首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

OBJECTIVE:

The aim of this study was to evaluate the treatment of patients with chronic lesions in the posterolateral corner of the knee with reconstruction of the fibular collateral ligament, popliteus tendon and popliteofibular ligament and with autografts of the biceps femoris and fascia lata.

METHOD:

A total of 129 patients with injuries of the posterolateral corner of the knee that lasted for more than three weeks and were associated with the lesion of at least one of the cruciate ligaments were included. All of the patients were operated on consecutively in the same hospital between March 2004 and April 2009. Clinical evaluation using the Lyshom scale and the International Knee Documentation Committee (IKDC, item 4, assessment ligament) protocol was performed in 114 patients for whom there were complete data available.

RESULTS:

There was significant improvement in the Lyshom score and improved stability according to the IKDC protocol in the pre- compared to postoperative varus stress test at 30 degrees and the posterolateral rotation test.

CONCLUSIONS:

Surgical reconstruction of the posterolateral corner of the knee with biceps femoris tendon and fascia lata autografts is effective in stabilizing the posterolateral corner of the knee.  相似文献   

2.

Context:

Recommendations on the positioning of the tibiofemoral joint during a valgus stress test to optimize isolation of the medial collateral ligament (MCL) from other medial joint structures vary in the literature. If a specific amount of flexion could be identified as optimally isolating the MCL, teaching and using the technique would be more consistent in clinical application.

Objective:

To determine the angle of tibiofemoral joint flexion between 0° and 20° that causes a difference in the slope of the force-strain line when measuring the resistance to a valgus force applied to the joint.

Design:

Cross-sectional study.

Setting:

University research laboratory.

Patients or Other Participants:

Twelve healthy volunteers (6 men, 6 women: age  =  26.4 ± 5.6 years, height  =  170.9 ± 8.4 cm, mass  =  75.01 ± 14.6 kg).

Intervention(s):

Using an arthrometer, we applied a valgus force, over a range of 60 N, to the tibiofemoral joint in 0°, 5°, 10°, 15°, and 20° of flexion.

Main Outcome Measure(s):

Force-strain measurements were obtained for 5 positions of tibiofemoral joint flexion.

Results:

As knee flexion angle increased, slope values decreased (F4,44  =  17.6, P < .001). The slope at full extension was not different from that at 5° of flexion, but it was different from the slopes at angles greater than 10° of flexion. Similarly, the slope at 5° of flexion was not different from that at 10° of flexion, but it was different from the slopes at 15° and 20° of flexion. Further, the slope at 10° of flexion was not different from that at 15° or 20° of flexion. Finally, the slope at 15° of flexion was not different from that at 20° of flexion.

Conclusions:

When performing the manual valgus stress test, the clinician should fully extend the tibiofemoral joint or flex it to 5° to assess all resisting medial tibiofemoral joint structures and again at 15° to 20° of joint flexion to further assess the MCL.  相似文献   

3.

Purpose

Single dose gadolinium (Gd) enhanced fluid-attenuated inversion recovery (FLAIR) is helpful for visualizing superficial parenchymal metastases. However, the usefulness of FLAIR with a higher dose of Gd is uncertain. The aim of our study was two-folds: first, to prove that the signal to noise ratio (SNR) of small brain metastases is higher than large brain metastases on double-dose (DD) enhanced FLAIR and, second, to explore the added value of DD Gd enhanced FLAIR in relation to T1 GRE for evaluating small brain metastases.

Materials and Methods

For the first purpose, 50 pairs of small (2 mm<diameter≤5 mm) and large brain metastases (diameter >5 mm) were included. The difference in the SNR and contrast ratio (CR) between small and large metastases on DD Gd-enhanced 3D T2 FLAIR was compared by Wilcoxon signed-rank tests. For the second purpose, a total of 404 small metastases were included. The diagnostic sensitivities between 3D T1 gradient echo (GRE) alone and combined results of 3D T1 GRE and 3D T2 FLAIR were compared with McNemar test.

