首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypocretin (orexin) neurons in the lateral hypothalamus play a crucial role in the promotion of arousal. Adenosine, an endogenous sleep-promoting factor, modulates both neuronal excitatory and synaptic transmission in the CNS. In this study, the involvement of endogenous adenosine in the regulation of excitatory glutamatergic synaptic transmission to hypocretin neurons was investigated in the hypothalamic slices from transgenic mice by using different frequencies of stimulation. A train of low-frequency stimulation (0.033, 1 Hz) had no effect on the amplitude of evoked excitatory postsynaptic currents (evEPSCs) in hypocretin neurons. Blockade of adenosine A1 receptors with selective A1 receptor antagonist 8-cyclopentyltheophylline (CPT), the amplitude of evEPSCs did not change during 0.033 and 1 Hz stimuli. When the frequency of stimulation was increased upto 2 Hz, a time-dependent depression of amplitude was recorded in hypocretin neurons. Administration of CPT caused no significant change in depressed synaptic response induced by 2 Hz stimulus. While depression induced by 10 and 100 Hz stimuli was partially inhibited by the CPT but not by the selective A2 receptor antagonist 3,7-dimethyl-1-(2-propynyl)xanthine. Further findings have demonstrated that high-frequency stimulation could induce long-term potentiation (LTP) of glutamatergic synaptic transmission to hypocretin neurons in acute hypothalamic slices. The experiments with CPT suggested that A1 receptor antagonist could facilitate the induction of LTP, indicating that endogenous adenosine, acting through A1 receptors, may suppress the induction of LTP of excitatory synaptic transmission to hypocretin neurons. These results suggest that in the hypothalamus, endogenous adenosine will be released into extracellular space in an activity-dependent manner inhibiting both basal excitatory synaptic transmission and LTP in hypocretin neurons via A1 receptors. Our data provide further support for the notion that hypocretin neurons in the lateral hypothalamus may be another important target involved in the endogenous adenosine modulating the sleep and wakefulness cycle in the mammalian CNS.  相似文献   

2.
Spiny neurons in the neostriatum are highly vulnerable to ischemia. Enhancement of excitatory synaptic transmissions has been implicated in ischemia-induced excitotoxic neuronal death. Here we report that evoked excitatory postsynaptic currents in spiny neurons were potentiated after transient forebrain ischemia. The ischemia-induced potentiation in synaptic efficacy was associated with an enhancement of presynaptic release as demonstrated by an increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs) and a decrease in the paired-pulse ratio. The amplitude of inward currents evoked by exogenous application of glutamate did not show significant changes after ischemia, suggesting that postsynaptic mechanism is not involved. The ischemia-induced increase in mEPSCs frequency was not affected by blockade of voltage-gated calcium channels, but it was eliminated in the absence of extracellular calcium. Bath application of ATP P2X receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) significantly reduced mEPSC frequency in ischemic neurons but had no effects on the control ones. Furthermore, the inhibitory effect of PPADS on ischemic neurons was abolished in Ca2+-free external solution. These results indicate that excitatory synaptic transmissions in spiny neurons are potentiated after ischemia via presynaptic mechanisms. Activation of P2X receptors and the consequent Ca2+ influx might contribute to the ischemia-induced facilitation of glutamate release.  相似文献   

