首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The setup of an islet isolation facility designed along the rules of good manufacturing practice (GMP) is a technically challenging, cost and time intensive process. ( 1) Consequently, several institutions have decided to perform transplantation of islets isolated at another center with an already standing expertise. Such a solution includes the necessity to transport the isolated islets from the isolation to the transplantation facility. In spite of its importance, an ideal solution for the transport of the isolated human islets has still not been established. Here, we present an islet transport device suited to transport human islet cells under reproducible conditions and minimized cell stress. The transport simulation of the human islets was performed in a transfused "rotary transport system for islets" termed "ROTi." Besides measuring standard metabolic (LDH, lactate, glucose) and physical parameters (pH, dissolved oxygen and temperature), we used five different live stains in combination with real time live confocal microscopy to document islet quality parameters. As live stains we added tetramethylrhodamine methyl ester, cell permeant acetoxymethylester, propidium iodide, annexin-fitc and fluorescent wheat germ agglutinin, and assessed mitochondrial membrane potentials, calcium levels, cell death, apoptosis or cell morphology, respectively. We compared the viability of human islets after 24 h incubation in the ROTi device to an incubation simulating "standard" shipment of islets in 50 ml tubes. All cell viability parameters studied (mitochondrial membrane potentials, calcium content, apoptosis, cell death as well as cell morphology) documented a significantly better cell viability in the ROTi fraction compared with the simulated "standard" shipment fraction. Besides maintaining islet cell viability, the ROTi bears the advantage of a better reproducibility of islet transport conditions.  相似文献   

2.
《Islets》2013,5(3):116-121
The successful islet transplantation, for the treatment of type 1 diabetes, depends on the quantity and the quality of transplanted islets. Previously, it has reported that the significant loss of isolated islet mass could be prevented by sphingolipid metabolite, sphinogosine 1-phophate (S1P).

This study was performed to elucidate whether the beneficial effects of S1P maintaining isolated pancreatic islets ex vivo are mimicked by modulation of intracellular S1P. We tested the in vitro effect of various agents that modulate intracellular S1P levels in insulinoma cell lines and isolated islets to compare their anti-apoptotic effects with that of S1P.

As results, we discovered that 4-deoxypyridoxine (DOP), which inhibits the degradation of intracellular S1P by inhibiting S1P lyase (SPL) activity, minimized the chemically induced apoptosis of insulinoma cell lines as S1P did. Also, supplementation of DOP in the culture media protected the regression of isolated islets that have been maintained ex vivo at least for 18 h providing the evidence of increasing viability of isolated islets with DOP, which impaired SPL activity.

In conclusion, these results suggest that the application of SPL inhibitors could be considered as a supplement for the maintenance of viable islets isolated from donor sources in the process of islet transplantation.  相似文献   

3.
《Islets》2013,5(4):149-155
Pancreatic islet transplantation is an alternative treatment of insulin replacement therapy in diabetes mellitus, but the islets are exposed to many chemical, mechanical damages, and oxidative stress before transplantation. Carvacrol is a well-known essential oil for its antioxidant, antimicrobial, antifungal and antiinflammatory properties. The aim of this study was to investigate the possible protective effects of carvacrol against H2O2 induced cellular injury on isolated pancreas islets. After carvacrol (20, 40 and 80 mg/kg/day) treatment, the pancreas islets were isolated by enzyme digestion. The isolated islets were incubated within 0, 150 and 300 µM H2O2 containing medium at +4°C for 15 min. Then, the islets were examined with fluorescein diacetate and propidium iodide mixture stains for viability. A number of islets were stored for lipid peroxidation, protein oxidation and DNA fragmentation analysis. The cell viability ratio of Carvacrol 20 mg/kg/day group was increased in comparison to control and vehicle (DMSO) groups. Additionally, carvacrol application protected the cells from lipid peroxidation and protein oxidation induced by H2O2. H2O2 caused tissue injury and DNA fragmentation. There was only one DNA fragmentation band from islet cells of 20 mg/kg/day carvacrol treated group, however there were more than one bands from control and DMSO groups. In conclusion, carvacrol treatment ameliorates islet cell injury induced by H2O2. However, the dose of carvacrol is important and our results suggest that 20 mg/kg/day dose is more effective than doses of 40 or 80 mg/kg/day.  相似文献   

