首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect on potency and selectivity of modifications at the C6 position of the cardioprotective K(ATP) opener BMS-180448 (2) is described. Structure-activity studies show that a variety of electron-withdrawing groups (ketone, sulfone, sulfonamide, etc.) are tolerated for cardioprotective activity as measured by EC(25) values for an increase in time to the onset of contracture in globally ischemic rat hearts. Changes made to the sulfonamido substituent indicate that compounds derived from secondary lipophilic amines are preferred for good cardioprotective potency and selectivity. The diisobutyl analogue 27 (EC(25) = 0.04 microM) is the most potent compound of this series. The cardiac selectivity of 27 results from a combination of reduced vasorelaxant potency and enhanced cardioprotective potency relative to the potent vasodilating K(ATP) openers (e.g., cromakalim). The diisobutylsulfonamide analogue 27 is over 4 orders of magnitude more cardiac selective than cromakalim (1). These results support the hypothesis that the cardioprotective and vasorelaxant properties of K(ATP) openers follow distinct structure-activity relationships. The mechanism of action of 27 appears to involve opening of the cardiac K(ATP) as its cardioprotective effects are abolished by the K(ATP) blocker glyburide.  相似文献   

2.
A structurally novel series of adenosine 5'-triphosphate-sensitive potassium (K(ATP)) channel openers is described. As part of our efforts directed toward identifying novel, bladder-selective potassium channel openers (KCOs) targeted for urge urinary incontinence (UUI), we found that bioisosteric replacement of the N-cyanoguanidine moiety of pinacidil (1, Figure 1) with a diaminocyclobutenedione template afforded squaric acid analogue 2, the prototype of a novel series of K(ATP) channel openers with unique selectivity for bladder smooth muscle in vivo. Further modification of the heterocyclic ring to give substituted aryl derivatives (3) afforded potent KCOs that possessed the desired detrusor selectivity when administered orally. The effects of these potassium channel agonists on bladder contractile function was studied in vitro using isolated rat detrusor strips. Potent relaxants were evaluated in vivo in a rat model of bladder instability. Lead compounds were evaluated concomitantly in normotensive rats for their effects on mean arterial blood pressure (MAP) and heart rate as a measure of in vivo bladder selectivity. (R)-4-[3,4-Dioxo-2-(1,2, 2-trimethyl-propylamino)-cyclobut-1-enylamino]-3-ethyl-benzo nitrile (79) met our potency and selectivity criteria and represents an attractive development candidate for the treatment of UUI. Electrophysiological studies using isolated rat bladder detrusor myocytes have demonstrated that compound 79 produces significant hyperpolarization which is glyburide-reversed, thus consistent with the activation of K(ATP). The design, synthesis, structure-activity relationships (SAR), and pharmacological activity associated with this series of novel KCOs will be discussed.  相似文献   

3.
4.
Some novel 6-fluoro-7-substituted-1,4-dihydro-4-oxoquinoline-3-carboxylic acids have been prepared. At the N-1 position "standard" substitution was employed with the ethyl, cyclopropyl, and p-fluorophenyl groups being used. At C-7 the introduction of some novel piperazines was made. Most notably, 2-(fluoromethyl)piperazine (10) and hexahydro-6-fluoro-1H-1,4-diazepine (16, fluorohomopiperazine) at the quinolone C-7 position produced products with similar in vitro antibacterial activity as the ciprofloxacin reference. The in vivo efficacy of 1-cyclopropyl-6-fluoro-7-[3-(fluoromethyl)piperazinyl]-1,4-dihydro-4- oxoquinoline-3-carboxylic acid (20) was excellent with better oral absorption than ciprofloxacin (2).  相似文献   

