首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histomorphometry and microCT of 51 paired iliac crest biopsy specimens from women treated with teriparatide revealed significant increases in cancellous bone volume, cancellous bone connectivity density, cancellous bone plate-like structure, and cortical thickness, and a reduction in marrow star volume. INTRODUCTION: We studied the ability of teriparatide (rDNA origin) injection [rhPTH(1-34), TPTD] to improve both cancellous and cortical bone in a subset of women enrolled in the Fracture Prevention Trial of postmenopausal women with osteoporosis after a mean treatment time of 19 months. This is the first report of a biopsy study after treatment with teriparatide having a sufficient number of paired biopsy samples to provide quantitative structural data. METHODS: Fifty-one paired iliac crest bone biopsy specimens (placebo [n = 19], 20 microg teriparatide [n = 18], and 40 microg teriparatide [n = 14]) were analyzed using both two-dimensional (2D) histomorphometry and three-dimensional (3D) microcomputed tomography (microCT). Data for both teriparatide treatment groups were pooled for analysis. RESULTS AND CONCLUSIONS: By 2D histomorphometric analyses, teriparatide significantly increased cancellous bone volume (median percent change: teriparatide, 14%; placebo, -24%; p = 0.001) and reduced marrow star volume (teriparatide, -16%; placebo, 112%; p = 0.004). Teriparatide administration was not associated with osteomalacia or woven bone, and there were no significant changes in mineral appositional rate or wall thickness. By 3D cancellous and cortical bone structural analyses, teriparatide significantly decreased the cancellous structure model index (teriparatide, -12%; placebo, 7%; p = 0.025), increased cancellous connectivity density (teriparatide, 19%; placebo, - 14%; p = 0.034), and increased cortical thickness (teriparatide, 22%; placebo, 3%; p = 0.012). These data show that teriparatide treatment of postmenopausal women with osteoporosis significantly increased cancellous bone volume and connectivity, improved trabecular morphology with a shift toward a more plate-like structure, and increased cortical bone thickness. These changes in cancellous and cortical bone morphology should improve biomechanical competence and are consistent with the substantially reduced incidences of vertebral and nonvertebral fractures during administration of teriparatide.  相似文献   

2.
Genant HK  Siris E  Crans GG  Desaiah D  Krege JH 《BONE》2005,37(2):170-174
Teriparatide is the first bone-building drug available for the treatment of osteoporosis. We investigated the efficacy of this compound as assessed by spinal deformity index (SDI) using data from the Fracture Prevention Trial (FPT). The FPT was a randomized, double blind trial of placebo versus teriparatide 20 microg (TPTD20) versus teriparatide 40 microg (TPTD40) administered by daily self-injection. Patients included in the current analyses were those patients from the placebo (n = 398) and TPTD20 (the approved dose, n = 403) groups with baseline and follow-up radiographs and at least one vertebral fracture at baseline. For each vertebra, a visual semiquantitative grade of 0, 1, 2, or 3 was assigned for no fracture or mild, moderate, or severe fracture, respectively; the SDI was calculated by summing the fracture grades of all T4 to L4 vertebrae. The mean SDI increased in the placebo and TPTD20 groups by 0.485 and 0.134, respectively (P < 0.001). The proportions of patients with SDI increases >1, >2, and >3 were reduced by 85%, 80%, and 80%, respectively. In the placebo group, increasing baseline SDI was correlated with the mean increase in SDI during the trial (r = 0.080, P = 0.01), consistent with the progressive natural history of osteoporosis. However, in the TPTD20 group, increasing baseline SDI was not correlated with the mean increase in SDI during the trial (P = 0.297) indicating that teriparatide mitigated or eliminated the increased risk associated with increasing fracture burden. Increases in SDI during the trial were associated with increasing proportions of patients with new or worsening back pain and greater mean height loss (P < 0.0001), demonstrating an association with important clinical consequences. The results indicate that teriparatide greatly reduced the increase in fracture burden in the FPT and mitigated or eliminated the risk for future fractures imparted by increasing baseline fracture burden.  相似文献   

3.
Cortical and trabecular bone from the femoral neck of 24 adult female beagle dogs was examined for microdamage following 2 years of treatment with risedronate (NE-58095). Specimens of the femoral neck, sectioned between the femoral head and the intertrochanteric groove, were bulk stained in 1 % basic fuchsin in graded alcohols and embedded in methylmethacrylate. Five transverse sections of 100 μm from each specimen were examined for microdamage and measurement of cortical and trabecular area, and three sections from each specimen were measured for calculation of trabecular and cortical bone activation frequency (Ac.f) and bone formation rate (BFR/BV) in the superior and anterior regions of the femoral neck. Although no statistical differences were observed among groups for numerical density or length of microcracks, Kruskal-Wallis analysis showed differences among groups for both cortical and trabecular bone area (p < 0.05). Ac.f was significantly lower in both cortical bone (p < 0.05) and trabecular bone (p < 0.005) of the femoral neck at all dosage levels. No significant difference was observed among groups for trabecular mean wall thickness. The hypothesis that microdamage accumulation increases following reduction in Ac.f was not supported for the canine femoral neck in this experiment. This result could be explained by the fact that microdamage does not accumulate following treatment; that transient increases in microdamage at the beginning of the study period had been repaired; or finally, that the canine femoral neck does not reflect weight-bearing conditions of clinical relevance to humans for assessment of microdamage.  相似文献   

