首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to evaluate whether curcumin could modulate P-glycoprotein (P-gp) and CYP3A expression, and in turn modify the pharmacokinetic profiles of P-gp and CYP3A substrates in male Sprague-Dawley rats. Intragastric gavage of the rats with 60 mg/kg curcumin for 4 consecutive days led to a down-regulation of the intestinal P-gp level. There was a concomitant upregulation of hepatic P-gp level, but the renal P-gp level was unaffected. Curcumin also attenuated the CYP3A level in the small intestine but induced CYP3A expression in the liver and kidney. Regular curcumin consumption also caused the C(max) and area under the concentration-time curve (AUC(0-8) and total AUC) of peroral celiprolol (a P-gp substrate with negligible cytochrome P450 metabolism) at 30 mg/kg to increase, but the apparent oral clearance (CL(oral)) of the drug was reduced. Similarly, rats treated with curcumin for 4 consecutive days showed higher AUC (AUC(0-4) and total AUC) and lower CL(oral) for peroral midazolam (a CYP3A substrate that does not interact with the P-gp) at 20 mg/kg in comparison with vehicle-treated rats. In contrast, curcumin administered 30 min before the respective drug treatments did not significantly modify the pharmacokinetic parameters of the drugs. Analysis of the data suggests that the changes in the pharmacokinetic profiles of peroral celiprolol and midazolam in the rat model were contributed mainly by the curcumin-mediated down-regulation of intestinal P-gp and CYP3A protein levels, respectively.  相似文献   

2.
In this open-label study, 24 healthy volunteers received a single intravenous (IV) dose of 0.5 mg of midazolam on day 1 and a single oral dose each of 2 mg of midazolam and 0.5 mg of digoxin on day 3. Telaprevir 750 mg every 8 hours was administered from day 8 through day 23, along with a single IV dose of 0.5 mg of midazolam on day 17 and single oral doses of 2 mg of midazolam and 0.5 mg of digoxin on day 19. Midazolam, 1'-hydroxymidazolam, digoxin, and telaprevir concentrations in plasma and digoxin concentrations in urine were measured and pharmacokinetic parameters calculated. On comparing administration with versus without telaprevir, the geometric least squares mean ratios (with 90% confidence limits) for IV midazolam were 1.02 (0.80, 1.31) for maximum observed concentrations (C(max)) and 3.40 (3.04, 3.79) for area under the curve from 0 to 24 hours (AUC(0-24h)); for oral midazolam 2.86 (2.52, 3.25) for C(max) and 8.96 (7.75, 10.35) for AUC(0-24h); and for oral digoxin 1.50 (1.36, 1.65) for C(max) and 1.85 (1.70, 2.00) for area under the curve from 0 to infinity (AUC(0-∞)). Coadministration of telaprevir with oral midazolam resulted in approximately 3-fold decrease in the mean AUC(0-∞) of 1'-hydroxymidazolam. The renal clearance of digoxin was similar with or without telaprevir. Results show that telaprevir is an inhibitor of CYP3A and P-glycoprotein.  相似文献   

3.
4.
The aim of this study was to evaluate the effects of docosahexaenoic acid (DHA) on the intestinal cytochrome P450 isoenzyme (CYP3A) and P-glycoprotein (P-gp) functions using midazolam and rhodamine-123 as specific substrates of CYP3A and P-gp, respectively. Perfused everted intestinal segments from rats were employed to determine the effects of DHA on midazolam metabolism and rhodamine-123 transport. In addition, the effects of DHA on in vitro midazolam metabolism in rat intestinal microsomes and on midazolam bioavailability in rats were examined. The intestinal extraction ratio (ER G) of midazolam was determined to be 0.43 and decreased significantly to 0.12, 0.07, and 0.06 in the presence of 50, 100, and 200 microM DHA, respectively, in a concentration-dependent manner. The results from an in vitro study using rat intestinal microsomes demonstrated that DHA competitively inhibited the intestinal CYP3A activity with Ki of 15.7 and 27.1 microM for the formations of 1'-OH midazolam and 4-OH midazolam, respectively. Moreover, the oral administration of DHA (100mg/kg) increased the AUC infinity, Cmax, and oral bioavailability (F) of midazolam by about 50% in rats, without affecting the T 1/2, V dss/F, or CL tot/F. In contrast, DHA did not change the serosal-to-mucosal transport of rhodamine-123 in the perfused everted intestine and oral administration of DHA (100mg/kg) had no influence on the pharmacokinetics of intravenously administered midazolam in rats, thus suggesting that DHA has little effect on the intestinal P-gp activity and hepatic clearance of midazolam. This study provided the first direct evidence to show that DHA has an inhibitory effect on the intestinal pre-systemic metabolism of a CYP3A substrate and that DHA has little, if any, effect on the P-gp activity in the gut.  相似文献   

