首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Keep on rolling     
《Islets》2013,5(2):152-157
The setup of an islet isolation facility designed along the rules of good manufacturing practice (GMP) is a technically challenging, cost and time intensive process.1 Consequently, several institutions have decided to perform transplantation of islets isolated at another center with an already standing expertise. Such a solution includes the necessity to transport the isolated islets from the isolation to the transplantation facility. In spite of its importance, an ideal solution for the transport of the isolated human islets has still not been established.

Here, we present an islet transport device suited to transport human islet cells under reproducible conditions and minimized cell stress. The transport simulation of the human islets was performed in a transfused “rotary transport system for islets” termed “ROTi.” Besides measuring standard metabolic (LDH, lactate, glucose) and physical parameters (pH, dissolved oxygen and temperature), we used five different live stains in combination with real time live confocal microscopy to document islet quality parameters. As live stains we added tetramethylrhodamine methyl ester, cell permeant acetoxymethylester, propidium iodide, annexin-fitc and fluorescent wheat germ agglutinin, and assessed mitochondrial membrane potentials, calcium levels, cell death, apoptosis or cell morphology, respectively.

We compared the viability of human islets after 24 h incubation in the ROTi device to an incubation simulating “standard” shipment of islets in 50 ml tubes. All cell viability parameters studied (mitochondrial membrane potentials, calcium content, apoptosis, cell death as well as cell morphology) documented a significantly better cell viability in the ROTi fraction compared with the simulated “standard” shipment fraction. Besides maintaining islet cell viability, the ROTi bears the advantage of a better reproducibility of islet transport conditions.  相似文献   

2.
Therapeutic strategies for transplantation of pancreatic islet cells are urgently needed to expand β-cell mass by stimulating islet cell proliferation and/or prolonging islet cell survival. Control of the islets by different growth factors provides a potential venue for augmenting β-cell mass. In the present study, we show the expression of the biologically active splice variant-1 (SV-1) of growth hormone-releasing hormone (GHRH) receptor in rat insulinoma (INS-1) cells as well as in rat and human pancreatic islets. In studies in vitro of INS-1 cells, the GHRH agonist JI-36 caused a significant increase in cell proliferation and a reduction of cell apoptosis. JI-36 increased islet size and glucose-stimulated insulin secretion in isolated rat islets after 48–72 h. At the ultrastructural level, INS-1 cells treated with agonist JI-36 revealed a metabolic active stimulation state with increased cytoplasm. Coincubation with the GHRH antagonist MIA-602 reversed the actions of the agonist JI-36, indicating the specificity of this agonist. In vivo, the function of pancreatic islets was assessed by transplantation of rat islets under the kidney capsule of streptozotocin-induced diabetic non-obese diabetic-severe combined immunodeficiency (NOD-SCID) mice. Islets treated with GHRH agonist JI-36 were able to achieve normoglycemia earlier and more consistently than untreated islets. Furthermore, in contrast to diabetic animals transplanted with untreated islets, insulin response to an i.p. glucose tolerance test (IPGTT) in animals receiving islets treated with agonist Jl-36 was comparable to that of normal healthy mice. In conclusion, our study provides evidence that agonists of GHRH represent a promising pharmacological therapy aimed at promoting islet graft growth and proliferation in diabetic patients.  相似文献   

3.
Insulin resistance is associated with a compensatory islet hyperactivity to sustain adequate insulin biosynthesis and secretion to maintain near euglycemia. Both glucose and insulin are involved in regulating proteins required for insulin synthesis and secretion within the islet and islet hypertrophy. We have determined that glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is present within the secretory granules of islet beta cells. To determine if GPI-PLD is regulated in islet beta cells, we examined the effect of glucose and insulin on GPI-PLD expression in rat islets and murine insulinoma cell lines. Glucose (16.7 mmol/L) increased cellular GPI-PLD activity and mRNA levels 2- to 7-fold in isolated rat islets and betaTC3 and betaTC6-F7 cells. Insulin (10(-7) mol/L) also increased GPI-PLD mRNA levels in rat islets and betaTC6-F7 cells 2- to 4-fold commensurate with an increase in GPI-PLD biosynthesis. To determine if islet GPI-PLD expression is increased in vivo under conditions of islet hyperactivity, we compared GPI-PLD mRNA levels in islets and liver from ob/ob mice and their lean littermates. Islet GPI-PLD mRNA was increased 5-fold while liver mRNA and serum GPI-PLD levels were reduced 30% in ob/ob mice compared with lean littermate controls. These results suggest that glucose and insulin regulate GPI-PLD mRNA levels in isolated islets and beta-cell lines. These regulators may also account for the increased expression of GPI-PLD mRNA in islets from ob/ob mice, a model of insulin resistance and islet hyperactivity.  相似文献   

