首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abilities of mutated active RAS proteins to modulate cell survival following exposure to ionizing radiation and small molecule kinase inhibitors were examined. Homologous recombination in HCT116 cells to delete the single allele of K-RAS D13 resulted in a cell line that exhibited an approximately 75% reduction in basal extracellular signal-regulated kinase 1/2, AKT, and c-jun-NH2-kinase 1/2 activity. Transfection of cells lacking K-RAS D13 with H-RAS V12 restored extracellular signal-regulated kinase 1/2 and AKT activity to basal levels but did not restore c-jun-NH2-kinase 1/2 phosphorylation. In cells expressing H-RAS V12, radiation caused prolonged intense activation of AKT. Inhibition of H-RAS V12 function, blockade of phosphatidylinositol 3-kinase (PI3K) function using small interfering RNA/small-molecule inhibitors, or expression of dominant-negative AKT abolished radiation-induced AKT activation, and radiosensitized these cells. Inhibition of PI3K function did not significantly radiosensitize parental HCT116 cells. Inhibitors of the AKT PH domain including perifosine, SH-(5, 23-25) and ml-(14-16) reduced the plating efficiency of H-RAS V12 cells in a dose-dependent fashion. Inhibition of AKT function using perifosine enhanced radiosensitivity in H-RAS V12 cells, whereas the SH and ml series of AKT PH domain inhibitors failed to promote radiation toxicity. In HCT116 H-RAS V12 cells, PI3K, PDK-1, and AKT were membrane associated, whereas in parental cells expressing K-RAS D13, only PDK-1 was membrane bound. In H-RAS V12 cells, membrane associated PDK-1 was phosphorylated at Y373/376, which was abolished by the Src family kinase inhibitor PP2. Inhibition of PDK-1 function using the PH domain inhibitor OSU-03012 or using PP2 reduced the plating efficiency of H-RAS V12 cells and profoundly increased radiosensitivity. OSU-03012 and PP2 did not radiosensitize and had modest inhibitory effects on plating efficiency in parental cells. A small interfering RNA generated against PDK1 also radiosensitized HCT116 cells expressing H-RAS V12. Collectively, our data argue that molecular inhibition of AKT and PDK-1 signaling enhances the radiosensitivity of HCT116 cells expressing H-RAS V12 but not K-RAS D13. Small-molecule inhibitory agents that blocked stimulated and/or basal PDK-1 and AKT function profoundly reduced HCT116 cell survival but had variable effects at enhancing tumor cell radiosensitivity.  相似文献   

2.
The present studies defined the biological effects of a GST fusion protein of melanoma differentiation-associated gene-7 (mda-7), GST-MDA-7 (1 and 30 nmol/L), on cell survival and cell signaling in primary human glioma cells in vitro. GST-MDA-7, in a dose- and time-dependent fashion killed glioma cells with diverse genetic characteristics; 1 nmol/L caused arrest without death, whereas 30 nmol/L caused arrest and killing after exposure. Combined inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) and AKT function was required to enhance 1 nmol/L GST-MDA-7 lethality in all cell types, whereas combined activation of MEK1 and AKT was required to suppress 30 nmol/L GST-MDA-7 lethality; both effects are mediated in part by modulating c-Jun NH(2)-terminal kinase (JNK) 1-3 activity. The geldanamycin 17AAG inhibited AKT and ERK1/2 in GBM cells and enhanced GST-MDA-7 lethality. JNK1-3 signaling promoted BAX activation and mitochondrial dysfunction. In GBM6 cells, GST-MDA-7 (30 nmol/L) transiently activated p38 mitogen-activated protein kinase, which was modestly protective against JNK1-3-induced toxicity, whereas GST-MDA-7 (300 nmol/L) caused prolonged intense p38 mitogen-activated protein kinase activation, which promoted cell death. In GBM12 cells that express full-length mutant activated ERBB1, inhibition of ERBB1 did not modify GST-MDA-7 lethality; however, in U118 established glioma cells, stable overexpression of wild-type ERBB1 and/or truncated active ERBB1vIII suppressed GST-MDA-7 lethality. Our data argue that combined inhibition of ERK1/2 and AKT function, regardless of genetic background, promotes MDA-7 lethality in human primary human glioma cells via JNK1-3 signaling and is likely to represent a more ubiquitous approach to enhancing MDA-7 toxicity in this cell type than inhibition of ERBB1 function.  相似文献   