5.
Brivanib alaninate is the orally available prodrug of brivanib, a dual inhibitor of fibroblast growth factor and vascular endothelial growth factor signaling pathways that is under therapeutic investigation for various malignancies. Brivanib alaninate inhibits CYP3A4 in vitro, and thus there is potential for drug-drug interaction with CYP3A4 substrates, such as midazolam. The present study evaluated pharmacokinetic parameters and safety/tolerability upon coadministration of brivanib alaninate and midazolam. Healthy participants received intravenous (IV) or oral midazolam with and without oral brivanib alaninate. Blood samples for pharmacokinetic analysis were collected up to 12 hours after midazolam and up to 48 hours after brivanib alaninate. Twenty-four participants were administered study drugs; 21 completed the trial. No clinically relevant effect of brivanib alaninate on the overall exposure to midazolam following IV or oral administration was observed. Orally administered brivanib alaninate was generally well tolerated in the presence of IV or oral midazolam. The lack of a pharmacokinetic interaction between brivanib and midazolam indicates that brivanib alaninate does not influence either intestinal or hepatic CYP3A4 and confirms that brivanib alaninate may be safely coadministered with midazolam and other CYP3A4 substrates.  相似文献   

6.
STUDY OBJECTIVE: To evaluate the potential of rifaximin, an oral nonabsorbed (< 0.4%) structural analog of rifampin, to induce human hepatic and/or intestinal cytochrome P450 (CYP) 3A enzymes, with use of a known CYP3A probe, midazolam. DESIGN: Prospective, randomized, open-label, two-period, crossover study. SETTING: Clinical research center. SUBJECTS: Twenty-seven healthy adult volunteers. INTERVENTION: During the first treatment period, subjects received a single dose of either intravenous midazolam 2 mg over 30 minutes or oral midazolam 6 mg on day 0. From days 3-10, they received rifaximin 200 mg every 8 hours. On days 6 (after the 9th dose of rifaximin) and 10 (after the 21st dose of rifaximin), subjects received a concomitant single dose of intravenous or oral midazolam. After a 15-day washout period, subjects were crossed over to the other formulation of midazolam, and the treatment schedule was repeated, with the second treatment period starting on day 26 and single-dose administration of midazolam on days 26, 32, and 36. Serial plasma samples were collected for pharmacokinetic analyses. MEASUREMENTS AND MAIN RESULTS: The pharmacokinetic parameters of single-dose intravenous or oral midazolam were determined alone and after coadministration of rifaximin for 3 and 7 days. Rifaximin coadministration did not alter the measured pharmacokinetic parameters for midazolam or its major metabolite, 1'-hydroxymidazolam. The 90% confidence intervals for the maximum concentration and area under the concentration-time curve from time zero extrapolated to infinity (bioavailability) were all within 80-125% for intravenous and oral midazolam. Therefore, no drug interaction was observed between rifaximin and midazolam. Coadministration of midazolam and rifaximin was well tolerated. CONCLUSION: Overall, 3-7 days of rifaximin 200 mg 3 times/day did not alter single-dose midazolam pharmacokinetics. Rifaximin also does not appear to induce intestinal or hepatic CYP3A activity.  相似文献   