Results

The SNR and CR of small brain metastases were significantly higher than those of large brain metastases (p<0.001). In qualitative analysis, the diagnostic sensitivities for small brain metastases were significantly higher for 3D T1 GRE plus 3D T2 FLAIR than 3D T1 GRE alone regardless of scan time (p<0.001).

Conclusion

Small brain metastases showed higher signal intensity than large brain metastases on the DD Gd enhanced 3D T2 FLAIR images. DD Gd enhanced 3D T2 FLAIR imaging may have a complementary role to 3D T1 GRE for evaluating small brain metastases.  相似文献   

4.

Purpose

The purpose of this study was to compare postoperative range of motion and functional outcomes among patients who received high-flexion total knee arthroplasty using cruciate-retaining (CR-Flex) and posterior-stabilized (PS-Flex) type prostheses.

Materials and Methods

Among 127 patients (186 knees) who underwent high-flexion total knee arthroplasty between 2005 and 2007, 92 knees were placed in the CR-Flex group, and 94 knees were placed in the PS-Flex group. After two years of postoperative follow-up, clinical and radiographic data were reviewed. Postoperative non-weight-bearing range of knee motion, angle of flexion contracture and functional outcomes based on the Western Ontario and McMaster Universities Osteoarthritis (WOMAC) functional sub-scale were assessed and compared between the two groups.

Results

After the 2-year postoperative period, the mean range of motion was 131° in the CR-Flex group and 133° in the PS-Flex group. There were no significant differences in postoperative range of motion between the two groups. Only age at operation and preoperative range of motion were significantly associated with postoperative range of motion after high-flexion total knee arthroplasty. Postoperative functional outcomes based on the WOMAC functional sub-scale were slightly better in the CR-Flex group (9.2±9.1 points) than in the PS-Flex group (11.9±9.6 points); however, this difference was not statistically significant (p=non-significant).

Conclusion

The retention or substitution of the posterior cruciate ligament does not affect postoperative range of motion (ROM) or functional outcomes, according to 2 years of postoperative follow-up of high-flexion total knee arthroplasty.  相似文献   

5.

Context:

Improving neuromuscular control of hamstrings muscles might have implications for decreasing anterior cruciate ligament injuries in females.

Objective:

To examine the effects of a 6-week agility training program on quadriceps and hamstrings muscle activation, knee flexion angles, and peak vertical ground reaction force.

Design:

Prospective, randomized clinical research trial.

Setting:

Sports medicine research laboratory.

Patients or Other Participants:

Thirty female intramural basketball players with no history of knee injury (age  =  21.07 ± 2.82 years, height  =  171.27 ± 4.66 cm, mass  =  66.36 ± 7.41 kg).

Intervention(s):

Participants were assigned to an agility training group or a control group that did not participate in agility training. Participants in the agility training group trained 4 times per week for 6 weeks.

Main Outcome Measure(s):

We used surface electromyography to assess muscle activation for the rectus femoris, vastus medialis oblique, medial hamstrings, and lateral hamstrings for 50 milliseconds before initial ground contact and while the foot was in contact with the ground during a side-step pivot maneuver. Knee flexion angles (at initial ground contact, maximum knee flexion, knee flexion displacement) and peak vertical ground reaction force also were assessed during this maneuver.

Results:

Participants in the training group increased medial hamstrings activation during ground contact after the 6-week agility training program. Both groups decreased their vastus medialis oblique muscle activation during ground contact. Knee flexion angles and peak vertical ground reaction force did not change for either group.

Conclusions:

Agility training improved medial hamstrings activity in female intramural basketball players during a side-step pivot maneuver. Agility training that improves hamstrings activity might have implications for reducing anterior cruciate ligament sprain injury associated with side-step pivots.  相似文献   

6.

Context:

Altered neuromuscular control strategies during fatigue probably contribute to the increased incidence of non-contact anterior cruciate ligament injuries in female athletes.

