首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Islet transplantation is a promising treatment for Type 1 diabetes; however limitations of the intra-portal site and poor revascularization of islets must be overcome. We hypothesize that engineering a highly vascularized collagen-based construct will allow islet graft survival and function in alternative sites. In this study, we developed such a collagen-based biomaterial. Neonatal porcine islets (NPIs) were embedded in collagen matrices crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide containing combinations of chondroitin-6-sulfate, chitosan, and laminin, and compared with controls cultured in standard media. Islets were examined for insulin secretory activity after 24 h and 4 d and for apoptotic cell death and matrix integrity after 7 d in vitro. These same NPI/collagen constructs were transplanted subcutaneously in immunoincompetent B6.Rag−/− mice and then assessed for islet survival and vascularization. At all time points assessed during in vitro culture there were no significant differences in insulin secretory activity between control islets and those embedded in the collagen constructs, indicating that the collagen matrix had no adverse effect on islet function. Less cell death was observed in the matrix with all co-polymers compared with the other matrices tested. Immunohistochemical analysis of the grafts post-transplant confirmed the presence of intact insulin-positive islets; grafts were also shown to be vascularized by von Willebrand factor staining. This study demonstrates that a collagen, chondroitin-6-sulfate, chitosan, and laminin matrix supports islet function in vitro and moreover allows islet survival and vascularization post-transplantation; therefore, this bio-engineered vascularized construct is capable of supporting islet survival.  相似文献   

2.
Human islet cell transplantation--future prospects.   总被引:4,自引:0,他引:4  
BACKGROUND: Islet transplantation has the potential to cure diabetes mellitus. Nevertheless despite successful reversal of diabetes in many small animal models, the clinical situation has been far more challenging. The aim of this review is to discuss why insulin-independence after islet allotransplantation has been so difficult to achieve. METHODS: A literature review was undertaken using Medline from 1975 to July 2000. Results reported to the International Islet Transplant Registry (ITR) up to December 1998 were also analysed. RESULTS: Up to December 1998, 405 islet allotransplants have been reported the ITR. Of those accurately documented between 1990 and 1998 (n = 267) only 12% have achieved insulin-independence (greater than 7 days). However with refined peri-transplant protocols insulin independence at 1 year can reach 20%. CONCLUSIONS: There are many factors which can explain the failure of achieving insulin-independence after islet allotransplantation. These include the use of diabetogenic immunosuppressive agents to abrogate both islet allo-immunity and auto-immunity, the critical islet mass to achieve insulin-independence and the detrimental effects of transplanting islets in an ectopic site. However recent evidence most notably from the Edmonton group demonstrates that islet allotransplantation still has great potential to become an established treatment option for diabetic patients.  相似文献   

3.
Since the Edmonton Protocol was announced, more than 600 patients with type 1 diabetes at more than 50 institutions have received islet transplantation to treat their disease. We recently established a new islet isolation protocol, called the Kyoto Islet Isolation Method, based on the Ricordi method. It includes an in-situ cooling system for pancreas procurement, pancreatic ductal protection, a modified two-layer (M-Kyoto /perfluorochemical [PFC]) method of pancreas preservation, and a new islet purification solution (Iodixanol-based solution). Using this islet isolation method, we isolated islets from 19 human pancreata of non-heart-beating donors and transplanted 16 preparations into seven patients with type 1 diabetes between April 7, 2004 and November 18, 2005. The percentage of those meeting the release criteria of the Edmonton Protocol was more than 80%. We also performed living-donor transplantation of islets for unstable diabetes on January 19, 2005. Establishment of this method enables us to make diabetic patients insulin-independent, using islets not only from two or three pancreata of non-heart-beating donors but also using islets from half a pancreas from a living donor.  相似文献   