5.
Although ATP-sensitive K+ channels continue to be explored for their therapeutic potential, developments in high-affinity radioligands to investigate native and recombinant KATP channels have been less forthcoming. This study reports the identification and pharmacological characterization of a novel iodinated 1,4-dihydropyridine KATP channel opener, [125I]A-312110 [(9R)-9-(4-fluoro-3-125iodophenyl)-2,3,5,9-tetrahydro-4H-pyrano[3,4-b]thieno[2,3-e]pyridin-8(7H)-one-1,1-dioxide]. Binding of [125I]A-312110 to guinea pig cardiac (KD = 5.8 nM) and urinary bladder (KD = 4.9 nM) membranes were of high affinity, saturable, and to a single set of binding sites. Displacement of [125I]A-312110 by structurally diverse potassium channel openers (KCOs) indicated a similar rank order of potency in both guinea pig cardiac and bladder membranes (Ki, heart): A-312110 (4.3 nM) > N-cyano-N'-(1,1-dimethylpropyl)-N"-3-pyridylguanidine (P1075) > (-)-N-(2-ethoxyphenyl)-N'-(1,2,3-trimethylpropyl)-2-nitroethene-1,1-diamine (Bay X 9228) > pinacidil > (-)-cromakalim > N-(4-benzoyl phenyl)-3,3,3-trifluro-2-hydroxy-2-methylpropionamine (ZD6169) > 9-(3-cyanophenyl)-3,4,6,7,9,10-hexahydro-1,8-(2H,5H)-acridinedione (ZM244085) > diazoxide (16.7 microM). Displacement by KATP channel blockers, the sulfonylurea glyburide, and the cyanoguanidine N-[1-(3-chlorophenyl)cyclobutyl]-N'-cyano-N"-3-pyridinyl-guanidine (PNU-99963) were biphasic in the heart but monophasic in bladder with about a 100- to 500-fold difference in Ki values between high- and low-affinity sites. Good correlations were observed between cardiac or bladder-binding affinities of KCOs with functional activation as assessed by their respective potencies to either suppress action potential duration (APD) in Purkinje fibers or to relax electrical field-stimulated bladder contractions. Collectively, these results demonstrate that [125I]A-312110 binds with high affinity and has an improved activity profile compared with other radiolabeled KCOs. [125I]A-312110 is a useful tool for investigation of the molecular and functional properties of the KATP channel complex and for the identification, in a high throughput manner, of both novel channel blockers and openers that interact with cardiac/smooth muscle-type KATP channels.  相似文献   

6.
The rank order of potency of a series of benzopyran and cyanoguanidine K+ channel openers (KCOs) for causing relaxation of the PGF2-precontracted porcine coronary artery was determined. Glyburide, an inhibitor of KATP channels, showed an apparent competitive inhibition of the vasorelaxant activity of the KCOs. The pA2 values of glyburide when cromakalim and CGP 14877 (P1060) were used as vasorelaxants were 7.66 and 7.83, respectively. Charybdotoxin (40 nM), an inhibitor of BKCa channels, also caused a significant inhibition of the cromakalim mediated relaxation of the porcine coronary artery. In order to clarify the site of action of these KCOs, we identified a K+ channel current in single porcine coronary arterial cells and measured channel activity in the presence of these compounds. The prominent K+ ion current in these cells had characteristics typical of the conventional large Ca2+-activated K+ channel BKCa present in other smooth muscle cells. Using symmetrical K+ concentrations, the channel had a conductance of 214 pS and was found to be sensitive to [Ca2+]i and membrane potential. The KCOs were found to reversibly increase the open probability (Po) of the channel without changing channel conductance. The potency of the KCOs to increase K+ channel opening was similar to the potency of these compounds to cause coronary artery relaxation. These results indicate that the porcine coronary artery contains the BKCa channel and that this channel, along with other types of K+ channels (KATP), mediate the vasorelaxant effects of K+ channel openers.  相似文献   