Objective:

To determine biomechanical differences between 2 fatigue protocols (slow linear oxidative fatigue protocol [SLO-FP] and functional agility short-term fatigue protocol [FAST-FP]) when performing a running-stop-jump task.

Design:

Controlled laboratory study.

Setting:

Laboratory.

Patients or Other Participants:

A convenience sample of 15 female soccer players (age = 19.2 ±0.8 years, height = 1.67±0.05m, mass = 61.7 + 8.1 kg) without injury participated.

Intervention(s):

Five successful trials of a running–stop-jump task were obtained prefatigue and postfatigue during the 2 protocols. For the SLO-FP, a peak oxygen consumption (V˙o2peak) test was conducted before the fatigue protocol. Five minutes after the conclusion of the V˙o2peak test, participants started the fatigue protocol by performing a 30-minute interval run. The FAST-FP consisted of 4 sets of a functional circuit. Repeated 2 (fatigue protocol) × 2 (time) analyses of variance were conducted to assess differences between the 2 protocols and time (prefatigue, postfatigue).

Main Outcome Measure(s):

Kinematic and kinetic measures of the hip and knee were obtained at different times while participants performed both protocols during prefatigue and postfatigue.

Results:

Internal adduction moment at initial contact (IC) was greater during FAST-FP (0.064 ±0.09 Nm/kgm) than SLO-FP (0.024±0.06 Nm/kgm) (F1,14 = 5.610, P=.03). At IC, participants had less hip flexion postfatigue (44.7°±8.1°) than prefatigue (50.1°±9.5°) (F1,14 = 16.229, P=.001). At peak vertical ground reaction force, participants had less hip flexion postfatigue (44.7°±8.4°) than prefatigue (50.4°±10.3°) (F1,14 = 17.026, P=.001). At peak vertical ground reaction force, participants had less knee flexion postfatigue (−35.9°±6.5°) than prefatigue (−38.8°±5.03°) (F1,14 = 11.537, P=.001).

Conclusions:

Our results demonstrated a more erect landing posture due to a decrease in hip and knee flexion angles in the postfatigue condition. The changes were similar between protocols; however, the FAST-FP was a clinically applicable 5-minute protocol, whereas the SLO-FP lasted approximately 45 minutes.  相似文献   

7.
8.

OBJECTIVES:

To compare the accuracy of tunnel placement and graft isometry for anterior cruciate ligament reconstruction performed using a computer-assisted navigation system (Orthopilot) and using traditional instruments.

METHODS:

The anterior cruciate ligament was removed intact from 36 pairs of human cadaver knees. From each pair, one knee was randomized to Group 1 (conventional) and the other to Group 2 (Orthopilot). An inelastic suture was then passed through the central points of the tibial and femoral tunnels. Neither of the tunnels was drilled. All knees were then dissected, and six parameters were obtained: distances from the tibial tunnel center to the 1) posterior cruciate ligament, 2) anterior horn of the lateral meniscus and 3) medial tibial spine; 4) distance from the femoral tunnel center to the posterior femoral cortex; 5) femoral tunnel coronal angle; and 6) variation of the distance from the femoral to the tibial tunnel with the knee extended and at 90 degrees of flexion.

RESULTS:

The variation of the distance from the femoral to the tibial tunnel during flexion and extension was smaller in the Orthopilot group (better isometry) compared to the conventional group. There were no statistical differences in any other parameters between the groups, and all tunnels were considered to be in satisfactory positions.

DISCUSSION:

The results obtained for anterior cruciate ligament reconstruction depend on precise isometric point positioning, and a navigation system is a precision tool that can assist surgeons in tunnel positioning.

CONCLUSION:

No differences in tunnel position were observed between the groups. Nonetheless, better isometry was achieved in the Orthopilot group than with conventional instruments.  相似文献   

9.

