首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Islets》2013,5(1):74-77
Several lines of recent evidence implicate regulatory roles for reactive oxygen species (ROS) in islet function and insulin secretion. The phagocyte-like NADPH oxidase (Nox2) has recently been shown to be one of the sources of ROS in the signaling events leading to glucose stimulated insulin secretion (GSIS). We recently reported inhibition of glucose- or mitochondrial fuel-induced Nox2-derived ROS by a specific inhibitor of protein farnesyl transferse (FTase; FTI-277), suggesting that activation of FTase might represent one of the upstream signaling events to Nox2 activation. Furthermore, FTase inhibitors (FTI-277 and FTI-2628) have also been shown to attenuate GSIS in INS 832/13 cells and normal rodent islets. Herein, we provide further evidence to suggest that inhibition of FTase either by pharmacological (e.g., FTI-277) or gene silencing (siRNA-FTase) approaches markedly attenuates mitochondrial fuel-stimulated insulin secretion (MSIS) in INS 832/13 cells. Together, our findings further establish a link between nutrient-induced Nox2 activation, ROS generation and insulin secretion in the pancreatic β-cell.  相似文献   

2.
Vascular disease states are associated with endothelial dysfunction and increased production of reactive oxygen species (ROS) derived from vascular NADPH oxidases in both vascular smooth muscle cells (VSMCs) and endothelial cells. Recent evidence suggests an important role for VSMC NADPH oxidases in vascular ROS production. However, it is unclear whether increased NADPH oxidase activity in endothelial cells alone is sufficient to alter overall vascular ROS production and hemodynamics. We sought to address these questions using transgenic mice with endothelial-targeted overexpression of the catalytic subunit of NADPH oxidase, Nox2. Aortas of Nox2 transgenic (Nox2-Tg) mice had increased total Nox2 mRNA and protein levels compared with wild-type littermates. Both p22phox mRNA and protein levels were also significantly elevated in Nox2-Tg aortas. Aortic superoxide production was significantly increased in Nox2-Tg mice compared with wild-type, but this difference was abolished by endothelial removal. Superoxide dismutase inhibition increased superoxide release and levels of Mn superoxide dismutase protein were significantly elevated in aortas from Nox2-Tg mice compared with wild type. Increased ROS production from endothelial Nox2 overexpression led to increased endothelial nitric oxide synthase protein and extracellular signal-regulated kinase 1/2 phosphorylation in transgenic aortas. Basal blood pressure was similar, however the pressor responses to both acute and chronic angiotensin II administration were significantly increased in Nox2-Tg mice compared with wild type. These results demonstrate that endothelial-targeted Nox2 overexpression is sufficient to increase vascular NADPH oxidase activity, activate downstream signaling pathways, and potentiate the hemodynamic response to angiotensin II, despite compensatory increases in vascular antioxidant enzymes. Endothelial cell Nox2-containing NADPH oxidase plays an important functional role in vascular redox signaling.  相似文献   

3.
Several lines of recent evidence implicate regulatory roles for reactive oxygen species (ROS) in islet function and insulin secretion. The phagocyte-like NADPH oxidase (Nox2) has recently been shown to be one of the sources of ROS in the signaling events leading to glucose stimulated insulin secretion (GSIS). We recently reported inhibition of glucose- or mitochondrial fuel-induced Nox2-derived ROS by a specific inhibitor of protein farnesyl transferse (FTase; FTI-277), suggesting that activation of FTase might represent one of the upstream signaling events to Nox2 activation. Furthermore, FTase inhibitors (FTI-277 and FTI-2628) have also been shown to attenuate GSIS in INS 832/13 cells and normal rodent islets. Herein, we provide further evidence to suggest that inhibition of FTase either by pharmacological (e.g., FTI-277) or gene silencing (siRNA-FTase) approaches markedly attenuates mitochondrial fuel-stimulated insulin secretion (MSIS) in INS 832/13 cells. Together, our findings further establish a link between nutrient-induced Nox2 activation, ROS generation and insulin secretion in the pancreatic β-cell.  相似文献   