4.
Islet transplantation for diabetes is limited by the availability of human islet donors. Hepatocyte growth factor (HGF) is a potent beta-cell mitogen and survival factor and improves islet transplant outcomes in a murine model. However, the murine model employs renal subcapsular transplant and immunodeficient mice, features not representative of human islet transplantation protocols. Therefore, we have developed a more rigorous, marginal-mass rat islet transplant model that more closely resembles human islet transplantation protocols: islet donors are allogeneic Lewis islets; recipients are normal Sprague Dawley rats; islets are delivered intraportally; and immunosuppression is accomplished using the same immunosuppressants employed by the Edmonton group. We demonstrate that 1) surprisingly, the Edmonton immunosuppression regimen induces marked insulin resistance and beta-cell toxicity in rats, 2) adenovirus does not adversely affect islet transplant outcomes, 3) the Edmonton immunosuppressants may delay or block rejection of adenovirally transduced islets, and more importantly, 4) pretransplant islet adenoviral gene therapy with HGF markedly improves islet transplant outcomes, 5) this enhanced function persists for months, and 6) HGF enhances islet function and survival even in the setting of immunosuppressant-induced insulin resistance and beta-cell toxicity. This approach may enhance islet transplantation outcomes in humans.  相似文献   

5.
Aims/hypothesis The aim of this study was to determine whether a simple alginate capsule can prolong islet survival and function during long-term tissue culture. We also wanted to observe the ability of these encapsulated islets to restore glucose responsiveness to diabetic recipients, along with the quantity of islets required to do so.Methods We compared the recovery and metabolic function of encapsulated canine islets with that of non-encapsulated canine islets following 1, 2 or 3 weeks of tissue culture. These culture preparations were also transplanted into diabetic nude mice and compared for their ability to reverse diabetes. Furthermore, short-term cultured encapsulated and non-encapsulated islets were transplanted in varying numbers to determine the minimum dose required to normalise blood glucose and prolong recipient survival.Results Islet recovery following 1, 2 and 3 weeks of tissue culture was significantly higher when islets were encapsulated. When these islets were recovered at 1, 2 and 3 weeks and transplanted into diabetic nude mice, survival at 100 days was 100% for all encapsulated groups, versus 66%, 33% and 33% respectively for the non-encapsulated islets. Additionally, substantially fewer short-term cultured islets were required to normalise blood glucose when the islets were encapsulated. Recipients of encapsulated islets also had significantly longer survival times than recipients of non-encapsulated preparations.Conclusions/interpretation This study demonstrates that encapsulation of islets with purified alginate improves islet survival and function in vitro and in vivo.Conflict of interest: No conflict of interest has been declared by the authors.  相似文献   

6.
Barbu AR  Bodin B  Welsh M  Jansson L  Welsh N 《Diabetologia》2006,49(10):2388-2391
Aims/hypothesis Successful gene transfer to pancreatic islets might be a powerful tool for dissecting the biological pathways involved in the functional impairment and destruction of beta cells in type 1 diabetes. In the long run, such an approach may also prove useful for promoting islet graft survival after transplantation in diabetic patients. However, efficient genetic modification of primary insulin-producing cells is limited by the specific compact structure of the pancreatic islet. We present here a whole-pancreas perfusion-based transduction procedure for genetic modification of intact pancreatic islets. Materials and methods We used flow cytometry analysis and confocal microscopy to evaluate the efficiency of in vitro and perfusion-based transduction protocols that use adenoviral and lentiviral vectors expressing green fluorescent protein. Islet cell viability was assessed by fluorescence microscopy and beta cell function was determined via glucose-stimulated insulin secretion. Results In intact rat and human pancreatic islets, adenoviral and lentiviral vectors mediated gene transfer to about 30% of cells, but they did not reach the inner cellular mass within the islet core. Using the whole-pancreas perfusion protocol, we demonstrate that at least in rodent models the centrally located insulin-producing cells can be transduced with high efficiency, while preserving the structural integrity of the islet. Moreover, islet cell viability and function are not impaired by this procedure. Conclusions/interpretation These results support the view that perfusion-based transduction protocols may significantly improve the yield of successfully engineered primary insulin-producing cells for diabetes research. Electronic supplementary material Supplementary material is available for this article at and is accessible to authorized users  相似文献   

7.

Background

The development of islet cultures is desirable for successful clinical islet transplantation. Fetal bovine serum (FBS) has been used as a supplement in islet culture medium, but it may be an unsuitable supplement due recent animal health problems. We have evaluated the use of the silk protein, sericin, derived from Bombyx mori as a replacement for FBS in islet culture medium.