7.
1 New 2H-1,4-benzoxazine derivatives were synthesized and tested for their agonist properties on the ATP-sensitive K(+) channels (K(ATP)) of native rat skeletal muscle fibres by using the patch-clamp technique. The novel modifications involved the introduction at position 2 of the benzoxazine ring of alkyl substituents such as methyl (-CH(3)), ethyl (-C(2)H(5)) or propyl (-C(3)H(7)) groups, while maintaining pharmacophore groups critical for conferring agonist properties. 2 The effects of these molecules were compared with those of cromakalim in the presence or absence of internal ATP (10(-4) M). In the presence of internal ATP, all the compounds increased the macropatch K(ATP) currents. The order of potency of the molecules as agonists was -C(3)H(7) (DE(50)=1.63 x 10(-8) M) >-C(2)H(5) (DE(50)=1.11 x 10(-7) M)>-CH(3) (DE(50)=2.81 x 10(-7) M)>cromak-slim (DE(50)= 1.42 x 10(-5) M). Bell-shaped dose-response curves were observed for these compounds and cromakalim indicating a downturn in response when a certain dose was exceeded. 3 In contrast, in the absence of internal ATP, all molecules including cromakalim inhibited the K(ATP) currents. The order of increasing potency as antagonists was cromakalim (IC(50)=1.15 x 10(-8) M)> or =-CH(3) (IC(50)=2.6 x 10(-8) M)>-C(2)H(5) (IC(50)=4.4 x 10(-8) M)>-C(3)H(7) (IC(50)=1.68 x 10(-7) M) derivatives. 4 These results suggest that the newly synthesized molecules and cromakalim act on muscle K(ATP) channel by binding on two receptor sites that have opposite actions. Alternatively, a more simple explanation is to consider the existence of a single site for potassium channel openers regulated by ATP which favours the transduction of the channel opening. The alkyl chains at position 2 of the 2H-1,4-benzoxazine nucleus is pivotal in determining the potency of benzoxazine derivatives as agonists or antagonists.  相似文献   

8.
Recent work has established membrane phospholipids such as phosphatidylinositol-4,5-bisphosphate (PIP(2)) as potent regulators of K(ATP) channels controlling open probability and ATP sensitivity. We here investigated the effects of phospholipids on the pharmacological properties of cardiac type K(ATP) (Kir6.2/SUR2A) channels. In excised membrane patches K(ATP) channels showed considerable variability in sensitivity to glibenclamide and ATP. Application of the phosphatidylinositol phosphates (PIPs) phosphatidylinositiol-4-phosphate, PIP(2), and phosphatidylinositol-3,4,5-trisphosphate reduced sensitivity to ATP and glibenclamide closely resembling the native variability. Insertion of the patch back into the oocyte (patch-cramming) restored high ATP and glibenclamide sensitivity, indicating reversible modulation of K(ATP) channels via endogenous PIPs-degrading enzymes. Thus, the observed variability seemed to result from differences in the membrane phospholipid content. PIP(2) also diminished activation of K(ATP) channels by the K(+) channel openers (KCOs) cromakalim and P1075. The properties mediated by the sulphonylurea receptor (sensitivity to sulfonylureas and KCOs) seemed to be modulated by PIPs via a different mechanism than ATP inhibition mediated by the Kir6.2 subunits. First, polycations abolished the effect of PIP(2) on ATP inhibition consistent with an electrostatic mechanism but only weakly affected glibenclamide inhibition and activation by KCOs. Second, PIP(2) had clearly distinct effects on the concentration-response curves for ATP and glibenclamide. However, PIPs seemed to mediate the different effects via the Kir6.2 subunits because a mutation in Kir6.2 (R176A) attenuated simultaneously the effects of PIP(2) on ATP and glibenclamide inhibition. Finally, experiments with various lipids revealed structural features necessary to modulate K(ATP) channel properties and an artificial lipid (dioleoylglycerol-succinyl-nitriloacetic acid) that mimicked the effects of PIPs on K(ATP) channels.  相似文献   

9.
A novel class of dialkyl 1,4-dihydro-2,6-dimethyl-4-[4-(1- methoxycarbonyl-1,4-dihydropyridyl)]-3,5-pyridinedicarboxylates (8-14) were synthesized and evaluated as calcium channel antagonists. The differences in activity among members of this new class of compounds was less than one log unit (IC50 range of 1.12 x 10(-6) to 8.57 x 10(-6) M), relative to the reference drug nifedipine (IC50 = 1.43 x 10(-8) M). The small differences in potency, irrespective of the size of the dialkyl (Me, Et, i-Pr, i-Bu) ester substituents, is attributed to the fact that the N-CO2Me substituent is too far removed from the C-3 and C-5 ester substituents to undergo non-bonded steric interactions. The 4-[4-(1-methoxycarbonyl-1,4-dihydropyridyl) moiety in this new class of compounds is bioisosteric with a C-4 4-nitrophenyl, or a 4-pyridyl, substituent in classical 1,4-dihydropyridines.  相似文献   