4.
Aims/hypothesis Glycogen synthase kinase-3 (GSK3) has been implicated in the pathophysiology of several prevalent diseases, including diabetes. However, despite recent progress in our understanding of the role of GSK3 in the regulation of glucose metabolism in peripheral tissues, the involvement of GSK3 in islet beta cell growth and function in vivo is unknown. We therefore sought to determine whether over-activation of GSK3β would lead to alterations in islet beta cell mass and/or function. Methods Transgenic mice overexpressing a constitutively active form of human GSK3β (S9A) under the control of the rat insulin promoter (RIP-GSK3βCA) were created. Studies using mouse insulinoma cells (MIN6) were conducted to investigate the regulation of GSK3β activity and its impact on pancreas/duodenum homeobox protein-1 (PDX-1) levels. Results We demonstrated that phosphorylation of GSK3β was decreased, indicating increased GSK3β activity in two animal models of diabetes, Lepr −/− mice and Ins2 Akita/+ mice. In MIN6 cells, the activity of GSK3β was regulated by glucose, in a fashion largely dependent on phosphatidylinositol 3-kinase. RIP-GSK3βCA transgenic mice showed impaired glucose tolerance after 5 months of age. Histological studies revealed that transgenic mice had decreased beta cell mass and decreased beta cell proliferation, with a 50% decrease (p < 0.05) in the level of PDX-1. Conclusions/interpretation We showed direct evidence that GSK3β activity is associated with beta cell failure in diabetic mouse models and that its overactivation resulted in decreased pancreatic beta cell proliferation and mass. GSK3 modulates PDX-1 stability in both cultured insulinoma cells and islets in vivo. These results may ultimately facilitate the development of potential therapeutic interventions targeting type 2 diabetes and/or islet transplantation.  相似文献   

5.

Aims/hypothesis

Type 2 diabetes mellitus is associated with reduced incretin effects. Although previous studies have shown that hyperglycaemia contributes to impaired incretin responses in beta cells, it is largely unknown how hyperlipidaemia, another feature of type 2 diabetes, contributes to impaired glucagon-like peptide 1 (GLP-1) response. Here, we investigated the effects of NEFA on incretin receptor signalling and examined the glucose-lowering efficacy of incretin-based drugs in combination with the lipid-lowering agent bezafibrate.

Methods

We used db/db mice to examine the in vivo efficacy of the treatment. Beta cell lines and mouse islets were used to examine GLP-1 and glucose-dependent insulinotropic peptide receptor signalling.

Results

Palmitate treatment decreased Glp1r expression in rodent insulinoma cell lines and isolated islets. This was associated with impairment of the following: GLP-1-stimulated cAMP production, phosphorylation of cAMP-responsive elements binding protein (CREB) and insulin secretion. In insulinoma cell lines, the expression of exogenous Glp1r restored cAMP production and the phosphorylation of CREB. Treatment with bezafibrate in combination with des-fluoro-sitagliptin or exendin-4 led to more robust glycaemic control, associated with improved islet morphology and beta cell mass in db/db mice.

Conclusions/interpretation

Elevated NEFA contributes to impaired responsiveness to GLP-1, partially through downregulation of GLP-1 receptor signalling. Improvements in lipid control in mouse models of obesity and diabetes increase the efficacy of incretin-based therapy.  相似文献   

6.
7.
《Islets》2013,5(1):32-39
Culture of islets prior to transplantation needs to be revisited for maintaining functional islet capacity. This study was conducted to compare cold UW (University of Wisconsin) preservation with conventional culture based on insulin secretory capacity in vitro and in vivo. Islets isolated from Wistar rats were either cultured for 24 h at 37°C in RPMI1640 medium or DMEM containing various concentrations of glucose or preserved for the same period in UW solution or in DMEM solution at 4°C. The islet yield in UW group, but not in other groups, was maintained as comparable with that of fresh islets. Insulin secretory capacity in response to glucose was maintained only in the islets of UW group, but not in other groups. SCID mice given 300 IEQ islets of UW group showed gradual restoration of normoglycemia as found in the mice given freshly isolated islets. Meanwhile, those mice given cultured islets for 24 h at 37°C in RPMI1640 medium showed rapid decrease of blood glucose levels on day 1 followed by relatively elevated levels on day 2, suggesting unstable insulin secretory capacity of islets.