3.
The pre- and postsynaptic actions of exogenously applied ATP were investigated in intact and dissociated parasympathetic neurones of rat submandibular ganglia. Nerve-evoked excitatory postsynaptic potentials (EPSPs) were not inhibited by the purinergic receptor antagonists, suramin and pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), or the desensitising agonist, alpha,beta-methylene ATP. In contrast, EPSPs were abolished by the nicotinic acetylcholine receptor antagonists, hexamethonium and mecamylamine. Focal application of ATP (100 microM) had no effect on membrane potential of the postsynaptic neurone or on the amplitude of spontaneous EPSPs. Taken together, these results suggest the absence of functional purinergic (P2) receptors on the postganglionic neurone in situ. In contrast, focally applied ATP (100 microM) reversibly inhibited nerve-evoked EPSPs. Similarly, bath application of the non-hydrolysable analogue of ATP, ATP gamma S, reversibly depressed EPSPs amplitude. The inhibitory effects of ATP and ATP gamma S on nerve-evoked transmitter release were antagonised by bath application of either PPADS or suramin, suggesting ATP activates a presynaptic P2 purinoceptor to inhibit acetylcholine release from preganglionic nerves in the submandibular ganglia. In acutely dissociated postganglionic neurones from rat submandibular ganglia, focal application of ATP (100 microM) evoked an inward current and subsequent excitatory response and action potential firing, which was reversibly inhibited by PPADS (10 microM).The expression of P2X purinoceptors in wholemount and dissociated submandibular ganglion neurones was examined using polyclonal antibodies raised against the extracellular domain of six P2X purinoceptor subtypes (P2X(1-6)). In intact wholemount preparations, only the P2X(5) purinoceptor subtype was found to be expressed in the submandibular ganglion neurones and no P2X immunoreactivity was detected in the nerve fibres innervating the ganglion. Surprisingly, in dissociated submandibular ganglion neurones, high levels of P2X(2) and P2X(4) purinoceptors immunoreactivity were found on the cell surface. This increase in expression of P2X(2) and P2X(4) purinoceptors in dissociated submandibular neurones could explain the increased responsiveness of the neurones to exogenous ATP.We conclude that disruption of ganglionic transmission in vivo by either nerve damage or synaptic blockade may up-regulate P2X expression or availability and alter neuronal excitability.  相似文献   

4.
1. The excitatory response of extracellularly applied ATP was investigated in freshly dissociated rat nucleus tractus solitarii neurons under whole-cell configuration using the "concentration-clamp" technique. 2. At a holding potential of -70 mV, 100 microM ATP evoked inward current that was slowly desensitized in the continuous presence of ATP. The ATP-gated current increased in a concentration-dependent manner over the concentration range between 10 microM and 1 mM. The half-maximum concentration was 31 microM and the Hill coefficient was 1.2. 3. The potency of ATP analogues for the purinergic receptor was in the order of ATP = 2-methylthio-ATP much greater than ADP greater than alpha,beta-methylene ATP. Neither adenosine nor AMP evoked any responses. The order was consistent with a P2y receptor subtype. 4. The current-voltage relationship for the 100 microM ATP response showed a clear inward rectification at positive potentials beyond -50 mV. The reversal potential of the ATP-gated current was +13 mV. 5. The time constants of activation and inactivation of the ATP-gated current solution were dependent on the extracellular ATP concentration, and both kinetics became faster at higher ATP concentrations. 6. The ATP-gated current was also elicited in an external solution containing Ca2+ as a permeable cation. The inactivation kinetics in an external solution containing 75 mM Ca2+ were faster than those in an external solution with 150 mM Na+. 7. Calculated relative permeability ratios were PNa/PCs = 1.64 ([Na+]o = 30-150 mM), PCa/PCs = 2.17 ([Ca2+]o = 2 mM). Anions were not measurably permeable in this preparation.  相似文献   

5.
The effect of ethanol on current activated by extracellular adenosine 5'-triphosphate (ATP) was studied in freshly isolated adult rat hippocampal CA1 neurons using whole-cell patch-clamp recording. ATP activated an inward current with an EC(50) value of 18 microM. The inward current was also activated by 2-methylthio ATP (2-MeSATP) and alpha,beta-methylene ATP (alpha,beta-MeATP), inhibited by pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), and potentiated by Zn(2+). Ethanol inhibited current activated by 10 microM ATP with an IC(50) value of 83 mM in a voltage-independent manner. Ethanol, 100 mM, shifted the ATP concentration-response curve to the right, increasing the EC(50) value for ATP from 18 to 33 microM, but did not reduce the maximal response to ATP. The results suggest that ethanol can inhibit the function of P2X receptors in adult rat hippocampal neurons by decreasing the apparent affinity of the binding site for ATP.  相似文献   

6.
The ATP-induced increase in the cytosolic Ca(2+) concentration ([Ca]i) and current in acutely dissociated ventromedial hypothalamic rats neurons were investigated using fura-2 microfluorometry and the nystatin-perforated patch recording method, respectively. The ATP-induced [Ca]i increase was mimicked by dimethyl-thio-ATP and ATPgammaS, and was inhibited by P2 purinoreceptor antagonists. The ATP-induced [Ca]i increase was markedly reduced by removal of external Na(+) or Ca(2+), and by addition of various Ca(2+) channel antagonists. ATP induced a transient inward current exhibiting a strong inward rectification at membrane potentials more positive than -20 mV. The ATP-induced current at a holding potential of -70 mV was concentration-dependent with a half-maximum effective concentration of 26 microM. Increasing the external Ca(2+) concentration to 10 mM shifted the dose-response relationship to the right. ATP induced only a small current and a small increase in [Ca]i, even at 10 mM Ca(2+), when external Na(+) was removed, suggesting the relatively low permeability to Ca(2+) of purinoceptor channels. These results suggest that ATP activates non-selective cation channels by acting on P2X purinoceptors on dissociated ventromedial hypothalamic neurons, which in turn increases [Ca]i by increasing Ca(2+) influx through voltage-dependent Ca(2+) channels.  相似文献   