10.
INTRODUCTION: Activation of ATP-sensitive K+ channels (K(ATP)) has been shown to induce ischemic preconditioning that serves as a protective mechanism in the heart. A high throughput assay for identifying K(ATP) channel openers would therefore be desirable. METHODS: We describe a cell-based 96-well format fluorescence assay using bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC4(3)) to evaluate membrane potential changes evoked by K(ATP) channel openers and blockers in cultured neonatal rat ventricular myocytes. RESULTS: Pinacidil and its analog P1075 (N-cyano-N'-(1,1-dimethylpropyl)-N"-3-pyridylguanidine), ZD6169 (N-(4-benzoylphenyl)-3,3,3,-trifluoro-2-hydroxy-2-methyl propionamide), and the enantiomers of cromakalim evoked concentration-dependent decreases in DiBAC4(3) fluorescence responses. Pretreatment with the K(ATP) channel blocker, glyburide attenuated opener-evoked decreases in fluorescence responses in a concentration-dependent manner. The rank order potency of openers in cardiac myocytes correlated well, but showed 6-10-fold higher potency in activating vascular smooth muscle K(ATP) channels in A10 cells. DISCUSSION: Our studies demonstrate that the pharmacological modulation of sarcolemmal K(ATP) channels can be readily assessed in a high throughput manner by measuring glyburide-sensitive fluorescence changes in cardiac ventricular myocytes.  相似文献   

11.
Potassium (K(+)) channel openers (KCOs) define a class of chemically diverse agents that share a common molecular target, the metabolism-regulated ATP-sensitive K(+) (K(ATP)) channel. In view of the unique function that K(ATP) channels play in the maintenance of cellular homeostasis, this novel class of ion channel modulators adds to existent pharmacotherapy with potential in promoting cellular protection under conditions of metabolic stress. Indeed, experimental studies have demonstrated broad therapeutic potential for KCOs, including roles as cardioprotective agents, vasodilators, bronchodilators, bladder relaxants, anti-epileptics, insulin secretagogues and promoters of hair growth. However, clinical experience with these drugs is limited and their place in patient management needs to be fully established.  相似文献   

12.
A series of 3-alkylamino-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1, 1-dioxides structurally related to diazoxide and pinacidil were synthesized and tested as possible K(ATP) channel openers on isolated pancreatic endocrine tissue as well as on isolated vascular, intestinal, and uterine smooth muscle. In contrast to previously described 3-alkylamino-4H-pyrido[4,3-e]-1,2,4-thiadiazine 1, 1-dioxides, most of the new compounds were found to be poorly active on B-cells but exhibited clear vasorelaxant properties. 3-(3, 3-Dimethyl-2-butylamino)-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1, 1-dioxide (4d) and 7-chloro-3-(3, 3-dimethyl-2-butylamino)-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1, 1-dioxide (5d), two compounds bearing the alkyl side chain of pinacidil, were found to be the most active representatives of their respective series on rat aorta rings. 3-Cycloalkylalkylamino- and 3-aralkylamino-7-chloro-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1, 1-dioxides also expressed myorelaxant activity on electrically stimulated guinea pig ileum and on oxytocin-induced contractions of the rat uterus. Further biological investigations ((86)Rb efflux measurements, vasodilator potency on 30 and 80 mM KCl-induced contractions in the absence and presence of glibenclamide) revealed that compounds 4d and 5d, but not compound 5f, expressed the pharmacological profile of classical K(ATP) channel openers. In conclusion, by changing the position of the nitrogen atom in the pyridine ring, we now have obtained a family of drugs expressing an opposite tissue selectivity. Taken as a whole, the present findings also suggest that 3-alkylamino-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1, 1-dioxides such as 4c, 4d, 5c, and 5d may be considered as new examples of K(ATP) channel openers expressing a pharmacological profile similar to that of pinacidil and diazoxide.  相似文献   