4.
The effects of teriparatide when given in combination with HRT were studied in postmenopausal women with low bone mass or osteoporosis. The data provide evidence that the adverse event profile for combination therapy with teriparatide + HRT together is consistent with that expected for each treatment alone and that the BMD response is greater than for HRT alone. INTRODUCTION: Teriparatide [rhPTH(1-34)], given as a once-daily injection, activates new bone formation in patients with osteoporosis. Hormone replacement therapy (HRT) prevents osteoporosis by reducing bone resorption and formation. Combination therapy with these two compounds, in small clinical trials, increased BMD and reduced vertebral fracture burden. The purpose of this study was to determine whether teriparatide provided additional effect on BMD when given in combination with HRT. MATERIALS AND METHODS: A randomized, double-blind, placebo-controlled study was conducted in postmenopausal women with either low bone mass or osteoporosis. Patients were randomized to placebo subcutaneous plus HRT (n = 125) or teriparatide 40 microg/day (SC) plus HRT (TPTD40 + HRT; n = 122) for a median treatment exposure of 13.8 months. Approximately one-half of the patients in each group were pretreated with HRT for at least 12 months before randomization. Patients received 1000 mg calcium and 400-1200 IU of vitamin D daily as oral supplementation. BMD was measured by DXA. RESULTS: Compared with HRT alone, TPTD40 + HRT produced significant (p < 0.001) increases in spine BMD (14% versus 3%), total hip (5.2% versus 1.6%), and femoral neck (5.2% versus 2%) at study endpoint. BMD, in whole body and ultradistal radius, was higher, and in the one-third distal radius was lower, in the combination therapy but not in the HRT group. Serum bone-specific alkaline phosphatase and urinary N-telopeptide/Cr were increased significantly (p < 0.01) in the women receiving TPTD40 + HRT compared with HRT. A similar profile of BMD and bone markers was evident in both randomized patients as well as in subgroups of patients not pretreated or pretreated with HRT. Patients tolerated both the treatments well. Nausea and leg cramps were more frequently reported in the TPTD40 + HRT group. CONCLUSIONS: Adding teriparatide, a bone formation agent, to HRT, an antiresorptive agent, provides additional increases in BMD beyond that provided by HRT alone. The adverse effects of teriparatide when added to HRT were similar to the adverse effects described for teriparatide administered alone. Whether teriparatide was initiated at the same time as HRT or after at least 1 year on HRT, the incremental increases over HRT alone were similar.  相似文献   

5.

Summary

Once-weekly administration of 56.5 μg teriparatide improved cortical bone parameters and biomechanical parameters at the proximal femur by CT geometry analysis.

Introduction

The aim of this study was to evaluate the effects of weekly administration of teriparatide [human PTH (1–34)] on bone geometry, volumetric bone mineral density (vBMD), and parameters of bone strength at the proximal femur which were longitudinally investigated using computed tomography (CT).

Methods

The subjects were a subgroup of a recent, randomly assigned, double-blind study (578 subjects) comparing the anti-fracture efficacy of a once-weekly subcutaneous injection of 56.5 μg teriparatide with placebo (TOWER trial).

Results

Sixty-six ambulatory postmenopausal women with osteoporosis were enrolled at 15 study sites having multi-detector row CT, and included women injected with teriparatide (n?=?29, 74.2?±?5.1 years) or with placebo (n?=?37, 74.8?±?5.3 years). CT data were obtained at baseline and follow-up scans were performed at 48 and 72 weeks. The data were analyzed to obtain cross-sectional densitometric, geometric, and biomechanical parameters including the section modulus (SM) and buckling ratio (BR) of the femoral neck, inter-trochanter, and femoral shaft. We found that once-weekly teriparatide increased cortical thickness/cross-sectional area (CSA) and total area, and improved biomechanical properties (i.e., decreasing BR) at the femoral neck and shaft. Teriparatide did not change the cortical perimeter.