7.
Nystatin-perforated patch recordings were made from rat parabrachial neurons in an in vitro slice preparation to examine the effect of dopamine on parabrachial cells and on excitatory synaptic transmission in this nucleus. In current clamp mode, dopamine reduced the amplitude of the evoked excitatory postsynaptic potential without significant change in membrane potential. In cells voltage-clamped at -65 mV, dopamine dose dependently and reversibly decreased evoked, pharmacologically isolated, excitatory postsynaptic currents with an EC50 of 31 microM. The reduction in excitatory postsynaptic current was accompanied by an increase in paired pulse ratio (a protocol used to detect presynaptic site of action) with no change in the holding current or in the decay of the evoked excitatory postsynaptic currents. In addition, dopamine altered neither postsynaptic (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate-induced currents, nor steady-state current voltage curves. Miniature excitatory postsynaptic current analysis revealed that dopamine caused a rightward shift of the frequency-distribution curve with no change in the amplitude-distribution curve, which is consistent with a presynaptic mechanism. The dopamine-induced attenuation of the excitatory postsynaptic current was almost completely blocked by the D1-like receptor antagonist SCH23390 (10 microM), although the D2-like antagonist sulpiride (10 microM) also partially blocked it. Combined application of both antagonists blocked all dopamine-induced synaptic effects. The synaptic effect of dopamine was mimicked by the D1-like agonist SKF38393 (50 microM), but the D2-1ike agonist quinpirole (50 microM) also had a small effect. Combined application of both agonists did not produce potentiated responses. Dopamine's effect on the excitatory postsynaptic current was independent of serotonin, GABA and adenosine receptors, but may have some interactions with adrenergic receptors. These results suggest that dopamine directly modulates excitatory synaptic events in the parabrachial nucleus predominantly via presynaptic D1-like receptors.  相似文献   

8.
The antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) has been proposed to selectively antagonize the actions of ATP at P2X receptors. Whole cell patch-clamp recording techniques therefore were used to characterize PPADS inhibition of ATP-activated current in bullfrog dorsal root ganglion (DRG) neurons. PPADS, 0.5-10 microM, inhibited ATP-activated current in a concentration-dependent manner with an IC(50) of 2.5 +/- 0.03 microM. PPADS produced a gradual decline of ATP-activated current to a steady state, but this was not an indication of use dependence as the gradual declining component could be eliminated by exposure to PPADS before ATP application. In addition, ATP-activated current recovered completely from inhibition by PPADS in the absence of agonist. The slow onset of inhibition by PPADS was not apparently due to an action at an intracellular site as inclusion of 10 microM PPADS in the recording pipette neither affected the ATP response nor did it alter inhibition of the ATP response when 2.5 microM PPADS was applied externally. PPADS, 2.5 microM, decreased the maximal response to ATP by 51% without changing its EC(50). PPADS inhibition of ATP-activated current was independent of membrane potential between -80 and +40 mV and did not involve a shift in the reversal potential of the current. The magnitude of PPADS inhibition of ATP-activated current was dependent on the duration of the prior exposure to PPADS. The time constants of both onset and offset of PPADS inhibition of ATP-activated current did not differ significantly with changes in ATP concentration from 1 to 5 microM. Recovery of ATP-activated current from PPADS inhibition also exhibited a slow phase that was not accelerated by the presence of agonist and was dependent on the concentration of PPADS. The apparent dissociation rate of PPADS from unliganded ATP-gated ion channels was much greater than the rate of the slow phase of recovery of ATP-activated current from PPADS inhibition. The results suggest that PPADS can inhibit P2X receptor function in a complex noncompetitive manner. PPADS produces a long-lasting inhibition that does not appear to result from open channel block but rather from an action at an allosteric site apparently accessible from the extracellular environment that involves a greatly reduced rate of dissociation from liganded versus unliganded ATP-gated ion channels.  相似文献   

