首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
右叶部分肝移植肝静脉的临床应用解剖   总被引:16,自引:5,他引:16  
目的:为右叶部分肝移植提供肝静脉的解剖学基础。方法:观测52个铸型标本中肝静脉的走行、分布、分型,肝中静脉肝左静脉合干比率,肝短静脉的数量,大小,及其在肝静脉的各类型中的出现率。结果:肝静脉的分型中A型、B型、C型分别为65.4%、26.9%、7.7%。肝中静脉肝左静脉合干机率67.3%。肝短静脉出现率为32.6%,肝右静脉汇入下腔静脉处与肝中静脉汇入肝左静脉或下腔静脉处的距离2.Ocm以内者占80.7%。结论:本文结果为右叶部分肝移植提供了肝静脉的解剖学基础,提示中国人肝静脉的结构似乎较适合右叶部分肝移植。  相似文献   

2.
劈离式肝脏移植两种劈离方法的比较研究   总被引:1,自引:0,他引:1  
目的:比较研究劈离式肝脏移植两种主要劈离方式一经典劈离方式和改良劈离方式的差异,以选择一种安全易行的方式。方法:取58例福尔马林固定成人尸肝和8例新鲜肝脏进行劈离肝移植的应用解剖学研究。分别采用经典劈离方式和改良劈离方式,比较肝脏各段动脉血供、静脉回流及胆管的损伤情况。结果:本组66例肝脏66.7%Ⅷ段、100%Ⅴ段(部分或全部)通过肝中静脉回流。采用经典劈离方式标本中,右半植肝Ⅴ、Ⅷ段静脉回流均被破坏。结论:改良劈离方式比经典劈离方式更安全可靠,在供肝大小适合的情况下应成为临床劈离式肝脏移植的首选术式。  相似文献   

3.
家猪肝脏劈离的应用解剖学研究   总被引:6,自引:0,他引:6  
目的 :为了建立家猪劈离肝移植模型需掌握家猪肝脏的应用解剖学 ,从而选择安全的劈离平面。方法 :家猪肝脏 42例 ,通过灌注模型了解肝实质内管腔的分布与走行 ,并对两种劈离方式进行比较。结果 :沿正中裂劈离难以保证两半植肝的安全性 ;沿Taira线劈离既保证了左、右植肝的门静脉血供又保证了肝静脉回流畅通。结论 :沿Taira线劈离应成为建立家猪肝脏劈离的首选术式。  相似文献   

4.
螺旋CT三维重建对各肝段引流静脉的研究及其临床意义   总被引:5,自引:1,他引:5  
目的:明确生理状态下的肝静脉在各个肝段内的解剖分布,以提高肝移植或肝段切除术后残肝功能的恢复。方法:100例采用经动脉性肝门静脉CT造影,重建肝门静脉以及肝静脉三维结构。设定以肝右、肝中、肝左静脉为主肝静脉,以肝段之间走行或某一肝段周边存在的粗大肝静脉为副肝静脉,观察各肝段引流静脉的形式。结果:在肝脏第2~8肝段内,发现有7种不同的副肝静脉,其出现率第8段肝静脉为67%,第7段肝静脉为91%,第6、7段肝静脉为73%。第5、8段肝静脉为52%,第4段肝静脉为58%,第3、4段肝静脉为39%,第2段肝静脉为56%。各段内肝静脉的引流方式表现为三种形式。结论:采用经动脉性肝门静脉CT造影,重建肝静脉及肝门静脉来观察肝段引流静脉,这对决定术式及判断预后方面将起很大的作用。  相似文献   

5.
按背驮式原位肝移植术要求,对17例成人肝和肝短静脉进行解剖观察与测量。结果显示:左、中、右肝静脉主干长为22.8±8.8mm,50.98±23.94mm,22.8±9.5mm;管径分别为10.74±2.86mm,9.5±3.75mm,15.6±4.05mm。右肝静脉除1例外,都以单独1支形式注入下腔静脉。中肝静脉和左肝静脉分三种形式注入下腔静脉:Ⅰ型4例,占23.5%,Ⅱ型12例,占70.6>6%;Ⅲ型1例,占5.9%。它们不在同一个平面注入下腔静脉。右、中肝静脉之间距离7~23mm,平均15.6mm。文章结合解剖学发现着重讨论了病肝切除和肝静脉成形术中的有关问题。  相似文献   