13.
1. The pulmonary vasorelaxant properties of KRN2391 (N-cyano-N'-(2-nitroxyethyl)-3-pyridinecarboximidamide) were examined in isolated ring preparations of main (MPA) and intralobar (IPA) pulmonary artery from control and pulmonary hypertensive rats (exposure to hypoxia, 10% oxygen, for 1 week). 2. On both MPA and IPA, pulmonary vasorelaxant responses were inhibited by methylene blue (10 micromol/L) or glibenclamide (1 or 10 micromol/L). Thus, KRN2391 has the properties of both a nitric oxide (NO) donor and a K(ATP) channel opener on rat pulmonary arteries. 3. KRN2391 was more potent and gave a greater maximum relaxation on MPA (-log EC(50) 6.47; maximum 92% reversal of induced contraction) than on IPA (-log EC(50) 6.09; maximum 58% reversal of induced contraction). Comparable differences between MPA and IPA were seen for SIN-1 (NO donor) and levcromakalim (K(ATP) channel opener). 4. KRN2391 was equipotent in MPA from control and pulmonary hypertensive rats but, when glibenclamide (10 micromol/L) was present, KRN2391 was six-fold less potent in preparations from pulmonary hypertensive than control rats. An eight-fold reduction in potency was seen for SIN-1 (no glibenclamide) in arteries from pulmonary hypertensive rats, confirming previous findings with other NO donors. 5. It is concluded that the dual mechanism of action of KRN2391 accounts for the finding that this drug is equally potent in pulmonary arteries from pulmonary hypertensive and control rats. In the context of pulmonary hypertension, this property of the drug could give it an advantage over drugs that act solely as NO donors because these decline in potency, at least in animal models of this disease.  相似文献   

14.
1. We have used the isolated buffer-perfused mesenteric arterial bed of the rat to assess the modulation of vasorelaxation to potassium channel openers (KCOs) by basal nitric oxide. 2. The dose-response curves to the KCOs, levcromakalim and pinacidil, in preconstricted preparations were significantly shifted to the left in the presence of the nitric oxide synthase inhibitor (100 microM) NG-nitro-L-arginine methyl ester (levcromakalim, ED50 = 4.47 +/- 0.70 nmol vs. 1.73 +/- 0.26 nmol, P < 0.001; pinacidil, ED50 = 16.1 +/- 4.8 nmol vs. 5.43 +/- 1.10 nmol, P < 0.001). The vasorelaxant responses to papaverine, a vasodilator which acts independently of potassium channels was unaffected by NG-nitro-L-arginine methyl ester (L-NAME). 3. Removal of the endothelium, by perfusion with the detergent CHAPS (0.3%), significantly (P < 0.001) increased the potency of levcromakalim as a vasodilator (ED50 4.47 +/- 0.70 nmol vs. 2.59 +/- 0.31 nmol). The subsequent administration of L-NAME following perfusion with CHAPS did not lead to any additional enhancement of responses to levcromakalim. 4. The presence of the non-selective adenosine antagonist, 8-phenyltheophylline (8-PT, 10 microM) significantly (P < 0.001) shifted the dose-response curve to levcromakalim to the left (ED50 4.47 +/- 0.70 nmol vs. 1.11 +/- 0.32 nmol). In the presence of both L-NAME and 8-PT, the dose-response curve to levcromakalim was also significantly (P < 0.01) shifted to the left compared with control (ED50 in the presence of both L-NAME and 8-PT was 0.42 +/- 0.08 nmol). 5. The presence of 8-bromo cyclic GMP (10 microM) reversed the increase potency of levcromakalim, observed following inhibition of nitric oxide synthase (ED50 in the presence of L-NAME was 0.59 +/- 0.01 nmol and in the presence of 8-bromo cyclic GMP plus L-NAME the ED50 was 3.17 +/- 0.80 nmol). However in the absence of L-NAME, the cell permeable analogue of cyclic GMP, 8-bromo cyclic GMP, did not affect the dose-response curve to levcromakalim compared with control (control ED50 value was 4.16 +/- 0.52 nmol vs. 3.85 +/- 1.13 nmol in the presence of 8-bromo cyclic GMP). 6. The present investigation demonstrates that both basal nitric oxide and adenosine modulate vasorelaxation to the KCOs levcromakalim and pinacidil. The modulatory effect of nitric oxide may be mediated via cyclic GMP.  相似文献   