Morphological staining with anti-HMGB1 (high mobility group B1) antibody revealed central damage of islets in all culture groups regardless of glucose concentration and in islets of cold DMEM group, whereas those in the UW group were quite intact. These results suggest that cold preservation in UW solution is simple and beneficial in protecting islets morphologically and functionally before transplantation.  相似文献   

8.
Treatment of type 1 diabetes by islet transplantation is currently limited by loss of functional beta-cell mass after transplantation. We investigated here whether adenovirus-mediated changes in AMP-activated protein kinase (AMPK) activity, previously shown to affect insulin secretion in vitro, might affect islet graft function in vivo. In isolated mouse and rat islets, insulin secretion stimulated by 17 (vs 3) mmol/l glucose was inhibited by 36.5% (P<0.01) and 43% (P<0.02) respectively after over-expression of constitutively-active AMPK- (AMPK CA) versus null (eGFP-expressing) viruses, and glucose oxidation was decreased by 38% (P<0.05) and 26.6% (P<0.05) respectively. Increases in apoptotic index (terminal deoxynucleotide transferase-mediated deoxyuridine trisphosphate biotin nick end-labelling) (TUNEL)) were also observed in AMPK CA- (22.8 +/- 3.6% TUNEL-positive cells, P<0.001), but not AMPK DN- (2.72 +/- 3.9%, positive cells, P=0.05) infected islets, versus null adenovirus-treated islets (0.68 +/- 0.36% positive cells). Correspondingly, transplantation of islets expressing AMPK CA into streptozotocin-diabetic C57 BL/6 mice improved glycaemic control less effectively than transplantation with either null (P<0.02) or AMPK-DN-infected (P<0.01) islets. We conclude that activation of AMPK inhibits beta-cell function in vivo and may represent a target for therapeutic intervention during islet transplantation.  相似文献   

9.
10.
Summary Two monoclonal Beta-cell surface antibodies M10H6 und K14D10 were obtained by fusion of spleen cells of Balb/c mice with the myeloma cell line P30. The monoclonal antibody M10H6 was induced by immunization with rat insulinoma cells finally boostered with disintegrated rat islets, whereas the K14D10 was generated after immunization with porcine proinsulin. Both monoclonals belong to the IgG2A isotype and were screened with insulin-producing rat insulinoma cells by an indirect immunofluorescence test as well as by a cellular enzyme linked immunosorbent assay. In addition to the cell surface binding on living Beta cells the monoclonals react with islets on cryostat sections of rat pancreas. The anti-islet cytotoxic potential of these monoclonals was measured by 51Chromium-release in the presence of complement or Fc-receptor bearing leucocytes using 51Chromium-labelled rat islet cells as target. Both antibody secreting hybridomas were propagated in syngeneic mice resulting in high levels of islet cell surface antibodies in ascites and sera from the recipient. High anti-islet cytotoxicity was mediated by ascites fluid, but no mouse developed hyperglycaemia. Furthermore, the repeated injections of the monoclonals into rats did not exert a diabetogenic action and failed to reduce the pancreatic insulin content although the attraction of the K14D10 to the pancreatic islets in vivo could be demonstrated. We conclude that islet cell surface antibody-mediated Beta-cell lysis in vitro may not be relevant to Beta-cell destruction in vivo.  相似文献   