Methods

Twenty rat islets were cultured in medium containing either sericin or FBS, or no supplement, for 14 days, during which time viable islets were counted in order to evaluate islet survival. Insulin secretion was measured in vitro by static incubation on days 3 and 7. In vivo function of cultured islets was tested by syngeneic transplantation. The islets were evaluated histologically and immunohistochemically after culture and transplantation.

Results

Ninety-five percent of islets were viable after culture for 14 days in culture medium supplemented with either FBS or sericin, while no islets survived beyond 7 days in culture without supplement. No significant differences in stimulated insulin secretion were noted between two groups of islets grown on supplemented media. Following transplantation, islets cultured in FBS or sericin rapidly reversed hyperglycemia and maintained normal glycemic control. Histologically, islets cultured with sericin displayed a well-preserved structure and strong insulin staining before and after transplantation.

Conclusion

Serum-free medium containing sericin appears to be useful for islet culture.  相似文献   

8.

Aims/hypothesis

The Edmonton Protocol for islet transplantation has provided hope for type 1 diabetic patients. However, this protocol requires lifelong immunosuppression, specifically sirolimus, a cellular antiproliferate. The effect of sirolimus on human pancreatic ductal cells (HDCs) is not known. This may be important since HDCs are believed to be islet precursors. Since neonatal porcine islets (NPIs), which contain many ductal precursor cells, could be a potential clinical source of islets, we also tested the effects of sirolimus on this tissue.

Methods

HDCs (n=4), NPIs (n=9) and human islets (n=5) were cultured with and without sirolimus (20 ng/ml) for 6 days.

Results

HDCs and NPIs cultured with sirolimus showed a 50 and 28% decrease, respectively, in cell number relative to control (p<0.05). Control cultures expanded 1.65- and 2.44-fold relative to time 0. Decreases in cell number of sirolimus-treated HDCs were not due to apoptosis as measured by TUNEL staining. No functional effects on human islets or NPIs were observed following static incubation with high glucose. Treatment of syngeneically transplanted and naïve BALC/c mice with sirolimus resulted in altered OGTT profiles with prolonged elevation of hyperglycaemia and weight gain. There was no difference in graft and organ insulin content between treatment groups.

Conclusions/interpretation

Our results indicate that sirolimus decreases ductal cell numbers in culture and alters glucose-stimulated insulin secretion in vivo. The administration of sirolimus to islet transplant recipients is likely to impair graft function as a result of decreasing ductal neogenesis and induction of insulin resistance.  相似文献   

9.
The clinical results recently reported by the Edmonton group in recipients of allogeneic islet grafts, all of whom achieved at least temporary insulin independence, has rekindled interest in transplantation of islets of Langerhans as a means to cure diabetes. Long-term islet graft survival has been achieved in a non-human primate pre-clinical model with a protocol of T-cell signaling blockade using a new monoclonal antibody. Islet xenotransplantation (namely the use of animal islets, with the aim of transplanting them into humans), or stem cell technology (the controlled differentiation of stem cells to obtain specialised cells for the treatment of diabetes) are other procedures currently being evaluated in animal models. The recent clinical success suggests that, in the near future, diabetes might be treated by islet transplantation early in the clinical course of the disease before the development of complications, and without the risks associated with conventional immunosuppression.  相似文献   

10.
Olsson R  Carlsson PO 《Diabetologia》2005,48(3):469-476
Aims/hypothesis Recent studies suggest that donor endothelial cells may contribute to islet graft revascularisation. Since islet endothelial cells disappear during culture, we hypothesised that transplantation of islets without prior culture is beneficial for their engraftment.Methods Cultured (4–7 days) or freshly isolated islets (<4 h after donor pancreas extirpation) were syngeneically transplanted into Wistar–Furth rats and C57Bl/6 mice beneath the renal capsule. Islet graft revascularisation was evaluated by measuring vascular density, blood flow and tissue oxygen tension. Islet graft function was investigated by a minimal islet mass model in inbred mice (C57Bl/6).Results Four days after implantation, the partial pressure of oxygen (pO2) in the transplanted cultured islets was less than 10 mmHg (1.33 kPa), but tended to be higher in grafts composed of freshly isolated islets. The pO2 in the grafts of freshly isolated islets had more than doubled 4 weeks later, whereas the pO2 in the grafts of cultured islets remained at values similar to those recorded 4 days after transplantation. Transplanted freshly isolated islets also had a higher vascular density than transplanted cultured islets (40 vs 25% of that in endogenous islets) when investigated 1 month post-implantation. When applying a minimal islet mass model in inbred mice, 200 freshly isolated islets cured alloxan-diabetic mice in all cases, whereas only 33% of the group receiving similar numbers of cultured islets were cured.Conclusions/interpretation Transplantation of pancreatic islets without prior culture is beneficial for their vascular engraftment and function.  相似文献   