4.
Aims/hypothesis Rapamycin, part of the immunosuppressive regimen of the Edmonton protocol, has been shown to inhibit vascular endothelial growth factor (VEGF) production and VEGF-mediated survival signalling in tumour cell lines. This study investigates the survival-promoting activities of VEGF in human islets and the effects of rapamycin on islet viability. Materials and methods Levels of VEGF and its receptors in isolated human islets and whole pancreas was determined by western blotting and immunostaining. Islet viability following VEGF or immunosuppressive drug treatment was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Islet VEGF release was measured by ELISA. Mouse islets infected with an adenovirus expressing the gene for VEGF were transplanted syngeneically into streptozotocin-induced diabetic mice, with blood glucose levels measured three times per week. Results Isolated human islets produced multiple isoforms of VEGF and VEGF receptors 1, 2 and 3 and the coreceptor neuropilin 1. Exogenous VEGF (10 ng/ml) prevented human islet death induced by serum starvation, which suggests that VEGF can act as a survival factor for human islets. Transplantation of mouse islets infected with a VEGF-expressing adenovirus in a syngeneic model, improved glycaemic control at day 1 post-transplantation (p < 0.05). Rapamycin at 10 and 100 ng/ml significantly reduced islet VEGF release (by 37 ± 4% and 43 ± 6%, respectively; p < 0.05) and at 100 ng/ml reduced islet viability (by 36 ± 9%) and insulin release (by 47 ± 7%, all vs vehicle-treated controls; p < 0.05). Tacrolimus had no effect on islet VEGF release or viability. Conclusions/interpretation Our data suggest that rapamycin may have deleterious effects on islet survival post-transplantation, both through a direct effect on islet viability and indirectly through blockade of VEGF-mediated revascularisation.  相似文献   

5.
Pancreatic islet transplantation is an established treatment to restore insulin independence in type 1 diabetic patients. Its success rates have increased lately based on improvements in immunosuppressive therapies and on islet isolation and culture. It is known that the quality and quantity of viable transplanted islets are crucial for the achievement of insulin independence and some studies have shown that a significant number of islets are lost during culture time. Thus, in an effort to improve islet yield during culture period, researchers have tested a variety of additives in culture media as well as alternative culture devices, such as scaffolds. However, due to the use of different categories of additives or devices, it is difficult to draw a conclusion on the benefits of these strategies. Therefore, the aim of this systematic review was to summarize the results of studies that described the use of medium additives, scaffolds or extracellular matrix (ECM) components during human pancreatic islets culture. PubMed and Embase repositories were searched. Of 5083 articles retrieved, a total of 37 articles fulfilled the eligibility criteria and were included in the review. After data extraction, articles were grouped as follows: 1) “antiapoptotic/anti-inflammatory/antioxidant,” 2) “hormone,” 3) “sulphonylureas,” 4) “serum supplements,” and 5) “scaffolds or ECM components.” The effects of the reviewed additives, ECM or scaffolds on islet viability, apoptosis and function (glucose-stimulated insulin secretion - GSIS) were heterogeneous, making any major conclusion hard to sustain. Overall, some “antiapoptotic/anti-inflammatory/antioxidant” additives decreased apoptosis and improved GSIS. Moreover, islet culture with ECM components or scaffolds increased GSIS. More studies are needed to define the real impact of these strategies in improving islet transplantation outcomes.  相似文献   

6.
Advances in human islet transplant techniques are hampered by the inability to assess the quality of isolated islets. A flow culture system was developed to perifuse isolated pancreatic islets or cultured beta-cell lines in order to continuously and noninvasively assess cell function and viability with high kinetic resolution. Continuous perifusion of large amounts of islet tissue as isolated from human pancreata enables the use of noninvasive measurement technologies not previously applied to islets. To compare dynamic perifusion of tissue at high density with conventional static cultures, we measured glucose-stimulated insulin secretion and O2 consumption of large amounts of INS-1 cells (45-65 x 10(6)) to confirm that perifused cells were adequately supplied with oxygen and nutrients and remained functionally responsive. Isolated human and monkey islets that were perifused for 18 h showed robust biphasic insulin secretion in response to a step increase in glucose, demonstrating the ability to maintain islets and the high kinetic resolution of the system. As an example of the system's ability to resolve multiple indicator dilution experiments, the retention of [3H]-glibenclamide was kinetically distinguished from that of an extracellular marker. In summary, the perifusion system is able to maintain healthy cells, assess insulin secretion and metabolite fluxes such as oxygen consumption and lactate production, and characterize the kinetics of the interaction between radiopharmaceuticals and islet cells. The ability to systematically assess the metabolic and functional viability of islets will facilitate the optimization of islet isolation procedures, islet transplantation studies, and islet storage methodologies.  相似文献   

7.
Background: We previously reported the utility of engineered cell sheets composed of human islets and supporting cells in vitro and in vivo. It is unclear which type of supporting cell is most suitable for constructing cell sheets with human islets. The present study aimed to compare human fibroblasts, bone marrow–derived mesenchymal stem cells (BM–MSCs), and adipose–derived mesenchymal stem cells (ADSCs) as a supporting source for cell sheets.