Purpose

The purpose of this study was to compare four graft-tunnel angles (GTA), the femoral GTA formed by three different femoral tunneling techniques (the outside-in, a modified inside-out technique in the posterior sag position with knee hyperflexion, and the conventional inside-out technique) and the tibia GTA in 3-dimensional (3D) knee flexion models, as well as to examine the influence of femoral tunneling techniques on the contact pressure between the intra-articular aperture of the femoral tunnel and the graft.

Materials and Methods

Twelve cadaveric knees were tested. Computed tomography scans were performed at different knee flexion angles (0°, 45°, 90°, and 120°). Femoral and tibial GTAs were measured at different knee flexion angles on the 3D knee models. Using pressure sensitive films, stress on the graft of the angulation of the femoral tunnel aperture was measured in posterior cruciate ligament reconstructed cadaveric knees.

Results

Between 45° and 120° of knee flexion, there were no significant differences between the outside-in and modified inside-out techniques. However, the femoral GTA for the conventional inside-out technique was significantly less than that for the other two techniques (p<0.001). In cadaveric experiments using pressure-sensitive film, the maximum contact pressure for the modified inside-out and outside-in technique was significantly lower than that for the conventional inside-out technique (p=0.024 and p=0.017).

Conclusion

The conventional inside-out technique results in a significantly lesser GTA and higher stress at the intra-articular aperture of the femoral tunnel than the outside-in technique. However, the results for the modified inside-out technique are similar to those for the outside-in technique.  相似文献   

10.

Context:

Numerous recovery strategies have been used in an attempt to minimize the symptoms of delayed-onset muscle soreness (DOMS). Whole-body vibration (WBV) has been suggested as a viable warm-up for athletes. However, scientific evidence to support the protective effects of WBV training (WBVT) on muscle damage is lacking.

Objective:

To investigate the acute effect of WBVT applied before eccentric exercise in the prevention of DOMS.

Design:

Randomized controlled trial.

Setting:

University laboratory.

Patients or Other Participants:

A total of 32 healthy, untrained volunteers were randomly assigned to either the WBVT (n  =  15) or control (n  =  17) group.

Intervention(s):

Volunteers performed 6 sets of 10 maximal isokinetic (60°/s) eccentric contractions of the dominant-limb knee extensors on a dynamometer. In the WBVT group, the training was applied using a vibratory platform (35 Hz, 5 mm peak to peak) with 100° of knee flexion for 60 seconds before eccentric exercise. No vibration was applied in the control group.

Main Outcome Measure(s):

Muscle soreness, thigh circumference, and pressure pain threshold were recorded at baseline and at 1, 2, 3, 4, 7, and 14 days postexercise. Maximal voluntary isometric and isokinetic knee extensor strength were assessed at baseline, immediately after exercise, and at 1, 2, 7, and 14 days postexercise. Serum creatine kinase was measured at baseline and at 1, 2, and 7 days postexercise.

Results:

The WBVT group showed a reduction in DOMS symptoms in the form of less maximal isometric and isokinetic voluntary strength loss, lower creatine kinase levels, and less pressure pain threshold and muscle soreness (P < .05) compared with the control group. However, no effect on thigh circumference was evident (P < .05).

Conclusions:

Administered before eccentric exercise, WBVT may reduce DOMS via muscle function improvement. Further investigation should be undertaken to ascertain the effectiveness of WBVT in attenuating DOMS in athletes.  相似文献   

11.
12.

Context:

Limited passive hamstring flexibility might affect kinematics, performance, and injury risk during running. Pre-activity static straight-leg raise stretching often is used to gain passive hamstring flexibility.

Objective:

To investigate the acute effects of a single session of passive hamstring stretching on pelvic, hip, and knee kinematics during the swing phase of running.

Design:

Randomized controlled clinical trial.

Setting:

Biomechanics research laboratory.

Patients or Other Participants:

Thirty-four male (age = 21.2 ± 1.4 years) and female (age = 21.3±2.0 years) recreational athletes.