15.
Indeno[2,1- c]quinolin-7-ones and 6 H-indeno[1,2- c]isoquinolin-5,11-diones, bearing two cationic aminoalkyl side chains, were synthesized and evaluated for DNA interaction, topoisomerases inhibition, and cytotoxicity against human cancer cell lines. They displayed strong interaction with DNA and one indeno[1,2- c]isoquinolin-5,11-dione bearing side chains at N-6 and C-8 positions ( 6a) was a potent human topoisomerase II inhibitor with high cytotoxicity toward HL60 cells. An increased topoisomerase II inhibition is found with (a) a cationic aminoalkyl side chain at the C-8 rather than at the C-9 position, (b) a dimethylaminoethoxy side chain at the C-8 position introduced on the N-6 monosubstituted derivative, going with suppression of topoisomerase I poisoning, and (c) a dimethylaminoethyl rather than a dimethylaminopropyl side chain at the N-6 position. The cytotoxicity was only partially reduced when using the topoisomerase II-mutated mitoxantrone-resistant HL60/MX2 cell line, suggesting that additional targets are involved in their mechanism of action. These indeno[1,2- c]isoquinolin-5,11-dione derivatives represent new DNA-topoisomerase II interfering anticancer molecules.  相似文献   

16.
6-Aminoquinolones as new potential anti-HIV agents   总被引:5,自引:0,他引:5  
A series of 6-aminoquinolone compounds were evaluated for their in vitro activity against human immunodeficiency virus type 1 (HIV-1). Compound 12a, bearing a methyl substituent at the N-1 position and a 4-(2-pyridyl)-1-piperazine moiety at the C-7 position, was the most active in inhibiting HIV-1 replication on de novo infected C8166 human lymphoblastoid cell lines. The 12a EC(50) value was 0.1 microM, a 7-20-fold lower concentration relative to that for compounds 8a and 7a containing a cyclopropyl and tert-butyl substituent at the N-1 position, respectively. When the C-6 amino group was replaced with a fluorine atom, a decreased antiviral effect was observed. The observed effects are selective, since potency is substantially reduced when testing the compounds against the herpes simplex virus type 1 (HSV-1). Active quinolone derivatives very efficiently interact with TAR RNA, which suggests a nucleic acid-targeted mechanism of action.  相似文献   

17.
A series of 6-substituted 2-alkylaminoquinazolin-4(3H)-ones structurally related to 3-alkylamino-4H-pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxides were synthesized and tested as putative K(ATP) channel openers on isolated pancreatic endocrine tissue as well as on isolated vascular, intestinal, and uterine smooth muscle. Most of the 6-halogeno-2-alkylaminoquinazolin-4(3H)-ones were found to inhibit insulin release from pancreatic B-cells and to exhibit vasorelaxant properties. In contrast to their pyridothiadiazine dioxide isosteres previously described as more active on the endocrine than on the smooth muscle tissue, quinazolinones cannot be considered as tissue selective compounds. Biological investigations, including measurements of (86)Rb, (45)Ca efflux from pancreatic islet cells and measurements of vasodilator potency in rat aortic rings exposed to 30 or 80 mM KCl in the presence or the absence of glibenclamide, were carried out with 6-chloro- and 6-iodo-3-isopropylaminoquinazolin-4(3H)-ones. Such experiments showed that, depending on the tissue, these new compounds did not always express the pharmacological profile of pure K(ATP) channel openers. Analyzed by X-ray crystallography, one example of quinazolinones appeared to adopt a double conformation. This only suggests a partial analogy between the 2-alkylaminoquinazolin-4(3H)-ones and the 3-alkylamino-4H-pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxides. In conclusion, the newly synthesized quinazolinones interfere with insulin secretion and smooth muscle contractile activity. Most of the compounds lack tissue selectivity, and further investigations are required to fully elucidate their mechanism(s) of action.  相似文献   