Methods: Engineered cell sheets were fabricated with human islets using human fibroblasts, BM–MSCs, or ADSCs as supporting cells. The islet viability, recovery rate, glucose–stimulated insulin release (determined by the stimulation index), and cytokine secretion (TGF–β1, IL–6, and VEGF) of groups—including an islet–alone group as a control-were compared.

Results: All three sheet groups consistently exhibited higher viability, recovery rate, and stimulation index values than the islet-alone group. The ADSC group showed the highest viability and recovery rate among the three sheet groups. There were no discernible differences in the stimulation index values of the groups. The fibroblast group exhibited significantly higher TGF–β1 values in comparison to the other groups. The IL–6 level of the ADSC group was more than five times higher than that of the other groups. The ADSC group showed the VEGF level; however, it did not differ from that of the BM–MSC group to a statistically significant extent.

Conclusion: Engineered cell sheets composed of islets and supporting cells had a cytoprotective effect on islets. These results suggest that individual cell types could be a more attractive source for crafting engineered cell sheets in comparison to islets alone.  相似文献   


8.
Aims/hypothesis  Loss of the trophic support provided by surrounding non-endocrine pancreatic cell populations underlies the decline in beta cell mass and insulin secretory function observed in human islets following isolation and culture. This study sought to determine whether restoration of regulatory influences mediated by ductal epithelial cells promotes sustained beta cell function in vitro. Methods  Human islets were isolated according to existing protocols. Ductal epithelial cells were harvested from the exocrine tissue remaining after islet isolation, expanded in monolayer culture and characterised using fluorescence immunocytochemistry. The two cell types were co-cultured under conventional static culture conditions or within a rotational cell culture system. The effect of co-culture on islet structural integrity, beta cell mass and insulin secretory capacity was observed for 10 days following isolation. Results  Human islets maintained under conventional culture conditions exhibited a characteristic loss in structural integrity and functional viability as indicated by a diminution of glucose responsiveness. By contrast, co-culture of islets with ductal epithelial cells led to preserved islet morphology and sustained beta cell function, most evident in co-cultures held within the rotational cell culture system, which showed a significantly (p < 0.05) greater insulin secretory response to elevated glucose compared with control islets. Similarly, insulin/protein ratio data suggested that the presence of ductal epithelial cells is beneficial for the maintenance of beta cell mass. Conclusions/interpretation  The data indicate a supportive role for ductal epithelial cells in islet viability. Further characterisation of the regulatory influences may lead to novel strategies to improve long-term beta cell function both in vitro and following islet transplantation.  相似文献   

9.
《Islets》2013,5(3):224-231
Transplantation of pancreatic islets isolated from organ donors constitutes a promising alternative treatment for type1 Diabetes, however, it is severely limited by the shortage of organ donors. Ex-vivo islet cell cultures appear as an attractive but still elusive approach for curing type 1 Diabetes. It has recently been shown that, even in the absence of fibrotic overgrowth, several factors, such as insufficient nutrition of the islet core, represent a major barrier for long-term survival of islets grafts. The use of immobilized dispersed cells may contribute to solve this problem due to conceivably easier nutritional and oxygen support to the cells. Therefore, we set out to establish an immobilization method for primary cultures of human pancreatic cells by adsorption onto microcarriers (MCs).

Dispersed human islets cells were seeded onto Cytodex1 microcarriers and cultured in bioreactors for up to eight days. The cell number increased and islet cells maintained their insulin secretion levels throughout the time period studied. Moreover, the cells also presented a tendency to cluster upon five days culturing. Therefore, this procedure represents a useful tool for controlled studies on islet cells physiology and, also, for biotechnological applications.  相似文献   