11.
12.
13.
Remarkable progress has been made in islet transplantation over a span of 40 years. Once just an experimental curiosity in mice, this therapy has moved forward, and can now provide robust therapy for highly selected patients with type 1 diabetes (T1D), refractory to stabilization by other means. This progress could not have occurred without extensive dynamic international collaboration. Currently, 1,085 patients have undergone islet transplantation at 40 international sites since the Edmonton Protocol was reported in 2000 (752 allografts, 333 autografts), according to the Collaborative Islet Transplant Registry. The long-term results of islet transplantation in selected centers now match registry data of pancreas-alone transplantation, with 6 sites reporting five-year insulin independence rates ≥50%. Islet transplantation has been criticized for the use of multiple donor pancreas organs, but progress has also occurred in single-donor success, with 10 sites reporting increased single-donor engraftment. The next wave of innovative clinical trial interventions will address instant blood-mediated inflammatory reaction (IBMIR), apoptosis, and inflammation, and will translate into further marked improvements in single-donor success. Effective control of auto- and alloimmunity is the key to long-term islet function, and high-resolution cellular and antibody-based assays will add considerable precision to this process. Advances in immunosuppression, with new antibody-based targeting of costimulatory blockade and other T-B cellular signaling, will have further profound impact on the safety record of immunotherapy. Clinical trials will move forward shortly to test out new human stem cell derived islets, and in parallel trials will move forward, testing pig islets for compatibility in patients. Induction of immunological tolerance to self-islet antigens and to allografts is a difficult challenge, but potentially within our grasp.  相似文献   

14.
Karlsson E  Sandler S 《Diabetologia》2001,44(8):1015-1018
Aims/hypothesis: We aimed to clarify the role of islet amyloid polypeptide, which is expressed at early embryonic onset, in the proliferation and cell death of neonatal islet cells. Methods: Fetal islets were prepared from pregnant rats on gestational day 21. Islets were cultured in RPMI 1640 (11.1 mmol/l glucose) + 10 % fetal calf serum (FCS) for 48 h, followed by a 24-h culture period in RPMI 1640 (5.6 mmol/l glucose) + 1 % FCS. The islets were then exposed to rat islet amyloid polypeptide (1–10 nmol/l) for 24 h. Results: Iselt amyloid polypeptide increased islet DNA synthesis (dpm/μg of DNA · 6 h) (control 1 % FCS: 3634 ± 662; 1 nmol/l 6347 ± 1535; 10 nmol/l 5157 ± 769; p < 0.05 islet amyloid polypeptide vs control). In accordance with this, a doubling of the autoradiographic labelling index was seen in immunocytochemically stained islet beta cells after exposure to 1 and 10 nmol/l islet amyloid polypeptide. Islet amyloid polypeptide at 1 nmol/l increased the islet insulin content (202 ± 25 % of control; p < 0.01) and the 24-h medium insulin concentration (1 nmol/l islet amyloid polypeptide: 143 ± 19 % of control; p < 0.05) but at 10 nmol/l islet amyloid polypeptide these changes did not attain statistical difference. Islet amyloid polypeptide did not have any marked effect on the islet cell death frequency, suggesting that islet amyloid polypeptide is a more potent promoter of proliferation than of programmed cell death. Conclusion/interpretation: Our data indicate islet amyloid polypeptide is a potential regulator of proliferation in neonatal pancreatic islet cells, an effect which can partly be attributed to the proliferation of beta cells. [Diabetologia (2001) 44: 1015–1018] Received: 14 March 2001 and in revised form: 7 May 2001  相似文献   