9.
1. The effects of specific excitatory amino acid (EAA) antagonists on evoked excitatory synaptic responses were studied in the hypothalamic paraventricular nucleus (PVN) of the guinea pig, by the use of the in vitro slice preparation. Intracellular recordings were obtained from paraventricular neurons, and excitatory postsynaptic potentials (EPSPs) and currents (EPSCs) were induced by perifornical electrical stimulation. To reduce the influence of a potential gamma-aminobutyric acidA (GABAA) inhibitory component on the synaptic responses, all experiments were performed in the presence of 50 microM picrotoxin. 2. Of 20 cells tested, 13 had electrophysiological characteristics similar to magnocellular neuropeptidergic cells (MNCs) and 7 displayed low-threshold Ca2+ spikes (LTSs). No difference was detected in the effect of the antagonists on the synaptic responses of cells with or without LTS potentials. 3. The broad-spectrum EAA antagonist kynurenic acid decreased the amplitude of the EPSPs and EPSCs in a dose-dependent manner: the mean decrease was 5% for 100 microM, 43% for 300 microM, and 70% for 1 mM. 4. The quisqualate/kainate-receptor-selective antagonist 6-cyano-2,3-dihydroxy-7-nitroquinoxaline (CNQX) induced a dose-dependent decrease of the EPSPs and EPSCs: 1 microM had no detectable effect, 3 and 10 microM caused 30 and 70% decreases, respectively, and 30 microM blocked the response almost completely. This effect was not accompanied by a change in resting membrane potential or input resistance and was slowly reversible. 5. The N-methyl-D-aspartate (NMDA)-receptor-selective antagonist DL-2-amino-5-phosphonopentanoic acid (AP5), applied at 30 and 300 microM, reduced slightly the amplitude of the decay phase of the EPSP but did not significantly affect the peak amplitude. In some cells, the current-voltage relationship of the decay phase of the EPSC revealed a region of negative slope conductance between -70 and -40 mV. 6. These results suggest that 1) glutamate or a related EAA is responsible for the fast excitatory input to magnocellular and parvocellular neurons in the PVN and probably also for cells around PVN, 2) a quisqualate/kainate receptor type is responsible for the rising phase and peak amplitude of the synaptic current, and 3) an NMDA receptor contributes to the late part of the synaptic response.  相似文献   

10.
Neurons in the lateral hypothalamus (LH) that contain hypocretin/orexin have been established as important promoters of arousal. Deficiencies in the hypocretin/orexin system lead to narcolepsy. The inhibition of hypocretin/orexin neurons by sleep-promoting neurotransmitters has been suggested as one part of the sleep regulation machinery. Adenosine has been identified as a sleep promoter and its role in sleep regulation in the basal forebrain has been well documented. However, the effect of adenosine on arousal-promoting hypocretin/orexin neurons has not been addressed, despite recent evidence that immunocytochemical visualization of adenosine receptors was detected in these neurons. In this study, we examined the hypothesis that adenosine inhibits the activity of hypocretin/orexin neurons by using electrophysiological methods in brain slices from mice expressing green fluorescent protein in hypocretin/orexin neurons. We found that adenosine significantly attenuated the frequency of action potentials without a change in membrane potential in hypocretin/orexin neurons. The adenosine-mediated inhibition arises from depression of excitatory synaptic transmission to hypocretin/orexin neurons because adenosine depresses the amplitude of evoked excitatory postsynaptic potential and the frequency of spontaneous and miniature excitatory postsynaptic currents in these neurons. At the cell body of the hypocretin/orexin neurons, adenosine inhibits voltage-dependent calcium currents without the induction of GIRK current. The inhibitory effect of adenosine is dose dependent, pertussis toxin sensitive, and mediated by A1 receptors. In summary, our data suggest that in addition to its effect in the basal forebrain, adenosine exerts its sleep-promoting effect in the LH by inhibition of hypocretin/orexin neurons.  相似文献   