10.
Islet transplantation is a highly effective treatment for stabilizing glycemic control for select patients with type-1 diabetes. Despite improvements to clinical transplantation, single-donor transplant success has been hard to achieve routinely, necessitating increasing demands on viable organ availability. Donation after circulatory death (DCD) may be an alternative option to increase organ availability however, these organs tend to be more compromised. The use of metalloporphyrin anti-inflammatory and antioxidant (MnP) compounds previously demonstrated improved in vivo islet function in preclinical islet transplantation. However, the administration of MnP (BMX-001) in a DCD islet isolation and transplantation model has yet to be established. In this study, murine donors were subjected to a 15-min warm ischemic (WI) period prior to isolation and culture with or without MnP. Subsequent to one-hour culture, islets were assessed for in vitro viability and in vivo function. A 15-minute WI period significantly reduced islet yield, regardless of MnP-treatment relative to yields from standard isolation. MnP-treated islets did not improve islet viability compared to DCD islets alone. MnP-treatment did significantly reduce the presence of extracellular reactive oxygen species (ROS) (p < 0 .05). Marginal, syngeneic islets (200 islets) transplanted under the renal capsule exhibited similar in vivo outcomes regardless of WI or MnP-treatment. DCD islet grafts harvested 7 d post-transplant exhibited sustained TNF-α and IL-10, while MnP-treated islet-bearing grafts demonstrated reduced IL-10 levels. Taken together, 15-minute WI in murine islet isolation significantly impairs islet yield. DCD islets do indeed demonstrate in vivo function, though MnP therapy was unable to improve viability and engraftment outcomes.  相似文献   

11.
We tested whether exposure of β cells at reduced glucose leads to mitochondrial adaptions and whether such adaptions modulate effects of hypoxia. Rat islets, human islets and INS-1 832/13 cells were pre-cultured short term at half standard glucose concentrations (5.5 mM for rat islets and cells, 2.75 mM for human islets) without overtly negative effects on subsequently measured function (insulin secretion and cellular insulin contents) or on viability. Culture at half standard glucose upregulated complex I and tended to upregulate complex II in islets and INS-1 cells alike. An increased release of lactate dehydrogenase that followed exposure to hypoxia was attenuated in rat islets which had been pre-cultured at half standard glucose. In INS-1 cells exposure to half standard glucose attenuated hypoxia-induced effects on several viability parameters (MTT, cell number and incremental apoptotic DNA). Thus culture at reduced glucose of pancreatic islets and clonal β cells leads to mitochondrial adaptions which possibly lessen the negative impact of hypoxia on β cell viability. These findings appear relevant in the search for optimization of pre-transplant conditions in a clinical setting.  相似文献   

12.
The digestion of pancreatic tissue with collagenase is an essential part of the islet isolation procedure. However, the process exposes islets to various types of harmful factors, including collagenase contaminants, enzymes released from the acinar cells, warm ischemia, and mechanical agitation. Nitrogen oxide production and cytokine release may also contribute to islet cell damage. Protection of islets from such damage would improve the islet yield, survival, and function. Beraprost sodium (BPS) is a prostaglandin I2 analogue, is stable in aqueous solution, and has a cytoprotective effect on various types of cells. BPS has been shown to improve the yield and function of cryopreserved and/or cultured islets. These findings prompted us to examine its cytoprotective effect on islets during the islet isolation process. Canine islets were isolated by means of a two-step digestion method and purified on Euro-Ficoll density gradient solutions (the procedure used for human islets). BPS at a concentration of 100 nM was added to the collagenase solution. After purification, the islet yield was 434,561 +/- 35.691 islet number expressed as 150 microm equivalent size (IEQ)/pancreas or 8,799 +/- 345 IEQ/g of pancreas in the BPS group and 349,987 +/- 52,887 IEQ/pancreas or 7,998 +/-1610 IEQ/g of pancreas in the control group (n = 8, each). The percent viability was 88.5 +/- 0.7% in the BPS group and 82.0 +/-0.9% in the control group (P < 0.01). Therefore, the recovery of viable islets (calculated by islet number x % viability) was 384,586 +/- 46,804 IEQ/pancreas (7,743 IEQ/g) in the BPS group and 286,989 +/- 43,367 IEQ/pancreas (6,558 IEQ/g) in the control group (P < 0.02). After culture, significantly higher numbers of islets were also recovered in the BPS group than in the control group. The islet insulin content was significantly higher in the BPS group than controls (237.8 +/- 38.5 versus 92.3 +/- 25.6 microU/IEQ; P < 0.02), although islets of both groups responded with high stimulation indices (>6). These results indicate that the addition of BPS to the collagenase solution increases the recovery of viable islets, and improves beta cell function.  相似文献   