7.
STUDY OBJECTIVE: To investigate a potential correlation between exposure to oral midazolam, a commonly used cytochrome P450 (CYP) 3A probe, and saquinavir and indinavir exposure. DESIGN: Open-label, prospective, pharmacokinetic study. SETTING: Outpatient research center. SUBJECTS: Thirty-six healthy volunteers aged 22-50 years. INTERVENTION: Subjects received a single oral dose of midazolam 8 mg; 4 hours later, blood was drawn to determine their serum midazolam concentrations. Midazolam phenotyping was followed by successive administration of the protease inhibitors indinavir and saquinavir, with blood sampling and pharmacokinetic analyses performed at steady state. MEASUREMENTS AND MAIN RESULTS: Pharmacokinetic parameters of each protease inhibitor were evaluated to assess for a potential relationship with 4-hour concentrations of midazolam. No correlations between phenotype results for midazolam and any pharmacokinetic parameter for indinavir or saquinavir were identified (r(2)=0.00002-0.073). When the results were analyzed based on race, significant correlations were identified in five African-American subjects, including correlations between 4-hour midazolam levels and apparent oral clearance of saquinavir (r(2)=0.734, p=0.064), area under the plasma concentration-time curve from 0-8 hours (r(2)=0.914, p=0.011), minimum concentration (r(2)=0.857, p=0.024), and maximum concentration (r(2)=0.969, p=0.002). These findings for African-American subjects were not seen with indinavir. No correlation was found between indinavir and saquinavir pharmacokinetic parameters (r(2)=0.017-0.261). CONCLUSION: Oral midazolam was not a useful probe for predicting saquinavir or indinavir exposure at steady state. Reasons for the lack of correlation likely included differences between midazolam and protease inhibitor P-glycoprotein specificity, differences in the relative contribution of CYP3A5-mediated metabolism, and/or variation in intestinal and hepatic CYP3A specificity. The strong correlation between midazolam phenotype and pharmacokinetic parameters for saquinavir in African-American subjects indicated a racial difference in one or more of these confounding variables.  相似文献   

8.
Objectives To clarify whether alterations in midazolam pharmacokinetics resulting from changes in cytochrome P450 3A (CYP3A) activity lead to changes in its pharmacodynamic effects, benzodiazepine receptor occupancy was measured in the brain of rats after oral administration of midazolam. Methods Receptor occupancy was measured by radioligand binding assay in rats pretreated with ursodeoxycholic acid (UDCA), ketoconazole and dexamethasone, and the plasma concentration of midazolam was simultaneously determined. Key findings There was a significant increase in the apparent dissociation constant and decrease in the maximum number of binding sites for specific [3H]flunitrazepam binding after oral administration of midazolam at pharmacologically relevant doses, suggesting that midazolam binds significantly to brain benzodiazepine receptors. Pretreatment with UDCA significantly enhanced the binding. This correlated well with significant enhancement by UDCA of the plasma midazolam concentration. The brain benzodiazepine receptor binding of oral midazolam was significantly enhanced by pretreatment with ketoconazole, a potent inhibitor of CYP3A, whereas it was significantly reduced by treatment with dexamethasone, an inducer of this enzyme. These effects paralleled changes in the plasma concentration of midazolam. Conclusions The results indicate that pharmacokinetic changes such as altered CYP3A activity significantly influence the pharmacodynamic effect of midazolam by affecting occupancy of benzodiazepine receptors in the brain. They also suggest in‐vivo or ex‐vivo time‐dependent measurements of receptor occupancy by radioligand binding assay to be a tool for elucidating the pharmacokinetic interaction of benzodiazepines with other agents in pre‐clinical and clinical evaluations.  相似文献   

9.
Paclitaxel is a P-gp substrate and metabolized via CYP2C and 3A subfamily in rats. It has been reported that cysteine causes the changes in expression of CYP isozymes and intestinal P-gp mediated efflux activity in rats. Thus, the effects of cysteine on the pharmacokinetics of intravenous and oral paclitaxel were investigated in rats. After intravenous administration of paclitaxel (30 mg/kg) to control (CON), single cysteine treatment (ST) and cysteine treatment for a week (CT) rats, the pharmacokinetic parameters were comparable among three groups of rats. Also the pharmacokinetic parameters between CON and ST rats were comparable after oral administration of paclitaxel (30 mg/kg) to rats. These results are consistent with that oral cysteine supplement on a single day did not considerably inhibit the metabolism of paclitaxel via hepatic and/or intestinal CYP3A subfamily and P-gp mediated efflux of paclitaxel in the liver and/or intestine both after intravenous and oral administration to rats. After oral administration of paclitaxel (30 mg/kg) to rats, the greater AUC06 h in CT rats was mainly due to that oral cysteine supplement for seven consecutive days enhanced the gastrointestinal absorption of paclitaxel compared with those in CON and ST rats.  相似文献   