15.
Aims/hypothesis Rapamycin, part of the immunosuppressive regimen of the Edmonton protocol, has been shown to inhibit vascular endothelial growth factor (VEGF) production and VEGF-mediated survival signalling in tumour cell lines. This study investigates the survival-promoting activities of VEGF in human islets and the effects of rapamycin on islet viability. Materials and methods Levels of VEGF and its receptors in isolated human islets and whole pancreas was determined by western blotting and immunostaining. Islet viability following VEGF or immunosuppressive drug treatment was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Islet VEGF release was measured by ELISA. Mouse islets infected with an adenovirus expressing the gene for VEGF were transplanted syngeneically into streptozotocin-induced diabetic mice, with blood glucose levels measured three times per week. Results Isolated human islets produced multiple isoforms of VEGF and VEGF receptors 1, 2 and 3 and the coreceptor neuropilin 1. Exogenous VEGF (10 ng/ml) prevented human islet death induced by serum starvation, which suggests that VEGF can act as a survival factor for human islets. Transplantation of mouse islets infected with a VEGF-expressing adenovirus in a syngeneic model, improved glycaemic control at day 1 post-transplantation (p < 0.05). Rapamycin at 10 and 100 ng/ml significantly reduced islet VEGF release (by 37 ± 4% and 43 ± 6%, respectively; p < 0.05) and at 100 ng/ml reduced islet viability (by 36 ± 9%) and insulin release (by 47 ± 7%, all vs vehicle-treated controls; p < 0.05). Tacrolimus had no effect on islet VEGF release or viability. Conclusions/interpretation Our data suggest that rapamycin may have deleterious effects on islet survival post-transplantation, both through a direct effect on islet viability and indirectly through blockade of VEGF-mediated revascularisation.  相似文献   

16.
A Ilieva  S Yuan  R Wang  W P Duguid  L Rosenberg 《Pancreas》1999,19(3):297-303
The purpose of this study was to examine the effect of incubation temperature on the structural integrity of the islet during culture. Islets were isolated from the pancreas of the Syrian golden hamster and cultured in a collagen gel for < or =12 days at 24 degrees C or 37 degrees C. At 24 degrees C, cells in the islet periphery died, leading to a complete disintegration of the mantle region in 37.4+/-5.6% of the islets. In comparison, at 37 degrees C, few islets exhibited mantle disintegration (p<0.001). Insulin immunoreactivity was distributed nonhomogeneously in islets at 24 degrees C, and the intensity of the staining, by using a semiquantitative scale (0-3), was +1. Islets cultured at 37 degrees C had a normal homogeneous distribution of insulin immunoreactivity with a score of +3. As the pancreas is a complex gland composed of different cell types, and cell-cell interactions are known to be important in the maintenance of cell survival, additional experiments were repeated to include the coculture of islets with duct epithelial cells. The proportion of islets that developed mantle disintegration was now reduced to 2.5+/-0.3% (p<0.001), comparable to that seen at 37 degrees C. Similar results were obtained for islets cultured in the presence of duct-conditioned medium (DCM). Together with the preservation of the islet mantle, islets cultured in the presence of duct epithelial cells or DCM had a normal homogeneous distribution of insulin immunoreactivity, with a staining intensity of +3. We conclude that incubation temperature has a profound effect on the structural integrity of islets, and that the detrimental effects of low-temperature culture can be mitigated by coculture of islets with secretory products derived from pancreatic ductal cells. These data provide evidence for a trophic relation between pancreatic islets and ductal epithelium.  相似文献   

17.
Aim: To study the protective effect of a fibrin scaffold toward embedded young porcine endocrine pancreatic islets from hydrogen peroxide within the context of islet encapsulation in transplantation. Methods: After isolation and in vitro maturation, groups of 200 young porcine islet equivalents (IEQ) were embedded in a 200 µL fibrin gel and exposed to 2 concentrations (10 and 100 µM) of hydrogen peroxide (H2O2) to investigate the ability of fibrin to protect islets against apoptotic stimuli. As a control, young porcine islets were seeded in tissue culture polystyrene (TCPS) well plates and exposed to the same H2O2 concentrations. Islet integrity, viability and function were then investigated. Results: Morphologically, the integrity of islets embedded in fibrin gels was better preserved compared with that of islets cultured in TCPS plates, when exposed to H2O2. Immunofluorescence staining showed that insulin and glucagon expression was higher in islets cultured in fibrin. Overall, H2O2 incubation led to decreased insulin and glucagon expression. A TUNEL assay revealed elevated numbers of apoptotic cells for islets cultured in TCPS plates when compared with those embedded in fibrin. Islets cultured in TCPS plates and exposed to H2O2 had diminished ability to secrete insulin in response to glucose stimulation, whereas islets embedded in fibrin maintained their glucose responsiveness. Insulin trapped in fibrin was extracted and quantified, revealing insulin in the extract. Conclusions/Interpretation: Fibrin has a protective effect on young porcine endocrine pancreatic islets exposed to hydrogen peroxide.  相似文献   