Intervention(s):

Participants performed treadmill running pretests and posttests at 70% of their age-predicted maximum heart rate. Pelvis, hip, and knee joint angles during the swing phase of 5 consecutive gait cycles were collected using a motion analysis system. Right and left hamstrings of the intervention group participants were passively stretched 3 times for 30 seconds in random order immediately after the pretest. Control group participants performed no stretching or movement between running sessions.

Main Outcome Measure(s):

Six 2-way analyses of variance to determine joint angle differences between groups at maximum hip flexion and maximum knee extension with an α level of .008.

Results:

Flexibility increased between pretest and post-test in all participants (F1,30 = 80.61, P<.001). Anterior pelvic tilt (F1,30 = 0.73, P=.40), hip flexion (F1,30 = 2.44, P=.13), and knee extension (F1,30 = 0.06, P=.80) at maximum hip flexion were similar between groups throughout testing. Anterior pelvic tilt (F1,30 = 0.69, P=.41), hip flexion (F1,30 = 0.23, P=.64), and knee extension (F1,30 = 3.38, P=.62) at maximum knee extension were similar between groups throughout testing. Men demonstrated greater anterior pelvic tilt than women at maximum knee extension (F1,30 = 13.62, P=.001).

Conclusions:

A single session of 3 straight-leg raise hamstring stretches did not change pelvis, hip, or knee running kinematics.  相似文献   

13.

Context:

Knee braces and neoprene sleeves are commonly worn by people with anterior cruciate ligament reconstructions (ACLRs) during athletic activity. How knee braces and sleeves affect muscle activation in people with ACLRs is unclear.

Purpose:

To determine the effects of knee braces and neoprene knee sleeves on the quadriceps central activation ratio (CAR) before and after aerobic exercise in people with ACLRs.

Design:

Crossover study.

Patients or Other Participants:

Fourteen people with a history of ACLR (9 women, 5 men: age = 23.61 ± 4.44 years, height = 174.09 ± 9.82 cm, mass = 75.35 ± 17.48 kg, months since ACLR = 40.62 ± 20.41).

Intervention(s):

During each of 3 sessions, participants performed a standardized aerobic exercise protocol on a treadmill. The independent variables were condition (brace, sleeve, or control) and time (baseline, pre-exercise with brace, postexercise with brace, postexercise without brace).

Main Outcome Measure(s):

Normalized torque measured during a maximal voluntary isometric contraction (TMVIC) and CAR were measured by a blinded assessor using the superimposed burst technique. The CAR was expressed as a percentage of full muscle activation. The quadriceps CAR and TMVIC were measured 4 times during each session: baseline, pre-exercise with brace, postexercise with brace, and postexercise without brace.

Results:

Immediately after the application of the knee brace, TMVIC decreased (P = .01), but no differences between bracing conditions were observed. We noted reduced TMVIC and CAR (P < .001) after exercise, both with and without the brace. No differences were seen between bracing conditions after aerobic exercise.

Conclusions:

The decrease in TMVIC immediately after brace application was not accompanied by differences between bracing conditions. Wearing a knee brace or neoprene sleeve did not seem to affect the deterioration of quadriceps function after aerobic exercise.  相似文献   

14.
15.

Purpose

To evaluate the clinical outcomes of cantilever transforaminal lumbar interbody fusion (c-TLIF) for upper lumbar diseases.

Materials and Methods

Seventeen patients (11 males, 6 females; mean ± SD age: 62 ± 14 years) who underwent c-TLIF using kidney type spacers between 2002 and 2008 were retrospectively evaluated, at a mean follow-up of 44.1 ± 12.3 months (2 year minimum). The primary diseases studied were disc herniation, ossification of posterior longitudinal ligament (OPLL), degenerative scoliosis, lumbar spinal canal stenosis, spondylolisthesis, and degeneration of adjacent disc after operation. Fusion areas were L1-L2 (5 patients), L2-L3 (9 patients), L1-L3 (1 patient), and L2-L4 (2 patients). Operation time, blood loss, complications, Japanese Orthopaedic Association (JOA) score for back pain, bone union, sagittal alignment change of fusion level, and degeneration of adjacent disc were evaluated.