11.
Kolaj M  Coderre E  Renaud LP 《Neuroscience》2008,155(4):1212-1220
Subpopulations of neurons in the median preoptic nucleus (MnPO) located within the lamina terminalis contribute to thermoregulatory, cardiovascular and hydromineral homeostasis, and sleep-promotion. MnPO is innervated by lateral hypothalamic neurons that synthesize and secrete the arousal-promoting and excitatory orexin (hypocretin) neuropeptides. To evaluate the hypothesis that orexins modulate the excitability of MnPO neurons, we used patch-clamp recording techniques applied in rat brain slice preparations to assess the effects of exogenously applied orexin A and orexin B peptides on their intrinsic and synaptic properties. Whole cell recordings under current-clamp mode revealed that 11/15 tested MnPO neurons responded similarly to either orexin A or B (500-1000 nM) with a slowly rising, prolonged (10-15 min) and reversible membrane depolarization. Under voltage-clamp mode, orexin applications induced a tetrodotoxin-resistant inward current of -7.2+/-1.6 pA, indicating a direct (postsynaptic) activation, with a time course similar to the observed membrane depolarization. The orexin-induced responses in 4/7 neurons were associated with a significant decrease in membrane conductance and the net orexin-induced current that reversed at -99+/-5 mV, suggesting closure of potassium channels. Orexins did not attenuate the properties of excitatory (n=4) or inhibitory (n=7) postsynaptic currents evoked by subfornical organ stimulation. By contrast, orexins applications induce a significant increase in both frequency and amplitude of spontaneous glutamatergic postsynaptic currents (5/7 cells) but had no influence on spontaneous GABAergic currents (6/6 cells). Thus, in addition to a direct postsynaptic receptor-mediated excitation, orexins can also increase the excitability of MnPO neurons via increasing their excitatory inputs, presumably through an orexin receptor-mediated excitation of local glutamatergic neurons whose axons project to MnPO neurons.  相似文献   

12.
13.
Whole cell patch-clamp recordings were obtained from projection neurons and interneurons of the rat basolateral amygdala (BLA) to understand local network interactions in morphologically identified neurons and their modulation by serotonin. Projection neurons and interneurons were characterized morphologically and electrophysiologically according to their intrinsic membrane properties and synaptic characteristics. Synaptic activity in projection neurons was dominated by spontaneous inhibitory postsynaptic currents (IPSCs) that were multiphasic, reached 181 +/- 38 pA in amplitude, lasted 296 +/- 27 mS, and were blocked by the GABAA receptor antagonist, bicuculline methiodide (30 microM). In interneurons, spontaneous synaptic activity was characterized by a burst-firing discharge patterns (200 +/- 40 Hz) that correlated with the occurrence of 6-cyano-7-nitroquinoxaline-2,3-dione-sensitive, high-amplitude (260 +/- 42 pA), long-duration (139 +/- 19 mS) inward excitatory postsynaptic currents (EPSCs). The interevent interval of 831 +/- 344 mS for compound inhibitory postsynaptic potentials (IPSPs), and 916 +/- 270 mS for EPSC bursts, suggested that spontaneous IPSP/Cs in projection neurons are driven by burst of action potentials in interneurons. Hence, BLA interneurons may regulate the excitability of projection neurons and thus determine the degree of synchrony within ensembles of BLA neurons. In interneurons 5-hydroxytryptamine oxalate (5-HT) evoked a direct, dose-dependent, membrane depolarization mediated by a 45 +/- 6.9 pA inward current, which had a reversal potential of -90 mV. The effect of 5-HT was mimicked by the 5-HT2 receptor agonist, alpha-methyl-5-hydroxytryptamine (alpha-methyl-5-HT), but not by the 5-HT1A receptor agonist, (+/-) 8-hydroxydipropylaminotetralin hydrobromide (8-OH-DPAT), or the 5-HT1B agonist, CGS 12066A. In projection neurons, 5-HT evoked an indirect membrane hyperpolarization ( approximately 2 mV) that was associated with a 75 +/- 42 pA outward current and had a reversal potential of -70 mV. The response was independent of 5-HT concentration, blocked by TTX, mimicked by alpha-methyl-5-HT but not by 8-OH-DPAT. In interneurons, 5-HT reduced the amplitude of the evoked EPSC and in the presence of TTX (0.6 microM) reduced the frequency of miniature EPSCs but not their quantal content. In projection neurons, 5-HT also caused a dose-dependent reduction in the amplitude of stimulus evoked EPSCs and IPSCs. These results suggest that acute serotonin release would directly activate GABAergic interneurons of the BLA, via an activation of 5-HT2 receptors, and increase the frequency of inhibitory synaptic events in projection neurons. Chronic serotonin release, or high levels of serotonin, would reduce the excitatory drive onto interneurons and may act as a feedback mechanism to prevent excess inhibition within the nucleus.  相似文献   