Conclusions

Our longitudinal analysis of proximal femur geometry by CT revealed that once-weekly administration of 56.5 μg teriparatide improved cortical bone parameters at the femoral neck and shaft and also improved biomechanical parameters.  相似文献   

6.
OVX monkeys treated for 18 months with 1 or 5 microg/kg/d teriparatide [PTH (1-34)] had significantly stronger proximal femora relative to ovariectomized controls. Teriparatide enhancement of cortical area, cortical width, and trabecular bone volume seemed to more than compensate for the dose-dependent increase in cortical porosity. Beneficial effects of teriparatide treatment on the proximal femur persisted beyond the treatment period and may extend to the marrow. INTRODUCTION: We conducted a detailed quantitative analysis of the effects of teriparatide on the proximal femur of ovariectomized monkeys. Teriparatide increased bone mass, enhanced structural architecture, and strengthened the hip, despite increasing cortical porosity. MATERIALS AND METHODS: Monkeys were treated with vehicle (sham or OVX controls), 1 microg/kg/day teriparatide [parathyroid hormone (1-34); PTH1], or 5 microg/kg/day teriparatide (PTH5) for 18 months or for 12 months followed by 6 months of treatment withdrawal (PTH1W and PTH5W, respectively). Excised proximal femora were analyzed by microCT, conventional histomorphometry, and biomechanics.RESULTS AND CONCLUSIONS: The femoral neck showed significant reduction in trabecular bone volume (BV/TV) for OVX compared with sham, whereas PTH1 BV/TV was restored to sham levels and PTH5 BV/TV was greater than sham and OVX. The withdrawal groups had BV/TVs intermediate between sham and OVX. PTH1 had trabecular number (Tb.N) greater than OVX, and PTH5 Tb.N was greater than sham and OVX. The withdrawal groups had Tb.Ns intermediate between sham and OVX. No differences between groups were observed for trabecular orientation or trabecular thickness. Teriparatide dose-dependently increased bone formation rate and activation frequency in the femoral neck. Cellular composition analyses suggested a tendency of ovariectomy to increase adiposity of marrow by 100%, whereas PTH tended to reduce adipocyte number and increase osteoblast number compared with OVX. Analyses of the cortex showed dose-dependent elevation of cortical porosity, which was consistent with enhanced bone turnover with treatment. Cortical porosity was reduced after withdrawal of teriparatide, because PTH1W cortical porosity was lower than OVX, whereas PTH5W cortical porosity was intermediate between sham and OVX. Increased cortical porosity did not weaken the proximal femora. Biomechanics showed that ovariectomy weakened proximal femora compared with sham, but PTH1, PTH5, and PTH1W were stronger than OVX and not different from sham. PTH5W strength was intermediate between sham and OVX. Therefore, teriparatide had beneficial effects on the proximal femur, despite increasing cortical porosity. Cortical porosity did not adversely affect the mechanical integrity of the proximal femora, because enhanced cortical area and trabecular bone volume more than compensated for the porosity. Much of the beneficial effects of teriparatide were retained after 6 months withdrawal from treatment. PTH effects on the femoral neck were not limited to bone but may include inhibition of OVX-stimulated adiposity of the marrow.  相似文献   

7.
INTRODUCTION: Teriparatide is a bone formation agent that increases bone turnover and mass, resulting in an increase in bone strength and a decrease in fracture risk. METHODS: The primary purpose of this analysis was to evaluate the association between pretreatment bone turnover marker (BTM) concentrations and the absolute and relative fracture risks after adjusting for baseline femoral neck BMD, number of prevalent vertebral fractures, and age. Because femoral neck BMD is commonly attained in the assessment of patients at risk for osteoporosis, we examined the ability of a multivariate assessment including pretreatment BTM concentration and femoral neck BMD to predict future fracture risk after adjusting for the number of prevalent vertebral fractures. We examined data from the Fracture Prevention Trial, a study designed to determine the effect of teriparatide 20 mcg/day and teriparatide 40 mcg/day on vertebral and nonvertebral fracture risk in postmenopausal women with osteoporosis. BTM were analyzed in two subsets of women within the Fracture Prevention Trial, and included serum bone-specific alkaline phosphatase (BSAP), serum carboxy-terminal extension peptide of procollagen type I (PICP), serum amino-terminal extension peptide of procollagen type I (PINP), urinary free deoxypyridinoline (DPD), and urinary N-terminal telopeptide (NTX). RESULTS: Teriparatide significantly reduced the risk of fracture [four BTM subset (n = 520), placebo = 14.3%, teriparatide = 5.8%, P < 0.05; PINP subset (n = 771), placebo = 17.7%, teriparatide = 5.5%, P < 0.05]. Subjects with the highest pretreatment BTM concentrations had the greatest fracture risk. Teriparatide-mediated absolute risk reduction was greatest for women with high pretreatment bone turnover; however, the relative fracture risk reduction was independent of pretreatment bone turnover. After adjusting for pretreatment BTM and number of prevalent vertebral fractures, baseline femoral neck BMD was not a significant predictor of fracture risk. CONCLUSION: Teriparatide-mediated relative fracture risk reduction was independent of pretreatment bone turnover, demonstrating that this therapy offers clinical benefit to patients across a range of disease severity.  相似文献   