4.
NADPH (nicotinamide adenine dinucleotide phosphate) oxidases are important sources of reactive oxygen species (ROS). In the vascular system, ROS can have both beneficial and detrimental effects. Under physiologic conditions, ROS are involved in signaling pathways that regulate vascular tone as well as cellular processes like proliferation, migration and differentiation. However, high doses of ROS, which are produced after induction or activation of NADPH oxidases in response to cardiovascular risk factors and inflammation, contribute to the development of endothelial dysfunction and vascular disease. In vascular cells, the NADPH oxidase isoforms Nox1, Nox2, Nox4, and Nox5 are expressed, which differ in their activity, response to stimuli, and the type of ROS released. This review focuses on the specific role of different NADPH oxidase isoforms in vascular physiology and their potential contributions to vascular diseases.  相似文献   

5.
OBJECTIVE: NADPH oxidases are important sources of reactive oxygen species (ROS) in the vasculature. In phagocytic cells, the catalytic subunit of NADPH oxidase is a glycoprotein, gp91phox. However, vascular smooth muscle cells (VSMCs), which show prominent NADPH oxidase activity, lack gp91phox. Hence, we examined the role of Nox4, a gp91phox homologue, in superoxide production in mouse-cultured VSMCs. METHODS AND RESULTS: Incubation of VSMCs with NADPH increased ROS production whether detected by lucigenin-enhanced chemiluminescence or dichlorofluorescein. Superoxide production was inhibited by the NADPH oxidase inhibitors, diphenyleneiodonium and apocynin, but not by inhibitors of other potential sources of superoxide. In unstimulated VSMCs, phosphorothioate antisense oligonucleotides against Nox4 down-regulated mRNA expression of the subunit by 65% and attenuated superoxide production by 41% without affecting Nox1 expression. Interleukin-1beta (IL-beta) thrombin and platelet-derived growth factor (PDGF) also reduced Nox4 mRNA expression after 3 h without affecting Nox1 levels. Of these stimuli, only IL-beta reduced superoxide, but this effect was more rapid (< or =30 min) than its actions on Nox4. CONCLUSIONS: Under resting conditions, NADPH oxidase activity in VSMCs is largely dependent upon Nox4 expression. Proinflammatory mediators down-regulated Nox4 but did not affect Nox1 expression, so other factors must compensate to regulate superoxide production.  相似文献   

6.
Increasing evidence supports the notion that spinal cord microglia activation plays a causal role in the development of neuropathic pain after peripheral nerve injury; yet the mechanisms for microglia activation remain elusive. Here, we provide evidence that NADPH oxidase 2 (Nox2)-derived ROS production plays a critical role in nerve injury-induced spinal cord microglia activation and subsequent pain hypersensitivity. Nox2 expression was induced in dorsal horn microglia immediately after L5 spinal nerve transection (SNT). Studies using Nox2-deficient mice show that Nox2 is required for SNT-induced ROS generation, microglia activation, and proinflammatory cytokine expression in the spinal cord. SNT-induced mechanical allodynia and thermal hyperalgesia were similarly attenuated in Nox2-deficient mice. In addition, reducing microglial ROS level via intrathecal sulforaphane administration attenuated mechanical allodynia and thermal hyperalgesia in SNT-injured mice. Sulforaphane also inhibited SNT-induced proinflammatory gene expression in microglia, and studies using primary microglia indicate that ROS generation is required for proinflammatory gene expression in microglia. These studies delineate a pathway involving nerve damage leading to microglial Nox2-generated ROS, resulting in the expression of proinflammatory cytokines that are involved in the initiation of neuropathic pain.  相似文献   