14.
Spikes may play an important role in modulating a number of aspects of brain development. In early hypothalamic development, GABA can either evoke action potentials, or it can shunt other excitatory activity. In both slices and cultures of the mouse hypothalamus, we observed a heterogeneity of spike patterns and frequency in response to GABA. To examine the mechanisms underlying patterns and frequency of GABA-evoked spikes, we used conventional whole cell and gramicidin perforation recordings of neurons (n = 282) in slices and cultures of developing mouse hypothalamus. Recorded with gramicidin pipettes, GABA application evoked action potentials in hypothalamic neurons in brain slices of postnatal day 2-9 (P2-9) mice. With conventional patch pipettes (containing 29 mM Cl-), action potentials were also elicited by GABA from neurons of 2-13 days in vitro (2-13 DIV) embryonic hypothalamic cultures. Depolarizing responses to GABA could be generally classified into three types: depolarization with no spike, a single spike, or complex patterns of multiple spikes. In parallel experiments in slices, electrical stimulation of GABAergic mediobasal hypothalamic neurons in the presence of glutamate receptor antagonists [10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 100 microM 2-amino-5-phosphonopentanoic acid (AP5)] resulted in the occurrence of spikes that were blocked by bicuculline (20 microM). Blocking ionotropic glutamate receptors with AP5 and CNQX did not block GABA-mediated multiple spikes. Similarly, when synaptic transmission was blocked with Cd(2+) (200 microM) and Ni(2+) (300 microM), GABA still induced multiple spikes, suggesting that the multiple spikes can be an intrinsic membrane property of GABA excitation and were not based on local interneurons. When the pipette [Cl-] was 29 or 45 mM, GABA evoked multiple spikes. In contrast, spikes were not detected with 2 or 10 mM intracellular [Cl-]. With gramicidin pipettes, we found that the mean reversal potential of GABA-evoked current (E(GABA)) was positive to the resting membrane potential, suggesting a high intracellular [Cl-] in developing mouse neurons. Varying the holding potential from -80 to 0 mV revealed an inverted U-shaped effect on spike probability. Blocking voltage-dependent Na+ channels with tetrodotoxin eliminated GABA-evoked spikes, but not the GABA-evoked depolarization. Removing Ca(2+) from the extracellular solution did not block spikes, indicating GABA-evoked Na+ -based spikes. Although E(GABA) was more positive within 2-5 days in culture, the probability of GABA-evoked spikes was greater in 6- to 9-day cells. Mechanistically, this appears to be due to a greater Na+ current found in the older cells during a period when the E(GABA) is still positive to the resting membrane potential. GABA evoked similar spike patterns in HEPES and bicarbonate buffers, suggesting that Cl-, not bicarbonate, was primarily responsible for generating multiple spikes. GABA evoked either single or multiple spikes; neurons with multiple spikes had a greater Na+ current, a lower conductance, a more negative spike threshold, and a greater difference between the peak of depolarization and the spike threshold. Taken together, the present results indicate that the patterns of multiple action potentials evoked by GABA are an inherent property of the developing hypothalamic neuron.  相似文献   

15.
The hypothalamic peptides hypocretin-1 (orexin A) and hypocretin-2 (Hcrt-2; orexin B) are important in modulating behaviours demanding arousal, including sleep and appetite. Fibres containing hypocretin project from the hypothalamus to the superficial dorsal horn (SDH) of the spinal cord (laminae I and II); however, the effects produced by hypocretins on SDH neurones are unknown. To study the action of Hcrt-2 on individual SDH neurones, tight-seal, whole-cell recordings were made with biocytin-filled electrodes from rat lumbar spinal cord slices. In 19 of 63 neurones, Hcrt-2 (30 n m to 1 μ m ) evoked an inward (excitatory) current accompanied by an increase in baseline noise. The inward current and noise were unaffected by TTX but were blocked by the P2X purinergic receptor antagonist suramin (300–500 μ m ). Hcrt-2 (30 n m to 1 μ m ) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in the majority of neurones. The sIPSC increase was blocked by strychnine (1 μ m ) and by TTX (1 μ m ), suggesting that the increased sIPSC frequency was glycine and action potential dependent. Hcrt-2 increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in a few neurones but had no effect on dorsal root-evoked EPSCs in these or in other neurones. Neurones located in outer lamina II, particularly radial and vertical cells, were most likely to respond to Hcrt-2. We conclude that Hcrt-2 has excitatory effects on certain SDH neurones, some of which exert inhibitory influences on other cells of the region, consistent with the perspective that hypocretin has a role in orchestrating reactions related to arousal, including nociception, pain and temperature sense.  相似文献   

