M progression. Here, we studied the synergistic effects of miR-424 and miR-381 on renal cancer cells.

METHODS:

The viability of 786-O cells was analyzed after transfection with either a combination of miR-424 and miR-381 or each miRNA alone. We investigated cell cycle progression and apoptosis with flow cytometry. To confirm apoptosis and the abrogation of G2/M arrest, we determined the level of pHH3, which is an indicator of mitosis, and caspase-3/7 activity. The expression levels of WEE1, Cdc25, γH2AX, and Cdc2 were manipulated to investigate the roles of these proteins in the miRNA-induced anti-tumor effects. To verify that WEE1 was a direct target of both miR-424 and miR-381, we performed a dual luciferase reporter assay.

RESULTS:

We showed that the combination of these miRNAs synergistically inhibited proliferation, abrogated G2/M arrest, and induced apoptosis. This combination led to Cdc2 activation through WEE1 inhibition. This regulation was more effective when cells were treated with both miRNAs than with either miRNA alone, indicating synergy between these miRNAs. WEE1 was verified to be a direct target of each miRNA according to the luciferase reporter assay.

CONCLUSIONS:

These data clearly demonstrate that these two miRNAs might synergistically act as novel modulators of tumorigenesis by down-regulating WEE1 expression in renal cell cancer cells.  相似文献   

20.

Purpose

Acute side effects of radiation such as oral mucositis are observed in most patients. Although several potential radioprotective agents have been proposed, no effective agent has yet been identified. In this study, we investigated the effectiveness of synthetic compound 3-amino-3-(4-fluoro-phenyl)-1H-quinoline-2,4-dione (KR22332) as a radioprotective agent.

Materials and Methods

Cell viability, apoptosis, the generation of reactive oxygen species (ROS), mitochondrial membrane potential changes, and changes in apoptosis-related signaling were examined in human keratinocyte (HaCaT).

Results

KR22332 inhibited irradiation-induced apoptosis and intracellular ROS generation, and it markedly attenuated the changes in mitochondrial membrane potential in primary human keratinocytes. Moreover, KR22332 significantly reduced the protein expression levels of ataxia telangiectasia mutated protein, p53, and tumor necrosis factor (TNF)-α compared to significant increases observed after radiation treatment.

Conclusion

KR22332 significantly inhibited radiation-induced apoptosis in human keratinocytes in vitro, indicating that it might be a safe and effective treatment for the prevention of radiation-induced mucositis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号