6.
下腔静脉肝后段的观测及其临床意义   总被引:2,自引:1,他引:1  
目的 :研究下腔静脉肝后段口径变化规律以及与肝静脉开口的关系。方法 :选用福尔马林固定的离体无病变肝脏 3 4例 ,直角规测量内径 ,剖开管腔观察管壁形态及肝静脉开口情况。结果 :下腔静脉肝后段近心端内径为 ( 2 3 .8± 1.1)mm ,狭部内径为 ( 18.0± 1.4)mm ,远心端内径为 ( 2 0 .2± 1.5 )mm ;狭部管腔内多形成纵行皱襞 ;肝左、中、右静脉开口于下腔静脉肝后段上 1/4段 ,口径较大的肝小静脉开口于肝后段下 2 /4段。并使该段中上部形成一向左开放的夹角 ,其平均角度为 ( 15 9.7± 2 .8)°。结论 :下腔静脉肝后段狭部和腔内纵襞的存在 ,为该段狭窄性疾病和血栓形成的解剖学基础  相似文献   

7.
背景:劈离式原位肝移植技术存在术后胆道并发症发生率高、左内侧叶缺血坏死等问题,为了进一步开展劈离式肝脏移植的研究,需要找到一种适宜的动物,建立稳定的移植及麻醉模型。 目的:探讨猪劈离式原位肝移植模型建立及其术中麻醉处理特点。 方法:40只健康3月龄猪,体质量25~30 kg,在气管插管全麻下进行静脉-静脉转流,供肝沿Taira线劈离,对断面修整后,行原位肝脏移植。 结果与结论:手术时间(220±31) min,无肝期(35±6) min。术后肝功能恢复顺利,手术成功率50%,10只动物存活时间均超过48 h,无肝期、再灌注期血流动力学波动明显,并伴有代谢性酸中毒;再灌注期血钾升高明显,体温下降明显。结果可见:①猪同种异体原位劈离式肝脏移植模型(沿Taira线)具有操作简便,标准化程度及手术成功率高,重复性和稳定性好的优点,是大动物肝移植系列研究的较理想动物模型。②即使在良好的静脉转流下无肝期、再灌注期血流动力学、内环境变化仍明显,麻醉过程中纠正凝血机制及维持内环境的稳定对手术的成功至关重要。  相似文献   

8.
肝静脉,肝短静脉注入下腔静脉壁处在肝移植术中的应用   总被引:6,自引:0,他引:6  
目的 探讨采用膈下肝段下腔静脉壁前半部钳夹,解决肝移植术中无肝期下肢静脉回流障碍。方法 对17例成人尸肝进行解剖,以时钟刻度方法描述肝静脉、肝短静脉注入下腔静脉壁的位置。结果 肝左静脉、肝右静脉、肝中静脉均注入下腔静脉前半壁(即3~9点),肝短静脉多为针眼大小,注入部位多在5~9点之间(154支),少数注入9~11点(9支)。结论 肝移植术中可以采用下腔静脉壁前半钳夹,解决无肝期下肢静脉回流障碍。  相似文献   

9.
肝脏血管铸型透明标本制作方法   总被引:3,自引:0,他引:3  
现代肝外科的发展出现两大热点:一、肝切除术已从传统的非解剖性肝切除向精确的肝段切除过渡;二、活体肝移植和劈离式肝移植广泛开展。这些均需要精确地界定肝表面和内部划分肝段的解剖性标志。  相似文献   

10.
为给MR图像精定位肝内占位性病变提供断面解剖学依据,利用20例腹部连续横断面标本,研究了肝段在横断面上的划分。正中裂为下腔静脉中点至肝中静脉或胆囊窝中份的连线;在叶间裂的上份为下腔静脉中点至镰状韧带的连线,门静脉左支脐部和肝圆韧带裂是其中、下份的天然标志;肝左静脉位一左段间裂中;右叶间裂为下腔静脉中点至肝右静脉的连结;肝门或门静脉右支可作为右段间裂的标志;背裂为下腔静脉缘至门静脉或静脉韧带裂右端的  相似文献   