16.
Hypocretin 2 (orexin B) is a hypothalamic neuropeptide thought to be involved in regulating energy homeostasis, autonomic function, arousal, and sensory processing. Neural circuits in the caudal nucleus tractus solitarius (NTS) integrate viscerosensory inputs, and are therefore implicated in aspects of all these functions. We tested the hypothesis that hypocretin 2 modulates fast synaptic activity in caudal NTS areas that are generally associated with visceral sensation from cardiorespiratory and gastrointestinal systems. Hypocretin 2-immunoreactive fibers were observed throughout the caudal NTS. In whole-cell recordings from neurons in acute slices, hypocretin 2 depolarized 48% and hyperpolarized 10% of caudal NTS neurons, effects that were not observed when Cs(+) was used as the primary cation carrier. Hypocretin 2 also increased the amplitude of tractus solitarius-evoked excitatory postsynaptic currents (EPSCs) in 36% of neurons and significantly enhanced the frequency of spontaneous EPSCs in most (59%) neurons. Spontaneous inhibitory postsynaptic currents (IPSCs) were relatively unaffected by the peptide. The increase in EPSC frequency persisted in the presence of tetrodotoxin, suggesting a role for the peptide in regulating glutamate release in the NTS by acting at presynaptic terminals.These data suggest that hypocretin 2 modulates excitatory, but not inhibitory, synapses in caudal NTS neurons, including viscerosensory inputs. The selective nature of the effect supports the hypothesis that hypocretin 2 plays a role in modulating autonomic sensory signaling in the NTS.  相似文献   

17.
The effects of carbachol (0.01-30 microM) and muscarine (10-30 microM) on the excitatory synaptic potentials were studied using conventional intracellular recordings from dopaminergic neurons in rat mesencephalic slices. Both muscarinic agonists reversibly reduced the excitatory synaptic potentials, evoked by local electrical stimulation. The EC50 for carbachol was determined to be 4.5 microM. The maximal degree of the excitatory synaptic potentials suppression caused by carbachol and muscarine was around 40% of control. This suppression was completely blocked by the non-specific muscarinic antagonist atropine (1 microM) and the selective M3 antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (1 microM). Other antagonists, preferentially acting at M1, M2 and M4 receptors, were not effective. Furthermore, the acetylcholinesterase inhibitor, physostigmine (50 microM), decreased the amplitude of the excitatory synaptic potentials, indicating that ambient acetylcholine can depress this potential. Direct depolarizing responses to glutamate were not changed by muscarine. In addition, muscarine facilitated the second excitatory synaptic potentials during a paired-pulse protocol. Thus, the effect of the muscarinic agonists is attributable to a presynaptic locus of action. The action of muscarine was not mediated by an N-ethylmaleimide-sensitive G-protein since it was not modified by a treatment of the slices with this agent. The calcium channels blockers, omega-conotoxin GIVA, omega-agatoxin IVA and omega-conotoxin MVIIC did not affect the action of muscarine on the excitatory synaptic potentials. When the potassium currents were reduced by extracellular barium and 4-aminopyridine, the muscarinic agonists still depressed the excitatory synaptic potentials. Our data indicate that presynaptically located M3 receptors modulate the excitatory transmission to midbrain dopaminergic neurons via a N-ethylmaleimide-insensitive G-protein which activates mechanisms neither linked to N-, P-, Q-type calcium channels nor to barium- and 4-aminopyridine-sensitive potassium channels.  相似文献   