7.
8.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are produced, in part, from NADPH oxidase in response to host invasion and tissue injury. Defects in NADPH oxidase impair host defense; however, the role of ROS and RNS in the response to tissue injury is not known. We addressed this issue by subjecting leukocyte oxidase (Nox2)-deficient (Nox2-/-) mice to arterial injury. Femoral artery injury was associated with increased Nox2 expression, ROS/RNS production, and oxidative protein and lipid modification in wild-type mice. In Nox2-/- mice, RNS-mediated protein oxidation, as monitored by protein nitrotyrosine content, was significantly diminished. This was accompanied by reduced neointimal proliferation, as monitored by intimal thickness and intimal/medial ratio, in Nox2-/- compared to wild-type mice. In addition, Nox2 deficiency led to reduced cellular proliferation and leukocyte accumulation. These data indicate that Nox2-mediated oxidant production has a requisite role in the response to tissue injury.  相似文献   

9.
10.
Oxidative stress is implicated in human diseases. Some of the oxidative pathways are harbored in the mitochondria. NAD(P)H oxidases have been identified not only in phagocytic but also in somatic cells. Nox4 is the most ubiquitous of these oxidases and is a major source of reactive oxygen species (ROS) in many cell types and in kidney tissue of diabetic animals. We generated specific Nox4 antibodies, and found that Nox4 localizes to mitochondria. (i) Immunoblot analysis in cultured mesangial cells and kidney cortex revealed that Nox4 is present in crude mitochondria, in mitochondria-enriched heavy fractions, and in purified mitochondria; (ii) immunofluorescence confocal microscopy also revealed that Nox4 localizes with the mitochondrial marker Mitotracker; and (iii) the mitochondrial localization prediction program MitoProt indicated that the probability score for Nox4 is identical to mitochondrial protein cytochrome c oxidase subunit IV. We also show that in purified mitochondria, siRNA-mediated knockdown of Nox4 significantly reduces NADPH oxidase activity in pure mitochondria and blocks glucose-induced mitochondrial superoxide generation. In a rat model of diabetes, mitochondrial Nox4 expression is increased in kidney cortex. Our data provide evidence that a functional Nox4 is present and regulated in mitochondria, indicating the existence of a previously undescribed source of ROS in this organelle.  相似文献   

11.
Dammanahalli JK  Sun Z 《Endocrinology》2008,149(10):4979-4987
Endothelin (ET)-1 stimulates nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and increases superoxide production in some cells such as vascular smooth muscle cells. Here, we reported that ET1 inhibited NADPH oxidase activity, superoxide generation, and cell proliferation in human abdominal aortic endothelial cells (HAAECs) via the ETB1-Pyk2-Rac1-Nox1 pathway. Superoxide production was determined by assessing ethidium fluorescence using flow cytometry in HAAECs exposed to ET1 (10-30 nm) at different time intervals. ET1 significantly decreased superoxide production in HAAECs in the presence of NG-nitro-L-arginine methyl ester, indicating that ET1 suppressed superoxide generation independent of nitric oxide synthase. ET1 significantly attenuated NADPH oxidase activity and cell proliferation, which could be abolished by silence of Nox1 gene, suggesting that ET1-induced inhibition of NADPH oxidase activity was mediated by Nox1. Furthermore, RNA interference silence of ETB1 receptors significantly increased NADPH oxidase activity, and blocked the inhibitory effect of ET1 on NADPH oxidase activity. Activation of ETB1 receptors by ET1 suppressed protein phosphorylation of pyk2 (Y402) and Rac1, suggesting that ET1 inhibited NADPH oxidase activity via ETB1-Pyk2-Rac1 pathway. Indeed, inhibition of Pyk2 by AG-17 abolished ET1-induced suppression of NADPH oxidase activity. ET1 also attenuated angiotensin II-induced activation of NADPH oxidase and cell proliferation. This study demonstrated, for the first time, that ET1, via ETB1, inhibited NADPH oxidase activity in HAAECs by suppressing the Pyk2-Rac1-Nox1 pathway. This finding reveals a novel function of ETB1 receptors in regulating endothelial NADPH oxidase activity, superoxide production, and cell proliferation, opening a new avenue for understanding the role of ETB1 receptors in protecting endothelial cells.  相似文献   