11.
目的 观察和测量国人正常肝静脉(HV)流出道及其毗邻结构,为临床应用提供解剖学基础。方法 2014年3月—2015年3月,对57例正常成人尸体标本进行解剖,观测肝左静脉(LHV)、肝中静脉(MHV)及肝右静脉(RHV)汇入下腔静脉(IVC)的开口类型、开口的水平位置关系、开口上缘与膈肌裂孔的位置关系,比较LHV、MHV及RHV开口直径的大小及其开口上缘至膈肌裂孔的距离;观察膈肌裂孔形态及其与IVC之间的组织结构,比较膈肌裂孔长径、短径的大小。两样本之间比较采用t检验;多样本之间比较采用单因素方差分析,两两比较采用LSD-t检验。结果 57例肝脏标本HV的开口类型有4种:IVC壁有2个HV开口(LHV+MHV,RHV)占73.68%(42/57),有3个HV开口(LHV、MHV、RHV)占17.54%(10/57),RHV开口旁存在直接开口于IVC的肝右上静脉占5.26%(3/57),RHV开口处被条索样结构分隔占3.51%(2/57)。LHV、MHV及RHV开口的直径分别为(9.25±1.84)mm、(8.94±1.52)mm及(14.29±2.84)mm,RHV直径大于LHV及MHV直径(P值均<0.01)。49例LHV或共干(LHV+MHV)开口上缘高于RHV,占85.96%(49/57);8例与RHV开口上缘等高,占14.04%(8/57)。39例RHV和37例LHV、MHV开口位于膈肌裂孔下方,2例LHV+MHV共干开口上缘位于膈肌裂孔上方。位于膈肌裂孔下方的LHV、MHV及RHV开口上缘至膈肌裂孔的最短距离分别为(3.19±0.74)mm、(3.62±0.81)mm及(9.03±3.02)mm,RHV开口上缘至膈肌裂孔的距离大于LHV、MHV至膈肌裂孔的距离,差异均有统计学意义(P值均<0.01)。膈肌裂孔的长径和短径分别为(26.94±3.47)mm及(19.62±2.80)mm,裂孔长径大于短径(t=10.242,P<0.01),HE染色显示膈肌裂孔处的IVC管壁外分布大量纤维结缔组织。结论 正常成人HV汇入IVC的开口类型中以LHV及MHV共干最多见,其开口水平位置多高于RHV开口,少部分RHV开口被条索状结构分开;LHV及MHV开口至膈肌裂孔的距离更近,少部分LHV及MHV开口上缘位于膈肌裂孔上方;IVC与膈肌裂孔之间间隙由纤维结缔组织所充填,而非膈肌中心键直接附着。这些解剖特点将有助于HV流出道疾病的临床研究及治疗方案的选择。  相似文献   

12.
The minimization of blood loss is the main objective during hepatic resection to minimize perioperative mortality and morbidity. Selective clamping of the hepatic veins, combined with pedicle clamping, may make it possible to spare the non-resected territories from ischemia. These clamping procedures are particularly useful in the treatment of hepatic metastases of colorectal cancers, because preoperative chemotherapy may temporarily alter the hepatic parenchyma, increasing its susceptibility to ischemia. During left lobectomy or left hepatectomy, extraparenchymatous control of the left and median hepatic veins (the LHV and MHV, respectively) and of the common trunk (CT) requires exact knowledge of this anatomical region. Biometric analyses were carried out on extraparenchymatous portions of the LHV, MHV and CT of 20 fresh cadavers and 10 living subjects, to assess the feasibility of selective clamping without liver mobilization. Fourteen of the 20 cadaveric subjects (70%) had a common trunk between the LHV and the MHV. The extraparenchymatous portion of the LHV was between 4 and 13 mm long, depending on the presence or absence of a CT. The angle between the sagittal plane of the inferior vena cava and the LHV was about 18.3° on average, in the absence of liver mobilization. Selective clamping of the left hepatic vein was possible only when the extraparenchymatous portion of this vein was at least 6 mm long. The selective clamping of this vein is, therefore, less straightforward than that of the right hepatic vein, given the high frequency of a common trunk shared with the median hepatic vein and of a short extraparenchymatous segment.  相似文献   

13.

Purpose

The aim of this study is to present the anatomical data about intrahepatic venous anastomoses found in normal human livers. The focus is on the middle hepatic vein (MHV) anastomoses, because their existence or non-existence could be of crucial importance in tumour resections as well as in split or living donor liver transplantations.

Materials and methods

The frequency of livers with intrahepatic venous anastomoses was determined on 164 corrosion casts and the diameter of each anastomosis was measured. Additionally, the type of connection and the position within the liver (liver segment) was determined for each MHV anastomosis.

Results

Intrahepatic venous anastomoses were found in 46 % (75/164), whereas MHV anastomoses were found in 28 % (44/164) of liver casts. Most commonly (39/44), MHV had anastomotic connections with the right hepatic vein (RHV), and also with the inferior RHV, the left hepatic vein and the short subhepatic vein. In more than three quarters of liver casts, MHV–RHV anastomoses were found in liver segment 8; in 45 % of cases, there was more than one anastomosis in this liver segment. The diameter of MHV–RHV anastomoses found in segment 8 was ≥1 mm in 90.6 % of cases.