18.
Whole cell currents and miniature glutamatergic synaptic events (minis) were recorded in vitro from cardiac vagal neurons in the nucleus ambiguus using the patch-clamp technique. We examined whether voltage-dependent calcium channels were involved in the nicotinic excitation of cardiac vagal neurons. Nicotine evoked an inward current, increase in mini amplitude, and increase in mini frequency in cardiac vagal neurons. These responses were inhibited by the nonselective voltage-dependent calcium channel blocker Cd (100 microM). The P-type voltage-dependent calcium channel blocker agatoxin IVA (100 nM) abolished the nicotine-evoked responses. Nimodipine (2 microM), an antagonist of L-type calcium channels, inhibited the increase in mini amplitude and frequency but did not block the ligand gated inward current. The N- and Q-type voltage-dependent calcium channel antagonists conotoxin GVIA (1 microM) and conotoxin MVIIC (5 microM) had no effect. We conclude that the presynaptic and postsynaptic facilitation of glutamatergic neurotransmission to cardiac vagal neurons by nicotine involves activation of agatoxin-IVA-sensitive and possibly L-type voltage-dependent calcium channels. The postsynaptic inward current elicited by nicotine is dependent on activation of agatoxin-IVA-sensitive voltage-dependent calcium channels.  相似文献   

19.
Shen KZ  Kozell LB  Johnson SW 《Neuroscience》2007,148(4):996-1003
Firing patterns of subthalamic nucleus (STN) neurons influence normal and abnormal movements. The STN expresses multiple 5-HT receptor subtypes that may regulate neuronal excitability. We used whole-cell patch-clamp recordings to characterize 5-HT receptor-mediated effects on membrane currents in STN neurons in rat brain slices. In 80 STN neurons under voltage-clamp (-70 mV), 5-HT (30 microM) evoked inward currents in 64%, outward currents in 17%, and biphasic currents in 19%. 5-HT-induced outward current was caused by an increased K(+) conductance (1.4+/-0.2 nS) and was blocked by the 5-HT(1A) antagonist WAY 100135. The 5-HT-evoked inward current, which was blocked by antagonists at 5-HT(2C) and/or 5-HT(4) receptors, had two types of current-voltage (I-V) relations. Currents associated with the type 1 I-V relation showed negative slope conductance at potentials <-110 mV and were occluded by Ba(2+). In contrast, the type 2 I-V relation appeared linear and had positive slope conductance (0.64+/-0.11 nS). Type 2 inward currents were Ba(2+)-insensitive, and the reversal potential of -19 mV suggests a mixed cation conductance. In STN neurons in which 5-HT evoked inward currents, 5-HT potentiated burst firing induced by N-methyl-d-aspartate (NMDA). But in neurons in which 5-HT evoked outward current, 5-HT slowed NMDA-dependent burst firing. We conclude that 5-HT receptor subtypes can differentially regulate firing pattern by modulating multiple conductances in STN neurons.  相似文献   

20.
Serotonin (5-HT) is a key modulator of neuronal excitability in the central and peripheral nervous system. In the enteric nervous system, 5-HT causes a slow depolarization in the intrinsic sensory neurons, but the receptor responsible for this has not been correlated with known gene products. The aim of this study was to determine whether the newly characterized 5-HT7 receptor may participate in the 5-HT-mediated depolarization of, and synaptic transmission to, the intrinsic sensory neurons of the guinea-pig ileum. Intracellular electrophysiological recordings were made from intrinsic sensory neurons identified as myenteric AH neurons from guinea-pig ileum. 5-HT (5 microM) applied to the cell body evoked both a fast depolarization (5-HT3 mediated) and/or a slow depolarization (5-HT1P-like). The 5-HT1/5/7 receptor agonist 5-carboxamidotryptamine (5-CT) (5 microM) evoked only a slow depolarization. When the fast depolarization evoked by 5-HT was blocked with granisetron (1 microM, 5-HT3 receptor antagonist), only a slow depolarization remained; this was abolished by the 5-HT7 receptor antagonist SB 269970 (1 microM, control: 14+/-2 mV, granisetron+SB 269970: -1+/-2 mV). The slow depolarization evoked by 5-CT was also significantly reduced by SB 269970 (control: 14+/-1 mV, SB 269970: 5+/-2 mV) suggesting a 5-HT7 receptor was activated by exogenous application of 5-CT and 5-HT. Slow excitatory postsynaptic potentials evoked by stimulating descending neural pathways (containing serotonergic fibers) were reduced by SB 269970 (control: 8+/-3 mV, SB 269970: 3+/-1 mV). However, SB 269970 had no effect on slow excitatory postsynaptic potentials evoked by stimulation of circumferential (tachykinergic) pathways (control: 7+/-1 mV, SB 269970: 6+/-1 mV). These data are consistent with the presence on enteric AH neurons of functional 5-HT7 receptors that participate in slow synaptic transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号