8.
Bone microarchitecture measured at the iliac crest at 6 mo was confirmed to be a reasonable surrogate for, and a predictor of, architecture and strength of the femoral neck and lumbar vertebra after 18 mo of teriparatide treatment. However, the data taken together showed the importance of cortical bone volume for vertebra to assess pharmacological effects on bone quality. INTRODUCTION: Improvements in bone architecture with teriparatide treatment are suggested to contribute to fracture risk reduction in osteoporotic patients. Teriparatide significantly improves microarchitecture in the iliac crest of humans by stimulating bone modeling and remodeling processes that differ dramatically from those induced by antiresorptives. The relationship between improvements of bone microarchitecture and improvements of bone strength with teriparatide treatment has not yet been fully studied. MATERIALS AND METHODS: Ovariectomized monkeys were administered vehicle (n = 20); teriparatide 1.0 microg/kg/d (n = 19); or teriparatide 5.0 microg/kg/d (n = 21) for 18 mo. Iliac crest biopsies were obtained at 6 and 15 mo after initiation of treatment. Animals were killed after 18 mo of treatment, and adjacent vertebrae or contralateral proximal femora were processed for biomechanical or histomorphometric analyses. Pearson correlation analyses were performed to assess the relationship between biomechanical and static histomorphometric parameters of lumbar vertebra, femoral neck, and iliac crest biopsies. RESULTS: Static histomorphometric parameters of the 6- and 15-mo biopsies were significantly correlated with the vertebral and femoral neck parameters obtained at 18 mo of teriparatide treatment. Iliac crest biopsy parameters at 6 and 15 mo also correlated with vertebral and femoral neck strength at 18 mo. Static histomorphometry of the lumbar vertebra and femoral neck at 18 mo also significantly correlated with strength at these sites. However, cortical bone volume of the lumbar vertebrae had the strongest correlation with vertebral and femoral neck strength (r = 0.74 and 0.71, respectively). CONCLUSIONS: Teriparatide dose dependently improved cortical and trabecular microarchitecture of vertebra and femoral neck, as well as trabecular microarchitecture of the iliac crest. Bone microarchitecture at all sites was significantly correlated with lumbar vertebra and femoral neck strength. Cortical bone volume of vertebra had the strongest correlation with vertebral and femoral neck strength. Therefore, structural improvement seemed to be part of the mechanism for improved strength observed with teriparatide treatment. Trabecular bone architecture of the iliac crest at 6 mo also correlated with vertebral and femoral neck strength, as did femoral neck (cortical and trabecular) histomorphometry and trabecular histomorphometry of vertebra after 18 mo of treatment. Because clinical assessment of cortical bone volume is not readily possible for vertebra noninvasively, these findings confirm the importance of iliac crest biopsies to monitor skeletal health and show that biopsies are a reasonable surrogate to assess spine and femoral neck structure and function.  相似文献   

9.
The dose-response efficacy and safety with three doses of teriparatide and placebo was assessed, using oncedaily subcutaneous injections for 24 weeks, in Japanese postmenopausal women with osteoporosis at high risk of fracture for reasons of preexisting fracture(s), advanced age, and/or low bone mineral density (BMD). In this multicenter, randomized, placebo-controlled study, 159 subjects were randomized and 154 subjects were included for analysis. Teriparatide (10-μg, 20-μg, and 40-μg doses) showed a statistically significant increase with increasing treatment dose as assessed by the percent change of lumbar spine BMD from baseline to endpoint using Williams’ test when compared with placebo (P < 0.001). The mean (±SD) percent change in lumbar spine, femoral neck, and total hip BMD with the 20-μg dose from baseline to endpoint was 6.40% ± 4.76%, 1.83% ± 7.13%, and 1.91% ± 3.60%, respectively. Rapid and sustained increases in bone formation markers [type I procollagen N-terminal propeptide (PINP), type I procollagen C-terminal propeptide (PICP), and bone-specific alkaline phosphatase (BAP)], followed by late increases in a bone resorption marker [type I collagen cross-linked C-telopeptide (CTX)], were observed for the teriparatide treatment groups (20-μg, 40-μg), suggesting a persistent, positive, balanced anabolic effect of teriparatide. Optimal adherence was achieved by this daily self-injection treatment. Regarding safety, most of the adverse events were mild to moderate in severity. No study drug-or study procedure-related serious adverse events were reported during the treatment period. These results observed in Japanese patients may support the observation that teriparatide stimulates bone formation in patients with osteoporosis at a high risk of fracture.  相似文献   