10.
It has been reported that tamoxifen is a substrate of P-glycoprotein (P-gp) and microsomal cytochrome P450 (CYP) 3A, and kaempferol is an inhibitor of P-gp and CYP3A. Hence, it could be expected that kaempferol would affect the pharmacokinetics of tamoxifen. Thus, tamoxifen was administered orally (10 mg/kg) without or with oral kaempferol (2.5 and 10 mg/kg). In the presence of kaempferol, the total area under the plasma concentration-time curve from time zero to time infinity (AUC) of tamoxifen was significantly greater, C(max) was significantly higher and F was considerably greater than those without kaempferol. The enhanced bioavailability of oral tamoxifen by oral kaempferol could have been due to an inhibition of CYP3A and P-gp by kaempferol. The presence of kaempferol did not alter the pharmacokinetic parameters of a metabolite of tamoxifen, 4-hydroxytamoxifen. This could have been because the contribution of CYP3A to the formation of 4-hydroxytamoxifen is not considerable in rats.  相似文献   

11.
The purpose of this study was to investigate the potential for a CYP3A4-mediated drug interaction between R667 and midazolam (MDZ) in healthy subjects. R667 is metabolized by CYP3A4 and therefore may interact with CYP3A4 substrates. In the present study, 18 healthy male subjects received a single 15-mg oral dose of MDZ with and without R667 coadministration. Serial blood samples were collected predose and up to 24 hours after each MDZ dose for pharmacokinetic (PK) evaluation. The PK parameters for MDZ, R667, and metabolites were estimated using noncompartmental methods. MDZ exposure was very similar in the presence and absence of R667 (C(max) = 50.8 vs 46.2 ng/mL; AUC(0-last) = 215 vs 216 ng.h/mL; AUC(0-last) ratio = 0.26 vs 0.26, respectively). R667 exposure was not affected by midazolam coadministration as compared with historical data. Based on the results of this study, no significant pharmacokinetic interaction should be anticipated between R667 and CYP3A4 substrates.  相似文献   

12.
Our previous report showed that L754.394 and valspodar (PSC833) are potent inhibitors of midazolam hydroxylation in human jejunum microsomes and vectorial transport of vinblastine in Caco-2 cells, respectively. In the present study, to directly examine the interactions of these compounds as well as other substrates with CYP3A4 and P-glycoprotein (P-gp), we performed in vitro inhibition studies using recombinant CYP3A4-expressed microsomes and an MDR1-transfected cell line, LLC-MDR1, respectively. In CYP3A4-expressed microsomes, both L754.394 and ketoconazole, at a concentration less than 0.5 microM, are the most potent inhibitors of the formation of 1'-hydroxymidazolam, a major metabolite of midazolam formed by CYP3A4. The greatest inhibitory effect on the transcellular transport of digoxin in LLC-MDR1 cells was observed in the presence of valspodar (<0.1 microM), followed by verapamil. From a comparison of the IC(50) values, it was shown that L754.394 and valspodar exhibited the highest selectivity for CYP3A4 and P-gp, respectively. To demonstrate such specificity, both midazolam hydroxylation and digoxin transport were observed in CYP3A4 transfected Caco-2 cells, which coexpress both P-gp and CYP3A4, in the presence or absence of L754.394 (0.5 microM) and valspodar (1.0 microM). L754.394 almost completely inhibited midazolam hydroxylation, but not digoxin transport, whereas almost complete inhibition of digoxin transport was observed in the presence of valspodar, but inhibition of the hydroxylation was minimal. Thus, the present study has demonstrated that L754.394 has a specific inhibitory effect on CYP3A4, whereas valspodar is specific for P-gp.  相似文献   