3.
The oncogenic epidermal growth factor receptor (EGFR) pathway triggers downstream phosphatidylinositol 3-kinase (PI3K)/RAS-mediated signaling cascades. In transgenic mice, glioblastoma cannot develop on single but only on simultaneous activation of the EGFR signaling mediators RAS and AKT. However, complete blockade of EGFR activation does not result in apoptosis in human glioblastoma cells, suggesting additional cross-talk between downstream pathways. Based on these observations, we investigated combination therapies using protein kinase inhibitors against EGFR, platelet-derived growth factor receptor, and mammalian target of rapamycin, assessing glioblastoma cell survival. Clinically relevant doses of AEE788, Gleevec (imatinib), and RAD001 (everolimus), alone or in combinations, did not induce glioblastoma cell apoptosis. In contrast, simultaneous inactivation of the EGFR downstream targets mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase and PI3K by U0126 and wortmannin triggered rapid tumor cell death. Blocking EGFR with AEE788 in combination with sublethal concentrations of the microtubule stabilizer patupilone also induced apoptosis and reduced cell proliferation in glioblastoma cells, accompanied by reduced AKT and ERK activity. These data underline the critical role of the PI3K/AKT and the RAS/RAF/mitogen-activated protein/ERK kinase/ERK signaling cascades in the cell-intrinsic survival program of sensitive glioblastoma cell lines. We conclude that drug combinations, which down-regulate both ERK and protein kinase B/AKT activity, may prove effective in overcoming cell resistance in a subgroup of glioblastoma.  相似文献   

4.
Activation of the phosphatidylinositol-3-kinase (PI3K)/AKT survival pathway is a mechanism of cytotoxic drug resistance in ovarian cancer, and inhibitors of this pathway can sensitize to cytotoxic drugs. The HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) depletes some proteins involved in PI3K/AKT signaling, e.g., ERBB2, epidermal growth factor receptor (EGFR), and phosphorylated AKT (p-AKT). 17-AAG and paclitaxel were combined (at a fixed 1:1 ratio of their IC(50)) in four ovarian cancer cell lines that differ in expression of p-AKT, EGFR, and ERBB2. The EGFR-overexpressing A431 and KB epidermoid cell lines were also included. Combination indices (CI) were calculated using the median-effect equation and interpreted in the context of 17-AAG-mediated inhibition of PI3K signaling. Synergy was observed in IGROV-1- and ERBB2-overexpressing SKOV-3 ovarian cancer cells that express a high level of constitutively activated p-AKT [CI at fraction unaffected (fu)(0.5) = 0.50 and 0.53, respectively]. Slight synergy was observed in A431 cells (moderate p-AKT/overexpressed EGFR; CI at fu(0.5) = 0.76) and antagonism in CH1 (moderate p-AKT), HX62 cells (low p-AKT), and KB cells (low p-AKT/overexpressed EGFR; CI at fu(50) = 3.0, 3.5, and 2.0, respectively). The observed effects correlated with changes in the rate of apoptosis induction. 17-AAG induced a decrease in HSP90 client proteins (e.g., C-RAF, ERBB2, and p-AKT) or in downstream markers of their activity (e.g., phosphorylated extracellular signal-regulated kinase or p-AKT) in SKOV-3, IGROV-1, and CH1 cells at IC(50) concentrations. A non-growth-inhibitory concentration (6 nmol/L) reduced the phosphorylation of AKT (but not extracellular signal-regulated kinase) and sensitized SKOV-3 cells to paclitaxel. In conclusion, 17-AAG may sensitize a subset of ovarian cancer to paclitaxel, particularly those tumors in which resistance is driven by ERBB2 and/or p-AKT.  相似文献   