18.
Summary Human islets of Langerhans were transplanted to the subcapsular space of the kidneys of nude mice which were either normoglycaemic or made diabetic with alloxan. After 2 weeks, the transplants were processed for light and electron microscopical analyses. In all transplants, islet amyloid polypeptide (IAPP)-positive cells were found with highest frequency in normoglycaemic animals. IAPP-positive amyloid was seen in 16 out of 22 transplants (73%), either by polarisation microscopy after Congo red staining or by immune electron microscopy. At variance with previous findings of amyloid deposits exclusively in the extracellular space of islets of non-insulin-dependent diabetic patients, the grafted islets contained intracellular amyloid deposits as well. There was no clear difference in occurrence of amyloid between diabetic and non-diabetic animals. The present study indicates that human islets transplanted into nude mice very soon present IAPP-positive amyloid deposits. This technique may provide a valuable model for studies of the pathogenesis of islet amyloid and its impact on islet cell function.Abbreviations IAPP Islet amyloid polypeptide - NIDDM non-insulin-dependent diabetes mellitus  相似文献   

19.

Aims/hypothesis

Islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), is associated with beta cell death in type 2 diabetes as well as in cultured and transplanted human islets. Impaired prohIAPP processing due to beta cell dysfunction is implicated in hIAPP aggregation. We examined whether the glucagon-like peptide-1 receptor (GLP-1R) agonist exenatide can restore impaired prohIAPP processing and reduce hIAPP aggregation in cultured human islets and preserve beta cell function/mass during culture conditions used in clinical islet transplantation.

Methods

Isolated human islets (n?=?10 donors) were cultured with or without exenatide in normal or elevated glucose for 2 or 7 days. Beta cell apoptosis, proliferation, mass, function, cJUN N-terminal kinase (JNK) and protein kinase B (PKB) activation and amyloid formation were assessed. ProhIAPP, its intermediates and mature hIAPP were detected.

Results

Exenatide-treated islets had markedly lower JNK and caspase-3 activation and beta cell apoptosis, resulting in higher beta/alpha cell ratio and beta cell area than non-treated cultured islets. Exenatide improved beta cell function, manifested as higher insulin response to glucose and insulin content, compared with non-treated cultured islets. Phospho-PKB immunoreactivity was detectable in exenatide-treated but not untreated cultured islets. Islet culture caused impaired prohIAPP processing with decreased mature hIAPP and increased NH2-terminally unprocessed prohIAPP levels resulting in higher release of immature hIAPP. Exenatide restored prohIAPP processing and reduced hIAPP aggregation in cultured islets.

Conclusions/interpretation

Exenatide treatment enhances survival and function of cultured human islets and restores impaired prohIAPP processing in normal and elevated glucose conditions thereby reducing hIAPP aggregation. GLP-1R agonists may preserve beta cells in conditions associated with islet amyloid formation.  相似文献   

20.
Summary Islet cell cytoplasmic and cell surface antibodies along with other autogenic tissue antibodies were determined prospectively from the day of diagnosis of insulin-dependent diabetes in a group of children and adolescents. Prior to the initiation of insulin therapy 30 out of 33 were antibody-positive, 67% having islet cytoplasmic antibodies and 67% islet cell surface antibodies. Among 74 age- and sex-matched non-diabetic individuals 1% had islet cell cytoplasmic antibodies and 3% had islet cell surface antibodies. A prospective analysis in 17 patients showed a diminishing prevalence of islet cell antibodies with increasing duration of diabetes. Islet cell cytoplasmic or cell surface antibodies were found independently of each other or in combination and with various patterns of persistence. The results indicate a strong association of islet cell antibodies with the onset of insulin-dependent diabetes in childhood and adolescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号