13.
Apocynum venetum extract does not induce CYP3A and P-glycoprotein in rats   总被引:2,自引:0,他引:2  
We investigated the effect of Apocynum venetum L. extract (AV) on the activity of cytochrome P450 (CYP) 3A and P-glycoprotein (P-gp). The plasma concentration of nifedipine (NF), which is a substrate for CYP3A, did not change after oral administration with AV (3.3 mg/kg). Also, AV (3.3 and 33 mg/kg) did not affect the intestinal absorption of NF. In the rats treated with multiple administrations (15 mg/kg/d) of St. John's wort extract (SJW) for 2 weeks, the plasma concentration of NF after oral administration was significantly decreased. On the other hand, there was no significant differences in the pharmacokinetic parameters of NF between AV-treated (3.3 mg/kg/d) and none-treated rats. Furthermore, the intestinal absorption of methylprednisolone, which is a substrate for P-gp, was not affected by AV treatment for 2 weeks. These results suggest that, unlike SJW, the recommended dose of AV (3.3 mg/kg/d) would not influence hepatic CYP3A and intestinal P-gp in rats.  相似文献   

14.
Danshen (Salvia miltiorrhiza) contains tanshinones, which inhibit P-glycoprotein (P-gp) and the cytochrome P450 (CYP) system. In the present study, we evaluated the possible pharmacokinetic interactions of Danshen extract with docetaxel and clopidogrel in rats. Docetaxel (5 mg/kg intravenously and 40 mg/kg orally) or clopidogrel (30 mg/kg orally) was administered to rats with or without oral co-administration of Danshen (400 mg/kg). Co-administration of Danshen did not affect the plasma concentration profiles and pharmacokinetic parameters of docetaxel and clopidogrel, whereas cyclosporine A, a P-gp and CYP3A inhibitor, significantly influenced the pharmacokinetics of co-administered docetaxel and clopidogrel. Orally administered Danshen had no substantial effect on the pharmacokinetics of docetaxel and clopidogrel, suggesting the negligible safety concern of Danshen in P-gp- and CYP3A-mediated interactions in vivo.  相似文献   

15.

Objective

To evaluate felodipine as a potential perpetrator of pharmacokinetic drug-drug interactions (PK-DDIs) involving cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp).

Methods

Felodipine extended-release 10 mg was administered daily to six healthy subjects for 7 days (days 1–7). Subjects were administered a modified Inje cocktail comprising the selective probe substrates caffeine 100 mg (CYP1A2), losartan 25 mg (CYP2C9), omeprazole 20 mg (CYP2C19), dextromethorphan 30 mg (CYP2D6), midazolam 2 mg (CYP3A) and digoxin 250 μg (P-gp) on day 0 (prior to felodipine exposure) and day 7 (after felodipine exposure). Plasma samples were collected over 24 h and drug concentrations measured by UPLC-MS/MS.

Results

The geometric means of the area under the plasma concentration–time curve ratios (probe AUC after felodipine exposure/probe AUC prior to felodipine exposure) and 95 % confidence intervals for each probe were: caffeine 0.91 (0.64–1.30), losartan 1.05 (0.95–1.15), omeprazole 1.17 (0.78–1.76), dextromethorphan 1.46 (1.00–2.12), midazolam 1.23 (0.99–1.52) and digoxin 1.01 (0.89–1.15).

Conclusion

Felodipine may be a weak in vivo inhibitor of CYP3A and CYP2D6 but is unlikely to act as a significant perpetrator of PK-DDIs.  相似文献   