5.
6.
PI3K/AKT/mTOR信号通路调节细胞生长、增殖和存活等生命过程,在多种细胞生命过程中起着关键的作用,在造血干细胞中同样也扮演着重要的角色。过度激活PI3K/AKT/mTOR信号通路会造成造血干细胞的耗竭,而抑制PI3K/AKT/mTOR信号通路,则B细胞的分化会受到显著的抑制。本文系统介绍PI3K/AKT/mTOR信号通路中关键节点的蛋白,包括PI3K,AKT,mTOR,FoxO和GSK-3等在造血干细胞中作用的最新研究进展。  相似文献   

7.
8.
【目的】探讨磷脂酰肌醇3激酶(PI3K)蛋白表达量及蛋白激酶 B(AKT )信号通路在过氧化氢(H2 O2)诱导的 PC12细胞中的作用及天麻素的干预对其通路的影响。【方法】PC12细胞随机分为正常对照组,模型组(400μmol/L H2 O2),天麻素低、中、高浓度组(0.1、1、10μmol/L 天麻素+400μmol/L H2 O2)。咪唑蓝法检测各组细胞活力,Hoechst 染色观察各组细胞凋亡情况,比色法检测天冬氨酸蛋白水解酶(Caspase 3)、Caspase 8及 Caspase 9活性,western blot 分析 Bcl‐2、Bax 及 PI3K 蛋白表达量与 AKT 磷酸化水平。【结果】与正常对照组比较,模型组中细胞活力下降,细胞凋亡率提高,Caspase 3、Caspase 8及 Caspase 9活性提高,Bcl‐2及 PI3K 表达量下降,Bax 表达量上升,AKT 磷酸化水平降低,差异均具有统计学意义( P <0.01);与模型组比较,天麻素低、中、高浓度组细胞活力提高,细胞凋亡率降低,Caspase 3、Caspase 8及 Caspase 9活性降低,Bcl‐2、PI3K 蛋白表达量及 AKT 磷酸化水平提高,天麻素中、高浓度组 Bax 表达量降低,差异均具有统计学意义( P <0.01)。【结论】天麻素可通过激活 PI3K/AKT 信号通路,从而抑制 H2 O2诱导的 PC12细胞凋亡。  相似文献   

9.
Tumor cells with genomic amplification of MET display constitutive activation of the MET tyrosine kinase, which renders them highly sensitive to MET inhibition. Several MET inhibitors have recently entered clinical trials; however, as with other molecularly targeted agents, resistance is likely to develop. Therefore, elucidating possible mechanisms of resistance is of clinical interest. We hypothesized that collateral growth factor receptor pathway activation can overcome the effects of MET inhibition in MET-amplified cancer cells by reactivating key survival pathways. Treatment of MET-amplified GTL-16 and MKN-45 gastric cancer cells with the highly selective MET inhibitor PHA-665752 abrogated MEK/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT signaling, resulting in cyclin D1 loss and G(1) arrest. PHA-665752 also inhibited baseline phosphorylation of epidermal growth factor receptor (EGFR) and HER-3, which are transactivated via MET-driven receptor cross-talk in these cells. However, MET-independent HER kinase activation using EGF (which binds to and activates EGFR) or heregulin-beta1 (which binds to and activates HER-3) was able to overcome the growth-inhibitory effects of MET inhibition by restimulating MEK/MAPK and/or PI3K/AKT signaling, suggesting a possible escape mechanism. Importantly, dual inhibition of MET and HER kinase signaling using PHA-665752 in combination with the EGFR inhibitor gefitinib or in combination with inhibitors of MEK and AKT prevented the above rescue effects. Our results illustrate that highly targeted MET tyrosine kinase inhibition leaves MET oncogene-"addicted" cancer cells vulnerable to HER kinase-mediated reactivation of the MEK/MAPK and PI3K/AKT pathways, providing a rationale for combined inhibition of MET and HER kinase signaling in MET-amplified tumors that coexpress EGFR and/or HER-3.  相似文献   