10.
In ACTIVE, abaloparatide increased areal BMD (aBMD) of the hip and femoral neck vs teriparatide and placebo in women with osteoporosis. Previously, 3D-processing of dual X-ray absorptiometry (DXA) scans of a subgroup of ACTIVE subjects showed similar increases in trabecular volumetric BMD (Tb.vBMD) and greater increases in cortical vBMD (Ct.vBMD) of the total hip with abaloparatide vs teriparatide. The current analyses from this subgroup describe 2D- and 3D-DXA data for hip subregions. Randomly selected subjects from ACTIVE (n = 250/treatment group) who received 18 mo of placebo, abaloparatide 80 µg, or open-label teriparatide 20 µg by daily subcutaneous injection underwent hip DXA at baseline, and mo 6 and 18 of treatment. Areal BMD of the femoral neck, trochanter, and femoral shaft was determined using standard 2D-DXA and 3D-SHAPER software to retrospectively evaluate changes from baseline in volumetric parameters of these 3 hip subregions, including trabecular and cortical segmentation. Changes in biomechanical parameters cross-sectional moment of inertia (CSMI), section modulus (Z), and buckling ratio were also evaluated. Femoral neck, trochanter, and shaft aBMD increased in the abaloparatide and teriparatide groups at mo 6 and 18 vs placebo, with greater increases for abaloparatide vs teriparatide at the femoral neck at mo 6 and the shaft at mo 6 and 18. All 3 subregions showed similar significant increases in Tb.vBMD with abaloparatide and teriparatide vs placebo, whereas Ct.vBMD of all 3 subregions showed greater increases after 18 mo of abaloparatide vs teriparatide. Biomechanical parameters improved in all subregions with abaloparatide and teriparatide vs placebo, with greater improvements in CSMI and Z of the femoral neck and lower shaft after 6 and 18 mo of abaloparatide vs teriparatide. Differential femoral neck and shaft Ct.vBMD responses may explain the greater increases in CSMI and Z of those subregions with abaloparatide vs teriparatide.  相似文献   

11.
Introduction The prevalence of both osteoporosis and renal impairment increases with age. Methods Using data from the Fracture Prevention Trial, the safety and efficacy of teriparatide [rhPTH(1–34)] in postmenopausal women with osteoporosis and renal impairment were explored. Patients were required to have serum creatinine concentrations ≤2.0 mg/dl and normal serum parathyroid hormone (PTH) concentrations and were randomized to receive daily subcutaneous injections of placebo or teriparatide 20 or 40 mcg/day. Glomerular filtration rate (GFR) was estimated using the Cockcroft–Gault equation. Patients were defined from baseline assessments to have normal (GFR ≥80 ml/min), mildly impaired (GFR 50–79 ml/min), or moderately impaired (GFR 30–49 ml/min) renal function for bone mineral density (BMD) and amino-terminal extension peptide of procollagen type 1 (PINP) analyses, and normal (GFR ≥80 ml/min) or impaired (GFR <80 ml/min) renal function for fracture analyses. Results and conclusions Compared with patients with normal renal function, patients with renal impairment were older, shorter, weighed less, had been postmenopausal longer, and had lower baseline lumbar spine and femoral neck BMD. Compared with placebo, teriparatide significantly increased PINP and lumbar spine and femoral neck BMD within each renal function subgroup, and there was no evidence that these increases were altered by renal insufficiency (each treatment-by-subgroup interaction p>0.05). Similarly, teriparatide-mediated vertebral and nonvertebral fracture risk reductions were similar and did not differ significantly between patients with normal or impaired renal function (treatment-by-subgroup interactions p>0.05). The incidences of treatment-emergent and renal-related adverse events were consistent across treatment assignment in the normal, mildly impaired, and moderately impaired renal function subgroups. Teriparatide induced changes in mean GFR were unaffected by baseline renal function (treatment-by-renal function interaction p>0.05 for normal, mildly impaired, or moderately impaired subgroups). Patients in all renal function categories treated with teriparatide 20 or 40 mcg had an increased incidence of 4–6-h postdose serum calcium >10.6 mg/dl (the upper limit of normal) versus placebo; however, teriparatide 20 mcg/day was not associated with significantly increased incidence of 4–6-h postdose serum calcium >11 mg/dl in any renal function category. Teriparatide therapy was associated with increased incidence of elevated uric acid, with the incidences being highest in patients with moderately impaired renal function and in those receiving teriparatide 40 mcg/day. Even so, adverse event data did not suggest an increased incidence of gout or arthralgia or of nephrolithiasis events in teriparatide-treated patients with normal, mild, or moderate renal impairment. This study was supported by Eli Lilly and Company.  相似文献   