16.
The effect of pretreatment with dexamethasone (DEX) on drug-drug interactions between rhodamine 123 (Rho123), a P-glycoprotein (P-gp) substrate, and midazolam, a cytochrome P450 (CYP) 3A substrate, or verapamil, a P-gp/CYP3A substrate, was studied in rats. Rats were pretreated with DEX (100 mg/kg/day, oral) for 2 days. Western blot analysis with a monoclonal antibody for P-gp, C219, revealed that DEX pretreatment increased P-gp level in the intestine 1.9-fold, but not in the liver. In vitro metabolism study of erythromycin in microsomal suspensions indicated the 9.7-fold increase of CYP3A activity in the liver, but not in the intestine, by DEX pretreatment. In an in vivo study, DEX pretreatment increased P-gp-mediated exsorption clearance of Rho123 from blood to the intestinal lumen approximately 2-fold, but not biliary clearances, in good agreement with the results of Western blot analysis. In untreated rats, midazolam (100 microM) or verapamil (30 or 100 microM) added in the intestinal perfusate (single perfusion) decreased the exsorption clearance and biliary clearance of Rho123 by approximately 30 to 50%. In DEX-pretreated rats, however, the inhibitory potency of midazolam in the liver significantly decreased compared with that in untreated rats, although the potency in the intestine did not change. The inhibitory potency of verapamil decreased both in the intestine and liver by DEX pretreatment. In conclusion, it was demonstrated that DEX pretreatment affects not only P-gp-mediated disposition of Rho123 but also pharmacokinetic interactions of P-gp/CYP3A-related compounds with Rho123, probably because concentrations of substrates/inhibitors at target sites such as the intestine and liver are varied.  相似文献   

17.
Tween 80 (Polysorbate 80) is a hydrophilic nonionic surfactant commonly used as an ingredient in dosing vehicles for pre-clinical in vivo studies (e.g., pharmacokinetic studies, etc.). Tween 80 increased apical to basolateral permeability of digoxin in Caco-2 cells suggesting that Tween 80 is an in vitro inhibitor of P-gp. The overall objective of the present study was to investigate whether an inhibition of P-gp by Tween 80 can potentially influence in vivo absorption of P-gp substrates by evaluating the effect of Tween 80 on the disposition of digoxin (a model P-gp substrate with minimum metabolism) after oral administration in rats. Rats were dosed orally with digoxin (0.2 mg/kg) formulated in ethanol (40%, v/v) and saline mixture with and without Tween 80 (1 or 10%, v/v). Digoxin oral AUC increased 30 and 61% when dosed in 1% and 10% Tween 80, respectively, compared to control (P < 0.05). To further examine whether the increase in digoxin AUC after oral administration of Tween 80 is due, in part, to a systemic inhibition of digoxin excretion in addition to an inhibition of P-gp in the GI tract, a separate group of rats received digoxin intravenously (0.2 mg/kg) and Tween 80 (10% v/v) orally. No significant changes in digoxin IV AUC was noted when Tween 80 was administered orally. In conclusion, Tween 80 significantly increased digoxin AUC and Cmax after oral administration, and the increased AUC is likely to be due to an inhibition of P-gp in the gut (i.e., improved absorption). Therefore, Tween 80 is likely to improve systemic exposure of P-gp substrates after oral administration. Comparing AUC after oral administration with and without Tween 80 may be a viable strategy in evaluating whether oral absorption of P-gp substrates is potentially limited by P-gp in the gut.  相似文献   