10.
Primary cultures of renal proximal tubules are known to recapitulate several early events in the process of renal regeneration following injury. In this study, we show that suramin, a polysulfonated naphthylurea, stimulates outgrowth, scattering, and proliferation of primary cultures of renal proximal tubule cells (RPTC). These responses were comparable to those produced by epidermal growth factor (EGF). However, AG-1478 [4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline], a specific inhibitor of the EGF receptor, blocked EGF but not suramin-induced RPTC outgrowth, scattering, and proliferation. Suramin stimulated phosphorylation of Akt, a downstream kinase of phosphoinositide 3-kinase (PI3K), extracellular signaling-regulated kinase 1/2 (ERK1/2), and Src, but not the EGF receptor. Blockade of Src, but not the EGF receptor, inhibited Akt and ERK1/2 phosphorylation. Furthermore, inactivation of PI3K with LY294002 [2-(4morpholinyl)-8-phenyl-4H-1-benzopyran-4-one] blocked suramin-induced RPTC outgrowth, scattering, and proliferation, whereas blockade of ERK1/2 had no effect. These data identify novel effects of suramin in RPTC outgrowth, scattering, and proliferation. Furthermore, suramin-induced outgrowth, scattering, and proliferation of RPTC are through Src-mediated activation of the PI3K pathway but not ERK1/2 or the EGF receptor.  相似文献   

11.
Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus, and infections with this virus can result in acute respiratory syndrome with renal failure. Globally, MERS-CoV has been responsible for 877 laboratory-confirmed infections, including 317 deaths, since September 2012. As there is a paucity of information regarding the molecular pathogenesis associated with this virus or the identities of novel antiviral drug targets, we performed temporal kinome analysis on human hepatocytes infected with the Erasmus isolate of MERS-CoV with peptide kinome arrays. bioinformatics analysis of our kinome data, including pathway overrepresentation analysis (ORA) and functional network analysis, suggested that extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K)/serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signaling responses were specifically modulated in response to MERS-CoV infection in vitro throughout the course of infection. The overrepresentation of specific intermediates within these pathways determined by pathway and functional network analysis of our kinome data correlated with similar patterns of phosphorylation determined through Western blot array analysis. In addition, analysis of the effects of specific kinase inhibitors on MERS-CoV infection in tissue culture models confirmed these cellular response observations. Further, we have demonstrated that a subset of licensed kinase inhibitors targeting the ERK/MAPK and PI3K/AKT/mTOR pathways significantly inhibited MERS-CoV replication in vitro whether they were added before or after viral infection. Taken together, our data suggest that ERK/MAPK and PI3K/AKT/mTOR signaling responses play important roles in MERS-CoV infection and may represent novel drug targets for therapeutic intervention strategies.  相似文献   

12.
目的研究沉默SH2B1基因表达对胃癌SGC-7901细胞增殖、凋亡及3-磷酸肌醇激酶(PI3K)/蛋白质丝氨酸苏氨酸蛋白激酶(AKT)通路的影响。方法体外培养胃癌SGC-7901细胞,采用SH2B1 siRNA转染SGC-7901细胞作为研究组,采用国际通用的与所有基因均无同源序列的non-target siRNA转染作为阴性对照组(NC组),以未经处理的胃癌SGC-7901细胞作为空白对照组(BC组),48h后收集各组转染成功细胞,采用荧光定量聚合酶链反应(qRT-PCR)检测SH2B1 mRNA表达情况,采用蛋白质印迹法(Western Blot)检测SH2B1蛋白表达情况;采用细胞计数试剂盒(CKK-8)检测细胞增殖情况,采用流式细胞仪检测细胞凋亡,同时检测Ki67、增殖细胞核抗原(PCNA)、Caspase-9、PI3K、AKT、p-AKT蛋白表达情况。结果研究组SGC-7901细胞SH2B1蛋白及mRNA表达量较BC组和NC组明显降低,差异有统计学意义(P<0.05);转染后,siRNA组SGC-7901细胞增殖明显受到抑制、平板克隆形成率较BC组和NC组明显降低,凋亡率明显升高,差异均有统计学意义(P<0.05);与BC和NC组比较,研究组SGC-7901细胞PI3K、p-AKT蛋白、Ki67及PCNA蛋白呈低表达,差异有统计学意义(P<0.05),Caspase-9蛋白呈高表达,AKT蛋白表达差异无统计学意义(P>0.05)。结论沉默SH2B1基因表达可能通过抑制PI3K/ATK信号通路激活,抑制SGC-7901细胞增殖,促进凋亡。  相似文献   