12.
The dorsomedial portion of the nucleus tractus solitarius (dmNTS) is the site of termination of baroreceptor and cardiorespiratory vagal afferents and plays a critical role in cardiovascular regulation. Angiotensin II (Ang II) is a powerful signaling molecule in dmNTS neurons and exerts some of its biological effects by modulating Ca(2+) currents via reactive oxygen species (ROS) derived from reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase. We investigated whether a Nox2-containing NADPH oxidase is the source of the Ang II-induced ROS production and whether the signaling mechanisms of its activation require intracellular Ca(2+) or protein kinase C (PKC). Second-order dmNTS neurons were anterogradely labeled with 4-(4-[didecylamino]styryl)-N-methylpyridinium iodide transported from the vagus and isolated from the brain stem. ROS production was assessed in 4-(4-[didecylamino]styryl)-N-methylpyridinium iodide-positive dmNTS neurons using the fluorescent dye 6-carboxy-2',7'-dichlorodihydro-fluorescein di(acetoxymethyl ester). Ang II (3 to 2000 nmol/L) increased ROS production in dmNTS neurons (EC(50)=38.3 nmol/L). The effect was abolished by the ROS scavenger Mn (III) porphyrin 5,10,20-tetrakis (benzoic acid) porphyrin manganese (III), the Ang II type 1 receptor antagonist losartan, or the NADPH oxidase inhibitors apocynin or gp91ds-tat. Ang II failed to increase ROS production or to potentiate L-type Ca(2+) currents in dmNTS neurons of mice lacking Nox2. The PKC inhibitor GF109203X or depletion of intracellular Ca(2+) attenuated Ang II-elicited ROS production. We conclude that the powerful effects of Ang II on Ca(2+) currents in dmNTS neurons are mediated by PKC activation leading to ROS production via Nox2. Thus, a Nox2-containing NADPH oxidase is the critical link between Ang II and the enhancement of Ca(2+) currents that underlie the actions of Ang II on central autonomic regulation.  相似文献   

13.
Increased production of reactive oxygen species (ROS) is implicated in the development of left ventricular hypertrophy (LVH). Phagocyte-type NADPH oxidases are major cardiovascular sources of ROS, and recent data indicate a pivotal role of a gp91phox-containing NADPH oxidase in angiotensin II (Ang II)-induced LVH. We investigated the role of this oxidase in pressure-overload LVH. gp91phox-/- mice and matched controls underwent chronic Ang II infusion or aortic constriction. Ang II-induced increases in NADPH oxidase activity, atrial natriuretic factor (ANF) expression, and cardiac mass were inhibited in gp91phox-/- mice, whereas aortic constriction-induced increases in cardiac mass and ANF expression were not inhibited. However, aortic constriction increased cardiac NADPH oxidase activity in both gp91phox-/- and wild-type mice. Myocardial expression of an alternative gp91phox isoform, Nox4, was upregulated after aortic constriction in gp91phox-/- mice. The antioxidant, N-acetyl-cysteine, inhibited pressure-overload-induced LVH in both gp91phox-/- and wild-type mice. These data suggest a differential response of the cardiac Nox isoforms, gp91phox and Nox4, to Ang II versus pressure overload.  相似文献   

14.
《Islets》2013,5(5):213-223
Free fatty acids regulate insulin secretion through metabolic and intracellular signaling mechanisms such as induction of malonyl-CoA/long-chain CoA pathway, production of lipids, GPRs (G protein-coupled receptors) activation and the modulation of calcium currents. Fatty acids (FA) are also important inducers of ROS (reactive oxygen species) production in β-cells. Production of ROS for short periods is associated with an increase in GSIS (glucose-stimulated insulin secretion), but excessive or sustained production of ROS is negatively correlated with the insulin secretory process. Several mechanisms for FA modulation of ROS production by pancreatic β-cells have been proposed, such as the control of mitochondrial complexes and electron transport, induction of uncoupling proteins, NADPH oxidase activation, interaction with the renin-angiotensin system, and modulation of the antioxidant defense system. The major sites of superoxide production within mitochondria derive from complexes I and III. The amphiphilic nature of FA favors their incorporation into mitochondrial membranes, altering the membrane fluidity and facilitating the electron leak. The extra-mitochondrial ROS production induced by FA through the NADPH oxidase complex is also an important source of these species in β-cells.  相似文献   