12.
Teriparatide [rhPTH(1-34)] increases bone mineral density and reduces the risk of vertebral fracture in women. We randomized 437 men with spine or hip bone mineral density more than 2 SD below the young adult male mean to daily injections of placebo, teriparatide 20 microg, or teriparatide 40 microg. All subjects also received supplemental calcium and vitamin D. The study was stopped after a median duration of 11 months because of a finding of osteosarcomas in rats in routine toxicology studies. Biochemical markers of bone formation increased early in the course of therapy and were followed by increases in indices of osteoclastic activity. Spine bone mineral density was greater than in placebo subjects after 3 months of teriparatide therapy, and by the end of therapy it was increased by 5.9% (20 microg) and 9.0% (40 microg) above baseline (p < 0.001 vs. placebo for both comparisons). Femoral neck bone mineral density increased 1.5% (20 microg; p = 0.029) and 2.9% (40 microg; p < 0.001), and whole body bone mineral content increased 0.6% (20 microg; p = 0.021) and 0.9% (40 microg;p = 0.005) above baseline in the teriparatide subjects. There was no change in radial bone mineral density in the teriparatide groups. Bone mineral density responses to teriparatide were similar regardless of gonadal status, age, baseline bone mineral density, body mass index, smoking, or alcohol intake. Subjects experienced expected changes in mineral metabolism. Adverse events were similar in the placebo and 20-microg groups, but more frequent in the 40-microg group. This study shows that teriparatide treatment results in an increase in bone mineral density and is a potentially useful therapy for osteoporosis in men.  相似文献   

13.
14.
Summary  The extent to which fracture protection and safety varies with increasing time on teriparatide [rhPTH(1-34)] therapy is a clinically relevant unanswered question. In postmenopausal women with osteoporosis, increased duration of teriparatide versus placebo treatment was associated with a progressive decrease in the rates of nonvertebral fragility fractures and back pain. Introduction  The impact of duration of teriparatide [rhPTH(1-34)] therapy on patient outcomes is a relevant unanswered question. Methods  Postmenopausal women with osteoporosis were randomized to once-daily subcutaneous injection with placebo (N = 544), teriparatide 20 μg (TPTD20; N = 541), or teriparatide 40 μg (TPTD40; N = 552) plus calcium and vitamin D supplementation. The time to first nonvertebral fragility fracture and new or worsening back pain following treatment initiation was analyzed using Cox partial likelihood regression treating time on therapy as a linear, time-dependent covariate. Results  Compared with placebo, the relative hazard for nonvertebral fragility fractures decreased by 7.3% for each additional month of TPTD20 [hazard ratio = 0.927, 95% CI (0.876 to 0.982), p = 0.009] and by 7.6% for each additional month of TPTD40 [hazard ratio = 0.924, 95% CI (0.871 to 0.981), p = 0.009]. Clinical vertebral fractures appeared to increase over time in the placebo group and occurred primarily in the first time interval in the teriparatide treatment groups. Compared with placebo, the relative hazard of back pain was decreased by 8.3% for each additional month of TPTD20 [hazard ratio = 0.920, 95% CI (0.902 to 0.939), p < 0.001] and 8.7% for each additional month of TPTD40 [hazard ratio = 0.917, 95% CI (0.898 to 0.935), p < 0.001]. Conclusions  These findings suggest increased nonvertebral fracture protection, reduced back pain, and reduced occurrence of side effects with longer duration of teriparatide therapy. Some of these findings were presented at the 67th Annual Scientific Meeting of the American College of Rheumatology in Orlando, Florida, October 23–28, 2003 and at the 31st European Symposium on Calcified Tissues in Nice, France, June 5–9, 2004.  相似文献   

15.
Teriparatide (TPTD) is the only currently available therapeutic agent that increases the formation of new bone tissue and can provide some remediation of the architectural defects in the osteoporotic skeleton. The use of teriparatide clinically is limited to 24 months. We review clinical findings during daily teriparatide treatment over time. Teriparatide appears to increase bone formation more than bone resorption as determined biochemically and histologically. Teriparatide exerts its positive effects on bone formation in two distinct fashions. The first is direct stimulation of bone formation that occurs within active remodeling sites (remodeling-based bone formation) and on surfaces of bone previously inactive (modeling-based bone formation). The second is an increase in the initiation of new remodeling sites. Both processes contribute to the final increase in bone density observed by non-invasive tools such as DXA. Remodeling is the repair process by which skeletal tissue is maintained in a young healthy state, and when stimulated by TPTD is associated with a positive bone balance within each remodeling cavity. It seems likely therefore that this component will contribute to the anti-fracture efficacy of TPTD. Teriparatide reduces the risk of fracture, and this effect appears to increase with longer duration of therapy. The use of novel treatment regimens, including shorter courses, should be held in abeyance until controlled clinical trials are completed to define the relative fracture benefits of such approaches in comparison to the 24-month daily use of the agent. Summary In patients with osteoporosis at high risk for fracture, the full continuous 24-month course with teriparatide results in improved skeletal health and outcomes than shorter time periods.  相似文献   