Results

JOA score improved significantly after surgery, from 12 ± 2 to 23 ± 3 points (p < 0.01). We also observed significant improvement in sagittal alignment of the fusion levels, from - 1.0 ± 7.4 to 5.2 ± 6.1 degrees (p < 0.01). Bony fusion was obtained in all cases. One patient experienced a subcutaneous infection, which was cured by irrigation. At the final follow-up, three patients showed degenerative changes in adjacent discs, and one showed corrective loss of fusion level.

Conclusion

c-TLIF is a safe procedure, providing satisfactory results for patients with upper lumbar degenerative diseases.  相似文献   

16.
17.

Context:

The effects of fatigue on impact loading during running are unclear, with some authors reporting increased impact forces and others reporting decreased forces.

Objective:

To examine the effects of isokinetic fatigue on muscle cocontraction ratios about the knee and ankle during running.

Design:

Cross-sectional study.

Setting:

Neuromechanics laboratory.

Patients or Other Participants:

Female middle-distance runners (age  =  21.3 ± 1.93 years) with at least 5 years of training experience.

Intervention(s):

Participants ran on the treadmill at 3.61 m/s before and immediately after the fatigue protocol, which consisted of consecutive, concentric knee extension-flexion at 120°/s until they could no longer produce 30% of the maximum knee-extension moment achieved in the familiarization session for 3 consecutive repetitions.

Main Outcome Measure(s):

Electromyographic (EMG) amplitude of the vastus medialis (VM), biceps femoris (BF), gastrocnemius (GAS), and tibialis anterior (TA) was recorded using surface electrodes. Agonist∶antagonist EMG ratios for the knee (VM∶BF) and ankle (GAS∶TA) were calculated for the preactivation (PR), initial loading response (LR1), and late loading response (LR2) phases of running. Hip-, knee-, and ankle-joint angular displacements at initial foot contact were obtained from 3-dimensional kinematic tracings.

Results:

Fatigue did not alter the VM∶BF EMG ratio during the PR phase (P > .05), but it increased the ratio during the LR1 phase (P < .05). The GAS∶TA EMG ratio increased during the LR1 phase after fatigue (P < .05) but remained unchanged during the PR and LR2 phrases (P > .05).

Conclusions:

The increased agonist EMG activation, coupled with reduced antagonist EMG activation after impact, indicates that the acute decrease in muscle strength capacity of the knee extensors and flexors results in altered muscle-activation patterns about the knee and ankle before and after foot impact.  相似文献   

18.

Context:

With regard to intermittent training exercise, the effects of the mode of recovery on subsequent performance are equivocal.

Objective:

To compare the effects of 3 types of recovery intervention on peak torque (PT) and electromyographic (EMG) activity of the knee extensor muscles after fatiguing isokinetic intermittent concentric exercise.

Design:

Crossover study.

Setting:

Research laboratory.

Patients or Other Participants:

Eight elite judo players (age = 18.4 ± 1.4 years, height = 180 ± 3 cm, mass = 77.0 ± 4.2 kg).

Interventions :

Participants completed 3 randomized sessions within 7 days. Each session consisted of 5 sets of 10 concentric knee extensions at 80% PT at 120°/s, with 3 minutes of recovery between sets. Recovery interventions were passive, active, and electromyostimulation. The PT and maximal EMG activity were recorded simultaneously while participants performed isokinetic dynamometer trials before and 3 minutes after the resistance exercise.

Main Outcome Measure(s):

The PT and maximal EMG activity from the knee extensors were quantified at isokinetic velocities of 60°/s, 120°/s, and 180°/s, with 5 repetitions at each velocity.

Results:

The reduction in PT observed after electromyo-stimulation was less than that seen after passive (P < .001) or active recovery (P < .001). The reduction in PT was less after passive recovery than after active recovery (P < .001). The maximal EMG activity level observed after electromyostimulation was higher than that seen after active recovery (P < .05).