13.
Recent collaborative efforts have subclassified malignant glioblastomas into 4 clinical relevant subtypes based on their signature genetic lesions. Platelet-derived growth factor receptor α (PDGFRA) overexpression is concomitant with a loss of cyclin-dependent kinase inhibitor 2A (CDKN2A) locus (encoding P16INK4A and P14ARF) in a large number of tumors within one subtype of glioblastomas. Here we report that activation of PDGFRα conferred tumorigenicity to Ink4a/Arf-deficient mouse astrocytes and human glioma cells in the brain. Restoration of p16INK4a but not p19ARF suppressed PDGFRα-promoted glioma formation. Mechanistically, abrogation of signaling modules in PDGFRα that lost capacity to bind to SHP-2 or PI3K significantly diminished PDGFRα-promoted tumorigenesis. Furthermore, inhibition of SHP-2 by shRNAs or pharmacological inhibitors disrupted the interaction of PI3K with PDGFRα, suppressed downstream AKT/mTOR activation, and impaired tumorigenesis of Ink4a/Arf-null cells, whereas expression of an activated PI3K mutant rescued the effect of SHP-2 inhibition on tumorigenicity. PDGFRα and PDGF-A are coexpressed in clinical glioblastoma specimens, and such co-expression is linked with activation of SHP-2/AKT/mTOR signaling. Together, our data suggest that in glioblastomas with Ink4a/Arf deficiency, overexpressed PDGFRα promotes tumorigenesis through the PI3K/AKT/mTOR-mediated pathway regulated by SHP-2 activity. These findings functionally validate the genomic analysis of glioblastomas and identify SHP-2 as a potential target for treatment of glioblastomas.  相似文献   

14.
Some cases of pre-B cell acute lymphoblastic leukemia (pre-B-ALL) are caused by the Philadelphia (Ph) chromosome-encoded BCR-ABL oncogene, and these tend to have a poor prognosis. Inhibitors of the PI3K/AKT pathway reduce BCR-ABL-mediated transformation in vitro; however, the specific PI3K isoforms involved are poorly defined. Using a murine model of Ph+ pre-B-ALL, we found that deletion of both Pik3r1 and Pik3r2, genes encoding class IA PI3K regulatory isoforms, severely impaired transformation. BCR-ABL-dependent pre/pro-B cell lines could be established at low frequency from progenitors that lacked these genes, but the cells were smaller, proliferated more slowly, and failed to cause leukemia in vivo. These cell lines displayed nearly undetectable PI3K signaling function and were resistant to the PI3K inhibitor wortmannin. However, they maintained activation of mammalian target of rapamycin (mTOR) and were more sensitive to rapamycin. Treatment with rapamycin caused feedback activation of AKT in WT cell lines but not PI3K-deficient lines. A dual inhibitor of PI3K and mTOR, PI-103, was more effective than rapamycin at suppressing proliferation of mouse pre-B-ALL and human CD19+CD34+)Ph+ ALL leukemia cells treated with the ABL kinase inhibitor imatinib. Our findings provide mechanistic insights into PI3K dependency in oncogenic networks and provide a rationale for targeting class IA PI3K, alone or together with mTOR, in the treatment of Ph+ ALL.  相似文献   