11.
《Islets》2013,5(1):18-23
Clinical pancreatic islet transplantation has great promise as a treatment for type 1 diabetes but despite recent advances, it is still limited by the need for lifelong immunosuppression, restricted availability of donor islets, and uncertainty regarding long-term graft survival. Using a syngeneic, suboptimal islet transplantation model, we asked whether adenoviral overexpression of an anti-apoptotic protein, the X-linked inhibitor of apoptosis protein (XIAP) would protect transplanted islet cells from death and reduce the number of islets required for successful transplantation. Transplantation of 100 XIAP-expressing islets into the kidney capsule of syngeneic Balb/c mice restored euglycemia in 86% of recipients, where transplantation of 100 islets transduced with a control adenovirus expressing LacZ restored euglycemia in only 27% of recipients. Analysis of islet grafts by insulin/TUNEL double immunostaining revealed fewer apoptotic beta-cells in recipients of XIAP- compared with LacZ-expressing grafts (0.8±0.5 vs. 2.4±0.8 double-positive cells/graft), suggesting that XIAP enhances graft success by inhibiting β-cell apoptosis in the immediate post-transplant period. In summary, XIAP overexpression inhibits beta cell apoptosis in syngeneic islet transplants, thereby reducing the number of islets and decreasing the number of days required to restore euglycemia. These data raise the possibility that ex vivo XIAP gene transfer in islets prior to transplantation has the potential to increase the number of donor islets available for transplantation and may enhance graft function and long-term transplant success.  相似文献   

12.
《Islets》2013,5(6):381-388
The circadian clock has been shown to regulate metabolic homeostasis. Mice with a deletion of Bmal1, a key component of the core molecular clock, develop hyperglycemia and hypoinsulinemia suggesting β-cell dysfunction. However, the underlying mechanisms are not fully known. In this study, we investigated the mechanisms underlying the regulation of β-cell function by Bmal1. We studied β-cell function in global Bmal1-/- mice, in vivo and in isolated islets ex vivo, as well as in rat insulinoma cell lines with shRNA-mediated Bmal1 knockdown. Global Bmal1-/- mice develop diabetes secondary to a significant impairment in glucose-stimulated insulin secretion (GSIS). There is a blunting of GSIS in both isolated Bmal1-/- islets and in Bmal1 knockdown cells, as compared with controls, suggesting that this is secondary to a loss of cell-autonomous effect of Bmal1. In contrast to previous studies, in these Bmal1-/- mice on a C57Bl/6 background, the loss of stimulated insulin secretion, interestingly, is with glucose but not to other depolarizing secretagogues, suggesting that events downstream of membrane depolarization are largely normal in Bmal1-/- islets. This defect in GSIS occurs as a result of increased mitochondrial uncoupling with consequent impairment of glucose-induced mitochondrial potential generation and ATP synthesis, due to an upregulation of Ucp2. Inhibition of Ucp2 in isolated islets leads to a rescue of the glucose-induced ATP production and insulin secretion in Bmal1-/- islets. Thus, Bmal1 regulates mitochondrial energy metabolism to maintain normal GSIS and its disruption leads to diabetes due to a loss of GSIS.  相似文献   

13.
《Islets》2013,5(5):259-266
Islet transplantation is a cell replacement therapy to improve glycometabolic control in type 1 diabetic patients. Establishing methods to monitor engrafted islets, as well as the islet preparation, is important when performing islet transplantation. Since current imaging techniques are still not available to directly detect transplanted islets, we propose a novel method to visualize transplanted islets using high-frequency ultrasound (HF-US), and to evaluate the correlation between these US findings and metabolic parameters.

We transplanted syngeneic (BALB/c mice) and xenogeneic (SD rats) islets into the renal subcapsular space of diabetic mice. The recipient mice were examined by HF-US until post-operative day (POD) 28 and, while syngeneic islets could be detected by HF-US throughout the observational period, the xenogeneic islets had vanished by POD 28. The islet volume calculated by HF-US was correlated with the number of transplanted islets (R2 = 0.31, p = 0.0003) and the metabolic function of islets (blood glucose: R2 = 0.15, p < 0.0001, serum insulin: R2 = 0.22, p < 0.0001).

In conclusion, HF-US may be a useful imaging modality for visualizing the islet mass in renal subcapsular transplantation models. It may also be an available modality for clinical settings in the future.  相似文献   