13.
Islet equivalent (IE), the standard estimate of isolated islet volume, is an essential measure to determine the amount of transplanted islet tissue in the clinic and is used in research laboratories to normalize results, yet it is based on the false assumption that all islets are spherical. Here, we developed and tested a new easy-to-use method to quantify islet volume with greater accuracy. Isolated rat islets were dissociated into single cells, and the total cell number per islet was determined by using computer-assisted cytometry. Based on the cell number per islet, we created a regression model to convert islet diameter to cell number with a high R 2 value (0.8) and good validity and reliability with the same model applicable to young and old rats and males or females. Conventional IE measurements overestimated the tissue volume of islets. To compare results obtained using IE or our new method, we compared Glut2 protein levels determined by Western Blot and proinsulin content via ELISA between small (diameter ≤ 100 μm) and large (diameter ≥ 200 μm) islets. When normalized by IE, large islets showed significantly lower Glut2 level and proinsulin content. However, when normalized by cell number, large and small islets had no difference in Glut2 levels, but large islets contained more proinsulin. In conclusion, normalizing islet volume by IE overestimated the tissue volume, which may lead to erroneous results. Normalizing by cell number is a more accurate method to quantify tissue amounts used in islet transplantation and research.  相似文献   

14.
The diminution of glucose responsiveness in isolated human islets maintained under conventional static culture (CSC) conditions represents a major limitation for the long-term storage of islet tissue and precludes extensive study of beta (beta)-cell biology. In the present investigation, we examined the effect of culturing primary human islets in a rotational cell culture system (RCCS) to determine its' ability to sustain both the structural integrity and functional viability of these fragile cell constructs. Over a 10-day culture period both structural integrity and glucose-stimulated insulin release (GSIR) were preserved in islets maintained within the RCCS whilst those held under CSC conditions exhibited progressive fragmentation and rapid loss of secretory function. In addition, intentionally dissociated islet cells maintained within the RCCS demonstrated the ability to re-aggregate and form tight islet-like structures with enhanced secretory capacity compared to whole islets maintained in static culture. These findings suggest a novel use for the RCCS and illustrate its potential as an experimental tool for in vitro study of human islet/beta-cell physiology.  相似文献   

15.
The size composition of human islet preparations has been attributed to functional potency, islet survival and transplantation outcomes. In the early post-transplantation phase islets are supplied with oxygen by diffusion only and are at risk of critical hypoxia. The high rate of early islet graft dysfunction is in part attributed to this condition. It has been presumed that islets with smaller diameter, and therefore smaller diffusion distance, are superior to large islets regarding early survival rate and graft function. In this study we aimed to evaluate Complex Object Parametric Analysis and Sorting (COPAS) as a device for automated sorting of human islets. The use of COPAS was validated for accuracy and sensitivity using polystyrene beads of known diameters. Based on time of flight relative to particle isolated islets were then automatically sorted and analyzed for viability and function using handpicked islets as control. Our results suggest that COPAS enables the automated and accurate sorting of islets with no negative impact on their integrity and viability. Thus, COPAS is an adequate tool for size-specific analysis of pancreatic islets and may be considered as part of a platform for automated high-throughput screening of pancreatic islets.  相似文献   

16.
《Islets》2013,5(5):267-270
The size composition of human islet preparations has been attributed to functional potency, islet survival and transplantation outcomes. In the early post-transplantation phase islets are supplied with oxygen by diffusion only and are at risk of critical hypoxia. The high rate of early islet graft dysfunction is in part attributed to this condition. It has been presumed that islets with smaller diameter, and therefore smaller diffusion distance, are superior to large islets regarding early survival rate and graft function. In this study we aimed to evaluate Complex Object Parametric Analysis and Sorting (COPAS) as a device for automated sorting of human islets. The use of COPAS was validated for accuracy and sensitivity using polystyrene beads of known diameters. Based on time of flight relative to particle isolated islets were then automatically sorted and analyzed for viability and function using handpicked islets as control. Our results suggest that COPAS enables the automated and accurate sorting of islets with no negative impact on their integrity and viability. Thus, COPAS is an adequate tool for size-specific analysis of pancreatic islets and may be considered as part of a platform for automated high-throughput screening of pancreatic islets.  相似文献   