15.
Our recent study demonstrated that central cannabinoid receptor 1 (CB?R) activation caused dose-related pressor response in conscious rats, and reported studies implicated the brainstem phosphatidylinositol 3-kinase (PI3K)/Akt-extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in blood pressure control. Therefore, in this study, we tested the hypothesis that the modulation of brainstem PI3K/Akt-ERK1/2 signaling plays a critical role in the central CB(1)R-mediated pressor response. In conscious freely moving rats, the pressor response elicited by intracisternal (i.c.) (R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate salt (WIN55,212-2) (15 μg) was associated with significant increases in ERK1/2 phosphorylation in the rostral ventrolateral medulla (RVLM) and the nucleus tractus solitarius (NTS). In contrast, Akt phosphorylation was significantly reduced in the same neuronal pools. Pretreatment with the selective CB?R antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) (30 μg i.c.) attenuated the neurochemical responses elicited by central CB?R activation. Furthermore, pretreatment with the ERK/mitogen-activated protein kinase kinase inhibitor 2'-amino-3'-methoxyflavone (PD98059) (5 μg i.c.) abrogated WIN55,212-2-evoked increases in blood pressure and neuronal ERK1/2 phosphorylation but not the reduction in Akt phosphorylation. On the other hand, prior PI3K inhibition with wortmannin (0.4 μg i.c.) exacerbated the WIN55,212-2 (7.5 and 15 μg i.c.) dose-related increases in blood pressure and ERK1/2 phosphorylation in the RVLM. The present neurochemical and integrative studies yield new insight into the critical role of two brainstem kinases, PI3K and ERK1/2, in the pressor response elicited by central CB?R activation in conscious rats.  相似文献   

16.
本研究探讨PI3K/AKT通路中的PTEN、CCND1、mTOR、RICTOR、FOXO1基因在急性髓系白血病(AML)、急性淋巴细胞白血病(ALL)患者中与正常人中表达的差异,以期查明PI3K/AKT通路在白血病中是否存在通路失调。随机收集16例骨髓标本,其中白血病12例(AML 6例,ALL 6例),正常骨髓标本4例。用实时定量RT-PCR方法检测PI3K/AKT通路中的PTEN、CCND1、mTOR、RICTOR、FOXO1基因的表达变化;以管家基因GAPDH为内参,按2-△△Ct法计算目的基因相对表达量。结果表明:PTEN、mTOR、RICTOR在AML、ALL中总体呈低表达趋势,PTEN在12例标本中有10例低表达,mTOR在12例标本中9例低表达,RICTOR在12例标本中7例低表达;FOXO1,CCND1在AML、ALL中则呈高表达趋势,FOXO1在12例标本中有9例高表达,CCND1在12例标本中7例高表达。结论:PI3K/AKT信号通路基因在白血病细胞中被激活。  相似文献   

17.
Constitutive activation of the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling cascade occurs in a variety of human malignancies, where it sustains tumor cell proliferation and survival. Pharmacologic blockade of this pathway exerts antineoplastic activity by triggering apoptosis and/or cell-cycle arrest. Pituitary adenomas show activation of the PI3K/AKT/mTOR pathway, but only a fraction of them respond in vitro to the antiproliferative action of rapamycin and RAD001 (mTOR inhibitors), possibly because of the described negative feedback loop on AKT which reactivates the signaling cascade. Rats affected by the multiple endocrine neoplasia-like syndrome (MENX) develop pituitary adenomas showing increased activated AKT. In this study, we comparatively investigated the antitumor potential of the novel dual PI3K/mTOR inhibitor NVP-BEZ235 and the single mTOR inhibitor RAD001 on rat pituitary adenoma cells in primary culture. NVP-BEZ235 inhibits the PI3K pathway both upstream and downstream of AKT, thereby preventing the negative feedback loop. NVP-BEZ235 was more effective than RAD001 in reducing cell viability of pituitary adenomas. Consistently, NVP-BEZ235 treatment decreased Akt and S6 phosphorylation and triggered apoptosis. Because MENX is caused by a germline loss-of-function mutation in the cell-cycle inhibitor p27Kip1, we investigated the relationship between this defect and response to NVP-BEZ235 treatment. The levels of p27Kip1 positively correlate with the response to NVP-BEZ235 treatment. Combined treatment with NVP-BEZ235 and the proteasome inhibitor bortezomib, which increases p27Kip1 amount, shows synergistic antiproliferative effects on pituitary adenoma cells. Our data suggest that NVP-BEZ235 may represent an effective therapeutic modality for pituitary adenomas and that p27Kip1 levels represent a potential predictor of response to dual PI3K/mTOR inhibition.  相似文献   