18.
ATP-sensitive potassium (K(ATP)) channels have important functions through their coupling of cellular energetic networks and their ability to decode metabolic signals, and they are implicated in diseases of many organs. K(ATP) channels are formed by the physical association between the inwardly rectifier potassium channels (Kir6.x) and the regulatory sulfonylurea receptor subunit (SUR), which form a hetero-octameric complex. Different subtypes of K(ATP) channels exist in various tissues. K(ATP) channel openers (KCOs) are classified into nine chemical families according to their molecular structures: (1) benzopyrans, (2) cyanoguanidines, (3) thioformamides, (4) pyrimidine derivatives, (5) pyridine derivatives, (6) benzothiadiazines, (7) dihydropyridines, (8) nicotinamide derivatives, and (9) aliphatic amines. Although the model also predicts that KCOs have four co-binding areas, it was hypothesized that the main contribution lies in the binding domain of hydrophobicity of the side chain. A series of compounds containing the skeleton of the aliphatic secondary amines as a side chain was designed. It was found that N-isopropyl 2,3-dimethyl-2-butylamine (iptakalim, 91) is a novel KCOs. Iptakalim regulates the pore selectively of the inwardly rectifier potassium channel and dilates smaller arteries, but has little effect on vasodilatation of the aorta. Iptakalim administered p.o. has selective and long-lasting antihypertensive effects in hypertensive animals and does not induce tolerance, but has little effect on blood pressure in normotensive animals. Meanwhile, it also reverses cardiovascular remodeling and protects the brain and kidney against damage caused by hypertension in animal models. Iptakalim is in phase II clinical trials now and has a promising future as a treatment for hypertension.  相似文献   

19.
1,6-Substituted and 3,5-substituted indoles and indazoles containing acylamino and N-arylsulfonyl amide appendages are potent antagonists of the peptidoleukotrienes LTD4 and LTE4. A compound from the 3,5-substituted indole series, N-[4-[[5-[[(cyclopentyloxy)carbonyl]amino]-1-methylindol- 3-yl]methyl]-3-methoxybenzoyl]-2-methyl-benzenesulfonamide (ICI 204,219), is undergoing clinical evaluation for asthma. Two new elements of structural diversity were introduced to this series of antagonists. An investigation of pyrrole substituents in the 1,6-substituted indoles demonstrated that substitution at C-2 was detrimental to biological activity, but the incorporation of hydrophilic groups at C-3 was beneficial. The introduction of a propionamide moiety at C-3 enhanced activity by 1 order of magnitude; N-[4-[[6-(cyclopentylacetamido)-3-[2-(N- methylcarbamoyl)ethyl]indol-1-yl]methyl]-3-methoxy- benzoyl]benzenesulfonamide (15c) has a pKB of 10.7 at the LTD4 receptor on guinea pig trachea. Modifications of the acylamino portion of the disubstituted antagonists demonstrated that a transposition of the amide CO and NH atoms was viable. N-Cyclopentylmethyl amides in both the 1,6- and 3,5-disubstituted indole series were 1 order of magnitude less potent than the corresponding cyclopentylacetamides. In both series this potency loss could be regained by the incorporation of a propionamide substituent at either C-3 or N-1, respectively. For example, N-[4-[[6-[N-(cyclopentylmethyl)carbamoyl]-3-[2-(pyrrolidin-1 - methylbenzenesulfonamide (39c) has a pKB of 9.5.  相似文献   

20.
Potassium channels play a crucial role in controlling the cell membrane potential. Among the different varieties of K(+) channels, the ATP-sensitive potassium channels (K(ATP) channels) have been characterized in numerous cell types, such as skeletal and smooth muscle cells, endocrine cells, cardiac cells and central neurons. Several molecules are known to activate K(ATP) channels and have been named "potassium channel openers" (PCOs). Such compounds may have a wide therapeutic potential and a few drugs are currently used as antihypertensive agents. Different chemical series of PCOs have been explored. This heterogeneous group of organic compounds comprises the benzopyran series including potent vasorelaxant drugs, such as cromakalim. The latter compound, a typical example of potassium channel opener, exerts its biological effect by activating K(ATP) channels. This review presents recent developments in the chemistry of cromakalim analoges and reports chemical aspects governing their potency and tissue selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号