14.
Aims/hypothesis The pathogenesis of diabetes and the success of islet transplantation depend on the control of pancreatic beta cell fate. The Notch signalling pathway is essential for normal prenatal pancreatic development, but the presence and function of this gene network in adult islets has received much less attention. Methods The presence of Notch signalling components was assessed in vitro using RT-PCR, western blotting and immunofluorescence. The functional consequences of altering Notch signalling on insulin secretion and programmed cell death were examined. Results Adult mouse islets, human islets and mouse insulinoma MIN6 cells possess key components of the Notch pathway. RT-PCR, western blotting and immunofluorescence indicated that the Notch target gene, neurogenin3 (Ngn3, also known as Neurog3), is also present in adult islet cells. Inhibiting Notch signalling with N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester (DAPT) increased Ngn3 mRNA expression and protein levels in adult islets. The activated notch homologue 1 (NOTCH1) protein level was decreased upon serum withdrawal, as well as after treatment with a phosphatidylinositol 3-kinase inhibitor, or hydroxy-2-naphthalenylmethylphosphonic acid, an insulin receptor inhibitor. While islets cultured in DAPT did not exhibit defects in insulin secretion, indicating that differentiation is unaltered, inhibiting gamma-secretase-dependent Notch activation led to a dose-dependent increase in caspase-3-dependent apoptosis in both MIN6 cells and human islets. Conversely, gamma-secretase overactivity resulted in an accumulation of cleaved NOTCH1 and protection from apoptosis. Conclusions/interpretation Together these results show that the Notch/Ngn3 signalling network is intact and functional in adult islets. This pathway represents an attractive target for modulating beta cell fate in diabetes, islet transplantation and efforts to derive beta cell surrogates in vitro.  相似文献   

15.
Islet transplantation therapy would be applicable to a wider range of diabetic patients if donor islet acceptance and protection were possible without systemic immunosuppression of the recipient. To this aim, gene transfer to isolated donor islets ex vivo is one method that has shown promise. This study examines the combined effect of selected immunomodulatory and anti-inflammatory genes known to extend the functional viability of pancreatic islet grafts in an autoimmune system. These genes, indoleamine 2,3-dioxygenase (IDO), manganese superoxide dismutase (MnSOD), and interleukin (IL)-1 receptor antagonist protein (IRAP), were transferred to isolated NOD donor islets ex vivo then transplanted to NODscid recipients and evaluated in vivo after diabetogenic T-cell challenge. The length of time the recipient remained euglycemic was used to measure the ability of the transgenes to protect the graft from autoimmune destruction. Although the results of these cotransfections gave little evidence of a synergistic relationship, they were useful to show that gene combinations can be used to more efficiently protect islet grafts from diabetogenic T cells.  相似文献   

16.
Metallothionein induction in islets of Langerhans and insulinoma cells   总被引:1,自引:0,他引:1  
Isolated pancreatic islets from rat and mouse and the insulinoma cell lines, betaHC9 and RINm5F, were investigated to determine the regulation of metallothionein (MT). Dexamethasone (DEX) increased rat and mouse islet and insulinoma cell MT levels in a time- and concentration-dependent manner. Rat islet MT expression was increased with interleukin-1beta (IL-1beta), but not tumor necrosis factor-alpha (TNF). However, MT induction by IL-1beta and TNF was synergistic with DEX in rat islets and insulinoma cells. Mouse islet MT failed to respond to IL-1beta alone, although IL-1beta and TNF were synergistic. IL-1beta and TNF did not synergize with DEX for mouse islet MT induction. Zinc sulfate induced MT in rat islets but not mouse islets. MT messenger RNA levels were significantly increased in rat islets in response to DEX and IL-1beta plus DEX. The inducible nitric oxide synthase inhibitors N(G)-monomethyl-L-arginine and aminoguanidine failed to inhibit IL-1beta induced MT levels in insulinoma cells, and the nitric oxide generating agent sodium nitroprusside failed to significantly affect MT levels. Phorbol dibutyrate increased MT levels in rat islets and betaHC9 cells, but phorbol dibutyrate and IL-1beta effects were not additive. Transgenic MT-null and wild-type mouse islets had similar insulin contents, but basal and glucose-stimulated insulin release from MT-null islets were significantly lower than in wild-type islets. Blood glucose levels in MT-null mice were, however, slightly lower than those in wild-type mice. Thus, MT induction in pancreatic islets and beta-cells is regulated by cytokines and DEX, and protein kinase C activation may play a role. However, regulation of MT induction in mouse and rat islets differs. MT also appears to modulate insulin release from pancreatic islets.  相似文献   