Conclusion

As MHV anastomoses were present in more than a quarter of all examined liver casts, we believe that detailed anatomical data presented in this article, together with up to date radiologic technics which enable even 3D reconstruction of venous anastomoses in the liver, could contribute to the clinician’s decisions when planning surgical procedures.  相似文献   

14.
目的 :观察肝左叶静脉解剖结构 ,模拟左外叶活体肝移植肝静脉切取方法。方法 :解剖正常人肝脏标本 30具 ,观察肝脏铸型标本 30具 ,测量肝左静脉长度、管径及属支分布情况。结果 :肝左静脉主要由左外叶上段静脉支和下段静脉支汇合并延续而成 ,主要接收或不接收较有意义的属支有左后上缘静脉支和左叶间裂静脉支。结论 :肝左外叶静脉血管解剖变异较多 ,活体取肝前应仔细研究其结构特点 ,设计合理的切取模式 ;移植前肝静脉需行必要的整形 ,以便与受体静脉进行吻合。少数情况下肝左外叶活体移植为禁忌证。  相似文献   

15.
Sixty-one human livers obtained from donated Japanese adult cadavers were dissected to reveal the ramification pattern of the portal and hepatic veins, and their topographical relationship in the left anatomical lobe. The segmental portal vein supplying S2 (P2) tended to form a single stem, whereas that of S3 (P3) was usually double. An intermediate branch between P2 and P3 was observed in 23.0% of livers. In spite of variation between livers, definite P2 and P3 were identified in 47 specimens. One tributary of the left hepatic vein (LHV) was usually present for drainage of S2, and two tributaries were present for S3 (sometimes also for S2 and/or S4). The latter two tributaries of the LHV and the two subsegmental branches of S3 showed three patterns of three-dimensional interdigitations. From these results, the portal vein system did not seem to have a two segmental composition (i.e., S2 and S3) in 23.0% of specimens, whereas the hepatic vein system did not have an intersegmental course in 23.4%. Thus, there were obvious limitations in using each system to determine the liver segment. Taking the overlapping cases into consideration, the left anatomical lobe of 41.0% of specimens did not seem to fit the definition of Couinaud's liver segment. In addition, four patterns of fissure vein (or scissural vein), > 5 mm in diameter at its terminal, were identified: (1) middle hepatic vein type (left median vein, 9.8%); (2) LHV type (left medial vein, 41.0%); (3) true fissure vein (3.3%); and (4) absent cases (45.9%). The former two types also suggested limitations of the hepatic vein system as an indicator of the segmental border.  相似文献   

16.
Background  DIPS is to create a portosystemic shunt directly between the portal vein and the retrohepatic inferior vena cava (RIVC) without passing through the hepatic vein. It has been recommended that the DIPS could be applied when routine TIPS is unsuccessful or the patient has anatomical variations of the hepatic vein. The aim of this study was to identify the safe area of the RIVC where the DIPS can be safely established. Materials and methods  The lengths of the safe and unsafe areas of the RIVC were measured. The tributaries of the RIVC were examined. The diameter of these tributaries was measured and their incidence and relation to the safe area of the RIVC were observed. The puncture distances of DIPS and TIPS were measured and compared. Results  The liver together with the RIVC was collected from 31 adult cadavers (age 32–65 years; M/F 25/6). 1. The safe and unsafe areas of the RIVC: the total length of the RIVC was 70.1 ± 13.0 mm (33.1–92.0 mm), whereas the length of the safe area of the RIVC was 54.3 ± 12.3 mm (20.2–71.1 mm), which was about over 70% of the total length. The length of the unsafe area at the upper end was 5.9 ± 1.8 mm (3.0–10.2 mm), and at the lower end was 8.9 ± 2.9 mm (3.1–20.0 mm). 2. The tributaries of the RIVC: In about 90% of the cadavers (90.3%; 28 out of 31), the LHV and MHV had the common trunk. The other three cadavers (9.7%; 3 out of 31) had independent RHV, MHV and LHV. There were 217 of small hepatic veins draining into the lower segment of the RIVC. Over 70% of the small hepatic veins were smaller than 5 mm in diameter and distributed on the anterior and left wall of the lower RIVC. 3. Puncture distances of the DIPS and TIPS: The distances from the bifurcation of the portal vein to the RIVC, to the right and to middle hepatic veins were 31.2 ± 7.9 mm (15.0–47.2 mm), 38.6 ± 8.1 mm (17.2–59.0 mm), and 46.6 ± 8.2 mm (34.0–68.1 mm), respectively. Thus, the puncture distances via the RIVC, RHV and LHV were significantly different (< 0.001). The puncture distance of the DIPS was shortest. Conclusion  Anatomically, DIPS is a feasible interventional procedure to make a intrahepatic shunt between IVC and portal vein directly, and has its anatomical advantages compared to TIPS.  相似文献   