18.
The aim of this work was to extrapolate in vitro and preclinical animal data to simulate the pharmacokinetic parameters of UK-343,664, a P-glycoprotein (P-gp) and CYP3A4 substrate, in human. In addition, we aimed to develop a simulation model to demonstrate the involvement and the controversial complex interaction of intestinal P-gp and CYP3A4 in its nonlinear absorption, first-pass extraction, and pharmacokinetics using the advanced compartmental absorption and transit (ACAT) model. Finally, we aimed to compare the results predicted from the model to the reported findings in human clinical studies. In situ perfusion, allometric scaling, PBPK Rodger mechanistic approach, in vitro metabolism, and fitting to in vivo data were used to mechanistically explain the absorption, distribution and metabolism, respectively. GastroPlus was used to build the integrated simulation model in human for UK-343,664 to mechanistically explain the observed clinical data at 30, 100, 200, 400, and 800 mg oral doses. The measured in vitro value for CYP3A4 K(m) (465 μM) in rCYPs was converted to units of μg/mL, corrected for assumed microsomal binding (17.8%) and applied to all metabolic processes. The measured in vitro values of V(max) for CYP3A4 (38.9 pmol/min/pmol), 2C8, 2C9, 2C19, and 2D6 were used along with the in vitro CYP3A4 K(m) to simulate liver first pass extraction and systemic clearance. The measured in vitro values of V(max) for CYP3A4 and 2D6 were used along with the in vitro CYP3A4 K(m) to simulate gut first pass extraction. V(max) and K(m) values for P-gp were obtained by fitting to in vivo data and used to simulate gut efflux transport activity. Investigation of the interaction mechanism of P-gp and CYP3A4 in the intestine was achieved by comparing the influence of a virtual knockout of P-gp or gut metabolism on the fraction absorbed, fraction reaching the portal vein, and fraction metabolized in the gut. Comparison between simulation and in vivo results showed that the in silico simulation provided a mechanistic explanation of the observed nonlinear absorption kinetics of UK-343,664 in human following its administration in the range of 30-800 mg as oral solutions. The simulation results of the pharmacokinetic parameters, AUC and C(max), by GastroPlus were comparable with those observed in vivo. This simulation model is one possible mechanistic explanation of the observed in vivo data and suggests that the nonlinear dose dependence could be attributed to saturation of both the efflux transport by P-gp and the intestinal metabolism. However, the concentration ranges for either protein saturation did not overlap and resulted in much greater than dose proportional increases in AUC. At low doses, producing intraenterocyte concentrations below the fitted value of K(m) for P-gp, the influence of P-gp appears to be protective and results in a lower fraction of gut 3A4 metabolism. At higher doses, as P-gp becomes saturated the fraction of gut 3A4 extraction increases, and eventually at the highest doses, where 3A4 becomes saturated, the fraction of gut 3A4 extraction again decreases. Such a complex interpretation of this in vitro-in vivo extrapolation (IVIVE) is another example of the value and insight obtained by physiologically based absorption simulation.  相似文献   

19.
Pleconaril is a viral capsid inhibitor under evaluation for treatment of infections caused by rhinoviruses and enteroviruses. This study evaluated the effect of pleconaril on hepatic cytochrome P450 (CYP) 3A activity as assessed by intravenous (IV) midazolam. Healthy adults received oral pleconaril 400 mg 3 times daily for 16 doses. Single-dose, IV midazolam 0.025 mg/kg was administered before and during pleconaril administration. Midazolam and pleconaril plasma concentrations were assayed by LC/MS/MS. Bioequivalence was assessed by least squares geometric mean ratios (LS-GMR) with 90% confidence intervals (90% CIs) for the measured midazolam pharmacokinetic parameters. Sixteen subjects were enrolled, and 14 subjects completed the study. Pleconaril decreased midazolam AUC(0-infinity) 28% and increased systemic clearance 39%. LS-GMR (90% CI) were 0.718 (0.674-0.765) and 1.392 (1.307-1.483), respectively. Plasma pleconaril concentrations steadily increased over time. Observed changes in midazolam AUC(0-infinity) and systemic clearance suggest that oral pleconaril increased hepatic CYP3A activity in healthy adults.  相似文献   

20.
Midazolam is a common probe used to predict CYP3A activity, but multiple blood samples are necessary to determine midazolam's area under the concentration-time curve (AUC). As such, single sampling strategies have been examined. The purpose of this study was to assess the ability of single midazolam concentrations to predict midazolam AUC in the presence and absence of CYP3A modulation by Ginkgo biloba extract (GBE). Subjects received oral midazolam 8 mg before and after 28 days of GBE administration. Postdose blood samples were collected during both study periods and midazolam AUC determined. Linear regression was used to generate measures of predictive performance for each midazolam concentration. The geometric mean ratio (90% confidence intervals) of midazolam AUC(0-infinity) post-GBE/AUC(0-infinity) pre-GBE was 0.66 (0.49-0.84) (P = .03). Before and after GBE administration, optimal midazolam sampling times were identified at 3.5 to 5 hours and 2 to 3 hours, respectively. Single midazolam concentrations between 2 and 5 hours correctly predicted the reduction in midazolam AUC following GBE exposure, but confidence intervals were generally wide. Intersubject variability in CYP3A activity (either inherent or from drug administration) alters the prediction of optimal midazolam sampling times; therefore, midazolam AUC is preferred for assessing CYP3A activity in drug-drug interaction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号