18.
Malignant melanoma is frequently driven by mutational activation of v-raf murine sarcoma viral oncogene homolog B1 (BRAF) accompanied by silencing of the phosphatase and tensin homology (PTEN) tumor suppressor. Despite the implied importance of PI3K signaling in PTENNull melanomas, mutational activation of the gene encoding the catalytic subunit of PI3Kα (PIK3CA), is rarely detected. Since PTEN has both PI3-lipid phosphatase–dependent and –independent tumor suppressor activities, we investigated the contribution of PI3K signaling to BRAFV600E-induced melanomagenesis using mouse models, cultured melanoma cells, and PI3K pathway–targeted inhibitors. These experiments revealed that mutationally activated PIK3CAH1047R cooperates with BRAFV600E for melanomagenesis in mice. Moreover, pharmacological inhibition of PI3Ks prevented growth of BRAFV600E/PTENNull melanomas in vivo and in tissue culture. Combined inhibition of BRAFV600E and PI3K had more potent effects on the regression of established BRAFV600E/PTENNull melanomas and cultured melanoma cells than individual blockade of either pathway. Surprisingly, growth of BRAFV600E/PIK3CAH1047R melanomas was dependent on the protein kinase AKT; however, AKT inhibition had no effect on growth of BRAFV600E/PTENNull melanomas. These data indicate that PTEN silencing contributes a PI3K-dependent, but AKT-independent, function in melanomagenesis. Our findings enhance our knowledge of how BRAFV600E and PI3K signaling cooperate in melanomagenesis and provide preclinical validation for combined pathway–targeted inhibition of PI3K and BRAFV600E in the therapeutic management of BRAFV600E/PTENNull melanomas.  相似文献   

19.
目的:探讨PI3K抑制剂ZSTK474对人白血病细胞U937抗白血病的活性.方法:采用MTT、软琼脂克隆形成、流式细胞术、Western blot检测ZSTK474对U937细胞增殖、致瘤性、周期分布、凋亡、PI3K/AKT信号通路中重要因子磷酸化水平的影响;采用Chou-Talalay法检测ZSTK474与Cytar...  相似文献   

20.
本研究探讨脑源性神经营养因子(BDNF)促进血管新生的作用及其参与的信号通路,为抗肿瘤血管生成的研究提供新的实验依据。以人脐静脉内皮细胞为对象,采用Western blot方法检测细胞内磷酸化Akt、ERK1/2蛋白质的表达;采用Transwell小室迁移实验和管腔形成实验评价体外内皮细胞血管新生的能力,MTT法检测内皮细胞增殖活性,FITC-Annexin-Ⅴ/PI双染流式细胞术分析细胞调亡。结果表明:BDNF以时间依赖性的方式激活PI3K/Akt和MEK1/ERK信号通路。应用PI3K激酶抑制剂Ly294002、MEK1激酶抑制剂PD98059可以明显阻断BDNF对PI3K/Akt、MEK1/ERK信号通路的激活。100ng/ml的BDNF体外促内皮细胞血管新生能力与25ng/ml血管内皮生长因子(VEGF)相当,其中BDNF诱导的细胞迁移分别被Ly294002和PD98059阻断,其抑制率分别约为74%和36%;同样,Ly294002、PD98059可部分阻断BDNF诱导的小管形成效应,其阻断率分别约57%和37%;而BDNF的促增殖效应仅被PD98059拮抗,抑制凋亡效应仅受Ly294002影响。结论:BDNF在体外有促血管新生的作用。PI3K/Akt和MEK1/ERK信号通路以不同机制共同调节这一过程,其中PI3K/Akt信号通路起着更为重要的调节作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号