Conclusions:

Electromyostimulation was an effective recovery tool in decreasing neuromuscular fatigue after high-intensity, intermittent isokinetic concentric exercise for the knee extensor muscles. Also, active recovery induced the greatest amount of neuromuscular fatigue.  相似文献   

19.

BACKGROUND:

Patellofemoral Pain Syndrome is one of the most common knee disorders among physically active young women. Despite its high incidence, the multifactorial etiology of this disorder is not fully understood.

OBJECTIVES:

To investigate the influence of Patellofemoral Pain Syndrome on plantar pressure distribution during the foot rollover process (i.e., the initial heel contact, midstance and propulsion phases) of the gait.

MATERIALS AND METHODS:

Fifty-seven young adults, including 22 subjects with Patellofemoral Pain Syndrome (30 ± 7 years, 165 ± 9 cm, 63 ± 12 kg) and 35 control subjects (29 ± 7 years, 164 ± 8 cm, 60 ± 11 kg), volunteered for the study. The contact area and peak pressure were evaluated using the Pedar-X system (Novel, Germany) synchronized with ankle sagittal kinematics.

RESULTS:

Subjects with Patellofemoral Pain Syndrome showed a larger contact area over the medial (p = 0.004) and central (p = 0.002) rearfoot at the initial contact phase and a lower peak pressure over the medial forefoot (p = 0.033) during propulsion when compared with control subjects.

CONCLUSIONS:

Patellofemoral Pain Syndrome is related to a foot rollover pattern that is medially directed at the rearfoot during initial heel contact and laterally directed at the forefoot during propulsion. These detected alterations in the foot rollover process during gait may be used to develop clinical interventions using insoles, taping and therapeutic exercise to rehabilitate this dysfunction.  相似文献   

20.

OBJECTIVES:

We evaluated the impairment of endothelium-dependent and endothelium-independent coronary blood flow reserve after administration of intracoronary acetylcholine and adenosine, and its association with hypertensive cardiac disease.

INTRODUCTION:

Coronary blood flow reserve reduction has been proposed as a mechanism for the progression of compensated left ventricular hypertrophy to ventricular dysfunction.

METHODS:

Eighteen hypertensive patients with normal epicardial coronary arteries on angiography were divided into two groups according to left ventricular fractional shortening (FS). Group 1 (FS ≥0.25): n=8, FS=0.29 ± 0.03; Group 2 (FS <0.25): n=10, FS= 0.17 ± 0.03.

RESULTS:

Baseline coronary blood flow was similar in both groups (Group 1: 80.15 ± 26.41 mL/min, Group 2: 100.09 ± 21.51 mL/min, p=NS). In response to adenosine, coronary blood flow increased to 265.1 ± 100.2 mL/min in Group 1 and to 300.8 ± 113.6 mL/min (p <0.05) in Group 2. Endothelium-independent coronary blood flow reserve was similar in both groups (Group 1: 3.31 ± 0.68 and Group 2: 2.97 ± 0.80, p=NS). In response to acetylcholine, coronary blood flow increased to 156.08 ± 36.79 mL/min in Group 1 and to 177.8 ± 83.6 mL/min in Group 2 (p <0.05). Endothelium-dependent coronary blood flow reserve was similar in the two groups (Group 1: 2.08 ± 0.74 and group Group 2: 1.76 ± 0.61, p=NS). Peak acetylcholine/peak adenosine coronary blood flow response (Group 1: 0.65 ± 0.27 and Group 2: 0.60 ± 0.17) and minimal coronary vascular resistance (Group 1: 0.48 ± 0.21 mmHg/mL/min and Group 2: 0.34 ± 0.12 mmHg/mL/min) were similar in both groups (p= NS). Casual diastolic blood pressure and end-systolic left ventricular stress were independently associated with FS.

CONCLUSIONS:

In our hypertensive patients, endothelium-dependent and endothelium-independent coronary blood flow reserve vasodilator administrations had similar effects in patients with either normal or decreased left ventricular systolic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号