17.
We describe the pattern of intrahepatic vessel ramification in the right posterior hepatic sector in a population of 197 adults. Each specimen was dissected from its visceral (inferior) surface in order to demonstrate variations in the distribution of the portal vein branches to the hepatic segments of the right lobe, especially to segments VI (S6) and VII (S7) as described by Couinaud. We also examine whether three hepatic veins, i.e., the right hepatic vein (RHV), middle hepatic vein (MHV), and the short hepatic vein (SHV), aid the identification of segmental portal branches in the lower posterior sector. Four major patterns of branching of the posterior sectorial trunk of the portal vein system are described. In group A (32.0%) a single posterior trunk formed an arch‐like pattern sending multiple branches to S6 and S7 (P6 and P7). We named the multiple branches to the apparent S6 the inferoposterior portal branches. It was difficult to identify which of these branches were equivalent to P6. In group B (27.9%), the posterior sectorial trunk bifurcated to form P6 and P7. In most of the specimens in this group, therefore, we were able clearly to identify both S6 and S7 based on the portal vein system. In group C (6.6%), the trunk trifurcated to form P6, P7, and an intermediate branch, which supplied both segments or a gray zone between them. Group D (33.5%) included variations of the anterior segmental branches, and in specimens of this group, the anteromedial border of the sector was difficult to identify. Notably, the three‐dimensional interdigitating topographical relationship of the hepatic veins and the portal branches was not evident in the lower posterior sector, since tributaries of the RHV and the portal branches followed similar courses and paralleled each other in the region and since the territory of the SHV was usually restricted to the superficial parenchyma near the inferior surface. In group A, tributaries of the RHV/SHV (>3 mm in diameter) passed between the inferoposterior portal branches in only 22.2%/14.3% of the specimens. Thus the hepatic veins often did not reveal which of the multiple inferoposterior branches was P6. Moreover, in the subset of Group B in which the segments were identified based on the portal vein ramification, tributaries of the RHV/SHV (>3 mm in diameter) showed the intersegmental interdigitating arrangement in only 32.0%/6.0% of the specimens. In addition, a thick tributary of the MHV, sometimes arising from S6, did not run along, but penetrated the S5/S6 border plane from the lateral to the medial side. Therefore, the three hepatic veins (RHV, SHV, MHV) often did not aid the identification of the liver segments in the region. Consequently, the less than ideal combinations of irregular configurations of the portal and hepatic venous systems suggest that the right posterior segments cannot be conclusively identified anatomically in 30–40% of cases. Other means of identification, such as the conventional proportional manner (the upper and lower halves of the posterior sector roughly correspond to S6 and S7) may be required. Clin. Anat. 12:229–244, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

18.
目的:探讨64层螺旋CT应用于正常人活体体肝静脉研究的可行性,观察三维重建肝静脉的一般形态及走行规律.方法:153例正常受试者经肘正中静脉注射造影剂后,使用64层螺旋CT进行上腹部扫描,图像采集后经容积再现(volume rendering,VR)技术重建肝静脉.结果:重建图像清晰,可显示出6~8级血管及与周围组织间的关系.其中153例肝静脉的分型结果如下:①3分支型,占35.3%(54例);②中左共干型,占41.8%(64例);③中左合干型,占20.9%(32例);④中右共干型,占2.0%(3例).结论:64层螺旋CT可以作为研究活体肝静脉形态的有效手段,三维重建能更准确、全方位地显示肝静脉的正常解剖类型和发现变异,而且图像清晰,对于活体肝静脉的研究有较好的临床应用价值.  相似文献   

19.
目的:模拟左外叶活体肝移植门静脉、肝动脉和胆管的切取方法。方法:解剖正常人肝脏标本30具,观察肝脏铸型标本30具,测量门静脉、肝动脉及胆管长度、管径及属支或分支分布情况。结果:左外叶门静脉的血供来自门静脉左支,主要为左外叶上段门静脉支、左外叶下段门静脉支;动脉主要来源于肝固有动脉、肝左动脉、肝中动脉,偶有迷走动脉支;胆道引流属支有左外叶上段胆管支、左外叶下段胆管支。结论:左外叶解剖变异较多,活体取肝前应仔细研究其结构特点,设计合理的切取模式;对门静脉、肝动脉和胆管支需行必要的整形,以便与受体相应的管道进行吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号