17.
Aims/hypothesis Activation of c-jun N-terminal kinase (JNK) has been described in islet isolation and engraftment, making JNK a key target in islet transplantation. The objective of this study was to investigate if JNK inhibition with a cell-permeable TAT peptide inhibitor (L-JNKI) protects functional beta cell mass in human islets and affects AKT and its substrates in islet cells. Methods The effect of L-JNKI (10 μmol/l) on islet count, mitochondrial membrane potential, glucose-stimulated insulin release and phosphorylation of both AKT and its substrates, as well as on reversal of diabetes in immunodeficient diabetic Nu/Nu mice was studied. Results In vitro, L-JNKI reduced the islet loss in culture and protected from cell death caused by acute cytokine exposure. In vivo, treatment of freshly isolated human islets and diabetic Nu/Nu mice recipients of such islets resulted in improved functional beta cell mass. We showed that L-JNKI activates AKT and downregulates glycogen synthase kinase-3 beta (GSK-3B) in human islets exposed to cytokines, while other AKT substrates were unaffected, suggesting that a specific AKT/GSK-3B regulation by L-JNKI may represent one of its mechanisms of cytoprotection. Conclusions/interpretation In conclusion, we have demonstrated that targeting JNK in human pancreatic islets results in improved functional beta cell mass and in the regulation of AKT/GSK3B activity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

18.
Summary Susceptibility of pancreatic islets to oxidant stress may affect islet viability and contribute to primary non function of allo- or xenogenic grafts. We investigated the influence of overexpression of catalase (CAT) on the viability of human, porcine and rat islets, as well as INS-1 beta-cell line. Islets were transfected with a replication-deficient adenovirus vector containing human CAT cDNA under the control of the adenovirus major late promoter (AdCAT) or a vector containing no foreign gene (AdNull) and used as a control. Oxidant stress was induced 48 h later by xanthine oxidase-hypoxanthine (XO 25 mU/ml, HX 0.5 mmol/l) or hydrogen peroxide (100 or 250 μmol/l). Islet cell viability was assessed 72 h after CAT transfer by 4-[3-(4-Idophenyl)-2-(4 nitrophenyl)-2H-5-tetrazolio]-1,2,benzene disulphonate (WST-1) test. Baseline catalase activity was three to fourfold lower in porcine than in human islets. CAT activity was reproducibly increased 2.5- to 7-fold in AdCAT infected islets, at least for 13 days. Overall, AdCAT conferred on human and pig islets a protection of 26.1 ± 6.1 and 21.2 ± 9.8 % on XOHX injury and 35.4 ± 4.2 and 57.9 ± 10.5 % on H2O2 stress. Similarly, rat islet cells and INS-1 cells were protected on XOHX stress by 17.8 ± 2.3 and 30.8 ± 8.7 %, respectively. AdNull had no effect. Basal and stimulated insulin secretion was preserved in AdCAT-transfected human islets despite a XOHX challenge. This study validates adenovirus-mediated catalase gene transfer as a realistic approach to reduce non specific inflammation effects on human or porcine islet grafts. Moreover the relevance of defense mechanisms, previously suggested in human islets, is here illustrated in porcine islets. [Diabetologia (1998) 41: 1093–1100] Received: 4 November 1997 and in revised form: 17 March 1998  相似文献   

19.
20.
Aims/hypothesis  Optimising islet culture conditions may be one strategy for reducing islet loss prior to, and immediately after, islet transplantation. Liver X receptor (LXR) agonism has previously been shown to increase insulin release from pancreatic islets and reduce inflammation in leucocytes. Our aim was to investigate whether the synthetic LXR agonist GW3965 could modulate the inflammatory status of human pancreatic islets. Methods  Levels of pro-inflammatory cytokines and tissue factor in isolated human islets were determined by TaqMan low density array and/or real-time quantitative RT-PCR (mRNA levels) and enzyme immunoassay (EIA) (protein levels). Islet viability was measured using intracellular ATP content, ADP/ATP ratio, mitochondrial dehydrogenase activity (XTT assay) and insulin secretion in a dynamic glucose-challenge model. Apoptosis was determined by EIA measurement of histone–DNA complexes present in cytoplasm and by assaying caspase-3/-7 activity. Results  Treatment of LPS-stimulated human islets with the synthetic LXR agonist GW3965 (1 μmol/l) for 24 h reduced mRNA and protein levels of selected pro-inflammatory cytokines (IL-8, monocyte chemotactic protein-1 and tissue factor). Moreover, GW3965 had no adverse effect on insulin secretion, islet viability or apoptosis. No excess of lipid accumulation could be detected with the dosage and exposure time used. Conclusions/interpretation  LXR activation suppresses inflammation in human islets in vitro without adverse effects on islet viability. Short-term moderate activation of LXR prior to islet transplantation may represent a possible strategy for improving post-transplant islet survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号