16.
FE modeling was used to estimate the biomechanical effects of teriparatide and alendronate on lumbar vertebrae. Both treatments enhanced predicted vertebral strength by increasing average density. This effect was more pronounced for teriparatide, which further increased predicted vertebral strength by altering the distribution of density within the vertebra, preferentially increasing the strength of the trabecular compartment. INTRODUCTION: Teriparatide 20 microg/day (TPTD) and alendronate 10 mg/day (ALN) increase areal, measured by DXA, and volumetric, measured by QCT, lumbar spine BMD through opposite effects on bone remodeling. Using finite element (FE) modeling of QCT scans, we sought to compare the vertebral strength characteristics in TPTD- and ALN-treated patients. MATERIALS AND METHODS: A subset of patients (N = 28 TPTD; N = 25 ALN) from the Forteo Alendronate Comparator Trial who had QCT scans of the spine at baseline and postbaseline were analyzed. The QCT scans were analyzed for compressive strength of the L(3) vertebra using FE modeling. In addition, using controlled parameter studies of the FE models, the effects of changes in density, density distribution, and geometry on strength were calculated, a strength:density ratio was determined, and a response to bending was also quantified. RESULTS: Both treatments had positive effects on predicted vertebral strength characteristics. At least 75% of the patients in each treatment group had increased strength of the vertebra at 6 months compared with baseline. Patients in both treatment groups had increased average volumetric density and increased strength in the trabecular bone, but the median percentage increases for these parameters were 5- to 12-fold greater for TPTD. Larger increases in the strength:density ratio were also observed for TPTD, and these were primarily attributed to preferential increases in trabecular strength. CONCLUSIONS: These results provide new insight into the effects of these treatments on estimated biomechanical properties of the vertebra. Both treatments positively affected predicted vertebral strength through their effects on average BMD, but the magnitudes of the effects were quite different. Teriparatide also affected vertebral strength by altering the distribution of density within the vertebra, so that overall, teriparatide had a 5-fold greater percentage increase in the strength:density ratio.  相似文献   

17.
The Skeletal Histomorphometry in Patients on Teriparatide or Zoledronic Acid Therapy (SHOTZ) study assessed the progressive effects of teriparatide (TPTD) and zoledronic acid (ZOL) on bone remodeling and material properties in postmenopausal women with osteoporosis. Previously, we reported that biochemical and histomorphometric bone formation indices were significantly higher in patients receiving TPTD versus ZOL. Here we report bone mineralization density distribution (BMDD) results based on quantitative backscattered electron imaging (qBEI). The 12‐month primary study was randomized and double blind until the month 6 biopsy, then open label. Patients (TPTD, n = 28; ZOL, n = 31) were then eligible to enter a 12‐month open‐label extension with their original treatment: TPTD 20 μg/d (subcutaneous injection) or ZOL 5 mg/yr (intravenous infusion). A second biopsy was collected from the contralateral side at month 24 (TPTD, n = 10; ZOL, n = 10). In cancellous bone, ZOL treatment was associated at 6 and 24 months with significantly higher average degree of mineralization (CaMEAN, +2.2%, p = 0.018; +3.9%, p = 0.009, respectively) and with lower percentage of low mineralized areas (CaLOW, –34.6%, p = 0.029; –33.7%, p = 0.025, respectively) and heterogeneity of mineralization CaWIDTH (–12.3%, p = 0.003; –9.9%, p = 0.012, respectively), indicating higher mineralization density and more homogeneous mineral content versus TPTD. Within the ZOL group, significant changes were found in all parameters from month 6 to 24, indicating a progressive increase in mineralization density. In sharp contrast, mineralization density did not increase over time with TPTD, reflecting ongoing deposition of new bone. Similar results were observed in cortical bone. In this study, TPTD stimulated new bone formation, producing a mineralized bone matrix that remained relatively heterogeneous with a stable mean mineral content. ZOL slowed bone turnover and prolonged secondary mineralization, producing a progressively more homogeneous and highly mineralized bone matrix. Although both TPTD and ZOL increase clinical measures of bone mineral density (BMD), this study shows that the underlying mechanisms of the BMD increases are fundamentally different. © 2016 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