15.
BackgroundAging is associated with increased oxidative stress levels and impaired neovascularization following ischemia. Because Nox2-containing NADPH oxidase is a major source of ROS in the vasculature, we investigated its potential role for the modulation of ischemia-induced neovascularization in the context of aging.Methods and resultsHindlimb ischemia was surgically induced by femoral artery removal in young (2 months) and old (10 months) Nox2-deficient (Nox2?/?) and wild type mice. We found that Nox2 expression is increased by aging in ischemic muscles of wild type mice. This is associated with a significant reduction of blood flow recovery after ischemia in old compared to young mice at day 21 after surgery (Doppler flow ratios: 0.51 ± 0.05 vs. 0.72 ± 0.05; p < 0.05). We also demonstrate that capillary and arteriolar densities are significantly reduced in ischemic muscles of old animals, while oxidative stress levels are increased (nitrotyrosine immunostaining). Importantly, Nox2 deficiency reduces oxidative stress levels in ischemic tissues and restores blood flow recuperation and vascular densities in old animals. Endothelial progenitor cells (EPCs) have an important role for postnatal neovascularization. Here we show that the functional activities of EPCs (migration, adhesion to mature endothelial cells) are significantly impaired in old compared to young mice. However, Nox2 deficiency rescues EPC functional activities in old animals. We also demonstrate an age-dependent pathological increase of oxidative stress levels in EPCs (DHE, DCF-DA) that is not present in Nox2-deficient animals.ConclusionNox2-containing NADPH oxidase deficiency protects against age-dependent impairment of neovascularization. Potential mechanisms include reduced ROS generation in ischemic tissues and preserved angiogenic activities of EPCs.  相似文献   

16.
OBJECTIVES: We investigated the mechanism by which C-reactive protein (CRP) affects pro-inflammatory activities of vascular smooth muscle cells (VSMCs). METHODS AND RESULTS: RT-PCR, flow cytometry, and immunoblotting assays consistently showed the expression of FcgammaRIIa by cultured VSMCs isolated from human coronary arteries. Immunofluorescence staining of human coronary artery plaque showed the co-localization of FcgammaRIIa with alpha-actin(+) VSMCs in atheromatous regions. Confocal microscopic image analysis of H(2)DCFDA-labeled cells showed that CRP induced intracellular reactive oxygen species (ROS) generation by FcgammaRIIa(+) HEK293T cells. Moreover, CRP time- and dose-dependently generated ROS in VSMCs through FcgammaRIIa activation. VSMCs mainly express NADPH oxidase 4 isoform (Nox4), the suppression of which using a specific siRNA completely abolished CRP-induced ROS generation by VSMCs. The downregulation of p22(phox), a component of the active Nox4 complex, by transfecting with specific decoy oligomers and functional blocking of FcgammaRIIa not only inhibited the CRP-induced ROS generation but also reduced the degree of AP-1 and NF-kappaB activation, the production of MCP-1, IL-6, and ET-1, and the apoptotic changes of VSMCs in response to CRP. CONCLUSIONS: CRP-induced ROS generation by VSMCs, which requires functional activation of FcgammaRIIa and NADPH oxidase 4, orchestrates pro-inflammatory activities of VSMCs and may eventually promote atherogenesis and plaque rupture.  相似文献   

17.
Free fatty acids regulate insulin secretion through metabolic and intracellular signaling mechanisms such as induction of malonyl-CoA/long-chain CoA pathway, production of lipids, GPRs (G protein-coupled receptors) activation and the modulation of calcium currents. Fatty acids (FA) are also important inducers of ROS (reactive oxygen species) production in β-cells. Production of ROS for short periods is associated with an increase in GSIS (glucose-stimulated insulin secretion), but excessive or sustained production of ROS is negatively correlated with the insulin secretory process. Several mechanisms for FA modulation of ROS production by pancreatic β-cells have been proposed, such as the control of mitochondrial complexes and electron transport, induction of uncoupling proteins, NADPH oxidase activation, interaction with the renin-angiotensin system, and modulation of the antioxidant defense system. The major sites of superoxide production within mitochondria derive from complexes I and III. The amphiphilic nature of FA favors their incorporation into mitochondrial membranes, altering the membrane fluidity and facilitating the electron leak. The extra-mitochondrial ROS production induced by FA through the NADPH oxidase complex is also an important source of these species in β-cells.  相似文献   