17.
Aims/hypothesis Activation of c-jun N-terminal kinase (JNK) has been described in islet isolation and engraftment, making JNK a key target in islet transplantation. The objective of this study was to investigate if JNK inhibition with a cell-permeable TAT peptide inhibitor (L-JNKI) protects functional beta cell mass in human islets and affects AKT and its substrates in islet cells. Methods The effect of L-JNKI (10 μmol/l) on islet count, mitochondrial membrane potential, glucose-stimulated insulin release and phosphorylation of both AKT and its substrates, as well as on reversal of diabetes in immunodeficient diabetic Nu/Nu mice was studied. Results In vitro, L-JNKI reduced the islet loss in culture and protected from cell death caused by acute cytokine exposure. In vivo, treatment of freshly isolated human islets and diabetic Nu/Nu mice recipients of such islets resulted in improved functional beta cell mass. We showed that L-JNKI activates AKT and downregulates glycogen synthase kinase-3 beta (GSK-3B) in human islets exposed to cytokines, while other AKT substrates were unaffected, suggesting that a specific AKT/GSK-3B regulation by L-JNKI may represent one of its mechanisms of cytoprotection. Conclusions/interpretation In conclusion, we have demonstrated that targeting JNK in human pancreatic islets results in improved functional beta cell mass and in the regulation of AKT/GSK3B activity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

18.
《Islets》2013,5(2):96-103
Ex vivo islet cell culture in the presence of stimulating factors prior to transplantation is considered a good strategy in contrast to the short conclusion of islets transplantation. Previously, we demonstrated how T3 can increase b-cell function via specific activation of Akt; therefore we hypothesized that thyroid hormone T3 can be considered a promising candidate for the in vitro expansion of islet cell mass. Rat pancreatic islets have been isolated by the collagenase digestion and cultured in the presence or not of the thyroid hormone T3 10-7 M. Islets viability has been evaluated by the use of two different dyes, one cell-permeable green fluorescent dye and propidium iodide, and by the analysis of core cell damage upcoming. Moreover, islets function has been evaluated by insulin secretion. The ability of b-cells to counteract apoptosis induced by streptozotocin has been analyzed by TUNEL assay. We demonstrated that treatment of primary cultures of rat pancreatic islets with T3 results in augmented β-cell vitality with an increase of their functional properties. In addition, a sensible reduction of the core cell damage has been observed in the T3 treated islets, suggesting the preservation of the β-cells integrity during the culture period. Nonetheless, the insulin secretion is sensibly augmented after T3 stimulation. The strong increment shown in Akt activation suggests the involvement of this pathway in the observed phenomena. In conclusion we indicate T3 as a good factor to improve ex vivo islets cell culture.  相似文献   

19.
IGF-II has been reported to decrease neonatal islet cell apoptosis and in vitro adult islet cell necrosis and apoptosis, but the usefulness of IGF-II in a transplantation setting is unknown. We evaluated the effect of in vitro IGF-II incubations on microencapsulated rat islet survival both in vitro and in minimal mass transplantations into diabetic mice. After 6 d in culture, fresh examinations, histology, fluorescence microscopy, sodium 3'-[1-(phenyl-amino-carbonyl)-3,4-tetrazolium]-bis (4-methoxy-6-nitro)-benzene sulfonic acid hydrate assay, and apoptosis studies all indicated that IGF-II significantly improves islet cell viability in a dose-dependent fashion. IGF-II 100 ng/ml and 500 ng/ml induced a 51% and 83% increase of viable islets (P = 0.052, P < 0.01). A 20%, 29%, and 33% reduction of the apoptotic index was observed with 50, 100, and 500 ng/ml incubations respectively (P < 0.05; P < 0.005; P < 0.001). Ten weeks after transplantation of 150 encapsulated rat islet equivalents incubated with IGF-II 500 ng/ml, 80% of diabetic mice were normoglycemic. Without IGF-II preincubation, only 8% of the recipients remained normoglycemic with the transplantation of 150 islets and 42% with 300 islets (P < 0.05). In conclusion, IGF-II promotes islet cell survival, and allows successful transplantation using a smaller number of islets.  相似文献   

20.
Cell lines derived from pancreatic islets   总被引:5,自引:0,他引:5  
The islets of Langerhans play a major role in control of metabolic fuel homeostasis. The rapid increase in incidence of diabetes worldwide has spurred renewed interest in islet cell biology. However, gaining a detailed understanding of islet function at a molecular and biochemical level has been complicated by the difficulty and high cost associated with isolation of pancreatic islets. Until recently, islet-derived cell lines have represented sub-optimal surrogates for primary cells for functional studies due to their undifferentiated or unstable phenotypic features. New approaches have resulted in isolation and characterization of rodent insulinoma cell lines that retain many key functional attributes of normal islets and have become useful tools in the study of islet cell biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号