18.
Exercise in youth may affect bone “quality” as well as quantity. Using the rat model, 1.5-month-old females were divided into four weight-matched groups, exercised short-term (6 weeks, Es, n = 20) and long-term (14 weeks, EL, n = 10) by access to monitored running wheels, and corresponding “sedentary” controls (SS short-term, n = 20; SL long-term, n = 10). Femora were either plastic-embedded or fresh-frozen. Transverse histological slices, 100 μm thick, were cut midshaft, while similar cryosections, 8 μm thick, were prepared from the same site and also coronal to the femoral neck region. An image analyser measured femoral neck and midshaft microarchitecture, while immunostaining localized collagen type III-rich fibres (CIII, an index of Sharpey fibre insertions) and osteopontin-rich osteons (OPN, an index of remodelling). Exercise increased cortical bone (proximal width +18%, midshaft area +7%). It also raised cancellous bone volume (+25%) by trabecular thickening (+30%) with more intraosseous vascularity and new trabecular interconnections (node-terminus ratio, +57%; trabecular pattern factor, −147%; marrow star volume. −48%). In the cortex a prominent discrete subperiosteal domain became wider (+50% midshaft) with exercise and contained more numerous (+15%) CIII-stained fibres. In contrast the encircled inner bone developed more numerous (+14%) OPN-rich osteons. It is concluded that short-term voluntary exercise augments both cortical and cancellous microarchitecture. It also alters protein composition, such that expanding arrays of Sharpey’s fibres within a circumferential proximal domain (Part I) interconnect more powerfully with the musculature and interface more robustly with the core bone that in response becomes more vascular and biodynamic, providing further insight into how muscle mass may be skeletally translated.  相似文献   

19.
A follow-up in 1262 women was conducted after the discontinuation of teriparatide. The hazard ratio for combined teriparatide group (20 and 40 microg) for the 50-month period after baseline was 0.57 (p = 0.002), suggesting a sustained effect in reducing the risk of nonvertebral fragility fracture. INTRODUCTION: Treatment with teriparatide [rhPTH(1-34)] 20 and 40 microg once-daily subcutaneous dosing significantly reduced the risk of nonvertebral fragility fractures over a median exposure of 19 months. MATERIALS AND METHODS: All participants in the Fracture Prevention Trial were invited to participate in a follow-up study. Prior treatment assignments were revealed, and patients were able to receive osteoporosis treatments without restriction. RESULTS: Approximately 60% of the 1262 patients received an osteoporosis treatment at some time during follow-up, with greater use in the former placebo group than in the combined former teriparatide group (p < 0.05). The hazard ratios for nonvertebral fragility fractures in each teriparatide group relative to placebo were statistically significant for the 50-month period including treatment and follow-up (p < 0.03). In the follow-up period, the hazard ratio was significantly different between the 40 mug and combined groups versus placebo but not for the 20 microg group versus placebo. However, the 20 and 40 microg groups were not different from each other. Kaplan-Meier analysis of time to fracture showed that the fracture incidence in the former placebo and teriparatide groups diverged during the 50-month period including teriparatide treatment and follow-up (p = 0.009). Total hip and femoral neck BMD decreased in teriparatide-treated patients who had no follow-up treatment; BMD remained stable or further increased in patients who received a bisphosphonate after teriparatide treatment. CONCLUSIONS: While the study design is observational, the results support a sustained effect of teriparatide in reducing the risk of nonvertebral fragility fractures up to 30 months after discontinuation of treatment.  相似文献   

20.
Response to osteoporosis therapy is often assessed by serial BMD testing. Patients who lose BMD without secondary causes of bone loss may be considered to be “nonresponders” to treatment. We examined vertebral fracture (VF) risk, change in lumbar spine (LS) BMD, and change in amino‐terminal extension peptide of procollagen type I (PINP) in postmenopausal women whose femoral neck (FN) BMD decreased, increased, or was unchanged after receiving teriparatide (TPTD) or placebo (PL) in the Fracture Prevention Trial. FN and LS BMD were measured at baseline and 12 mo. VFs were assessed by lateral spine radiographs at baseline and study endpoint. A BMD change from baseline of >4% was considered to be clinically significant. Decreases of >4% FN BMD were less common in women receiving TPTD (10%) versus PL (16%, p < 0.05), yet women on TPTD who lost FN BMD still had significant reductions in VF risk compared with PL (RR = 0.11; 95% CI = 0.03–0.45). VF risk reduction with TPTD compared with PL was similar across categories of FN BMD change from baseline at 12 mo (loss >4%, loss 0–4%, gain 0–4%, or gain >4%; interaction p = 0.40). Irrespective of FN BMD loss or gain, TPTD‐treated women had statistically significant increases in LS BMD and PINP compared with PL. In both groups, losses or gains in FN BMD at 12 mo corresponded to losses or gains in BMC rather than changes in bone area. In conclusion, loss of FN BMD at 12 mo in postmenopausal women with osteoporosis treated with TPTD is nevertheless consistent with a good treatment response in terms of VF risk reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号