18.
The D(2) dopamine receptor (D(2)R) is important in the pathogenesis of essential hypertension. We have already reported that systemic deletion of the D(2)R gene in mice results in reactive oxygen species (ROS)-dependent hypertension, suggesting that the D(2)R has antioxidant effects. However, the mechanism of this effect is unknown. DJ-1 is a protein that has antioxidant properties. D(2)R and DJ-1 are expressed in the mouse kidney and colocalize and coimunoprecipitate in mouse renal proximal tubule cells. We hypothesized that D(2)Rs regulate renal ROS production in the kidney through regulation of DJ-1 expression or function. Heterozygous D(2)(+/-) mice have increased blood pressure, urinary 8-isoprostanes, and renal Nox 4 expression, but decreased renal DJ-1 expression. Silencing D(2)R expression in mouse renal proximal tubule cells increases ROS production and decreases the expression of DJ-1. Conversely, treatment of these cells with a D(2)R agonist increases DJ-1 expression and decreases Nox 4 expression and NADPH oxidase activity, effects that are partially blocked by a D(2)R antagonist. Silencing DJ-1 expression in mouse renal proximal tubule cells increases ROS production and Nox 4 expression. Selective renal DJ-1 silencing by the subcapsular infusion of DJ-1 siRNA in mice increases blood pressure, renal Nox4 expression, and NADPH oxidase activity. These results suggest that the inhibitory effects of D(2)R on renal ROS production are at least, in part, mediated by a positive regulation of DJ-1 expression/function and that DJ-1 may have a role in the prevention of hypertension associated with increased ROS production.  相似文献   

19.
NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are known to be involved in angiotensin II-induced hypertension and endothelial dysfunction. Several Nox isoforms are expressed in the vessel wall, among which Nox2 is especially abundant in the endothelium. Endothelial Nox2 levels rise during hypertension but little is known about the cell-specific role of endothelial Nox2 in vivo. To address this question, we generated transgenic mice with endothelial-specific overexpression of Nox2 (Tg) and studied the effects on endothelial function and blood pressure. Tg had an about twofold increase in endothelial Nox2 levels which was accompanied by an increase in p22phox levels but no change in levels of other Nox isoforms or endothelial nitric oxide synthase (eNOS). Basal NADPH oxidase activity, endothelial function and blood pressure were unaltered in Tg compared to wild-type littermates. Angiotensin II caused a greater increase in ROS production in Tg compared to wild-type aorta and attenuated acetylcholine-induced vasorelaxation. Both low and high dose chronic angiotensin II infusion increased telemetric ambulatory blood pressure more in Tg compared to wild-type, but with different patterns of BP change and aortic remodeling depending upon the dose of angiotensin II dose. These results indicate that an increase in endothelial Nox2 levels contributes to angiotensin II-induced endothelial dysfunction, vascular remodeling and hypertension.  相似文献   

20.
Reactive oxygen species (ROS) play a pivotal role in many physiological processes including host defense, hormone biosynthesis, fertilization and cellular signaling. Altered production of ROS has been implicated in the development of immunodeficiency, hypothyroidism and cardiovascular pathologies. In the last few years, several enzymes were identified at the molecular level, which are now thought to be responsible for ROS production observed in diverse tissues. These enzymes show a high degree of homology to the phagocytic NADPH oxidase and are now designated the Nox family of NADPH oxidases. This review updates our knowledge on six new members of the Nox family: Nox1, Nox3, Nox4, Nox5, Duox1 and Duox2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号