首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study concerned the effects of ceruletide, a cholecystokinin (CCK)-related peptide, on amphetamine-stimulated behaviors (hyperlocomotion and stereotypy) and amphetamine-induced dopamine (DA) release from the striatum and the nucleus accumbens of the rat. Also, behavioral alterations due to ceruletide administration were compared with the change in DA release from these areas. Ceruletide 160 μg/kg s.c., attenuated hyperlocomotion induced by amphetamine, 1 mg/kg and 3 mg/kg s.c., but had no effect on amphetamine-induced stereotypy. Results from in vivo microdialysis experiments showed that s.c. administration of ceruletide caused a significant inhibition of the amphetamine-induced increase in DA release in the nucleus accumbens but not in the striatum. These neurochemical inhibitory effects of ceruletide dissappeared completely with bilateral subdiaphragmatic vagotomy. However, infusion of 1 μM of ceruletide into the nucleus accumbens through the dialysis probe had no effect on amphetamine-induced DA release. These results suggest that the inhibitory effect of peripheral administration of ceruletide on amphetamine-induced hyperlocomotion is closely related to the change in DA release from the nucleus accumbens. In the nucleus accumbens, systematically administered ceruletide acts initially on the peripheral organs and influences the activity of DA terminals via an unknown path related to the vagus. Ceruletide had different actions on the dopaminergic system in the striatum and that in the nucleus accumbens.  相似文献   

2.
Rats infused with amphetamine (0.65 mg/kg/h) for 5 days through Alzet (Tm) minipumps displayed a multiphasic sequence of behavioral changes. The behavior of the animals was characterized during daily 40-min test sessions in behavioral pattern monitors (BPM). Within 24 h after implantation of the minipumps, rats infused with amphetamine exhibited prolonged periods of oral stereotypies (licking or biting). By the 3rd day this stereotypy was replaced with locomotor and investigatory activation as the predominant response pattern. In addition, the magnitudes of tactile startle responses were reduced in a separate group of animals infused with amphetamine for 9 days. In accord with previous findings, dopamine (DA) in the corpus striatum was markedly reduced by the 3rd day, whereas DA in the nucleus accumbens was transiently increased. These results indicate that continuous infusion of amphetamine produces a relatively selective depletion of striatal DA resulting in a reduction in amphetamine-induced stereotypy with a corresponding increase in locomotor activation.  相似文献   

3.
Rationale Regulation of dopamine release and synthesis occurs via pre-synaptic dopamine (DA) D2/D3 autoreceptors (DARs). Mapping of DAR function in vivo is difficult and is usually best assessed using invasive measures of DA release, such as microdialysis at discrete sites. We wished to show that pharmacological magnetic resonance imaging (phMRI) may prove useful for this purpose. Objective To demonstrate that the relative cerebral blood volume (rCBV) changes induced by amphetamine can be modulated by DA D2 receptor antagonists and agonists in a manner consistent with modulation of DAR function and to compare these effects with microdialysis. Methods We used phMRI with iron oxide contrast agents to map changes in rCBV in response to an amphetamine challenge, pre-treatment and post-treatment with varying doses of the D2 antagonist eticlopride and the D2 agonist quinpirole. We also compared the effects of D2 antagonism using microdialysis measurements of DA release. Results Antagonism of D2 receptors with eticlopride potentiated rCBV changes induced by amphetamine in the nucleus accumbens and caudate putamen in a dose-dependent manner. The amphetamine-induced increase in rCBV in the accumbens in animals pre-treated with eticlopride was paralleled by a similar percentage increase in DA release measured by means of microdialysis. Conversely, agonism of D2 receptors using quinpirole reduced amphetamine-induced rCBV changes in the caudate putamen and nucleus accumbens. The effects of both quinpirole and eticlopride on amphetamine-induced rCBV changes were largest in the nucleus accumbens. Conclusions These results suggest that phMRI may potentially prove useful to map DAR function non-invasively in multiple brain regions simultaneously.  相似文献   

4.
The neurofunctional effects of developmental alcohol exposure (3% v/v solution from day 15 of gestation to day 7 after parturition) have been investigated in Sardinian alcohol-preferring (sP) and alcohol-nonpreferring (sNP) rat lines, selectively bred for opposite alcohol preference and consumption. Alcohol exposure significantly decreased the rate of ultrasonic emission in sP male pups; whereas, it did not affect this indicator of emotional reactivity in sNP animals. Perinatal alcohol intake did not influence either learning of an active avoidance task or hippocampal long-term potentiation in both offspring lines. Significant differences in time spent exploring novel objects were observed between control sP and sNP rats subjected to the novel exploration object test. Alcohol exposed sP rats, but not alcohol exposed sNP rats, apparently lost the capacity to discriminate between the novel and the familiar object, even though this difference is difficult to interpret because of the large differences in the respective responses to the novel objects. Neurochemical experiments have shown that basal levels of dopamine (DA) and homovanillic acid (HVA) were significantly higher in the nucleus accumbens (NAC) of sP rats with respect to sNP animals. Perinatal alcohol did not affect basal DA and HVA concentrations or amphetamine-induced DA increase and HVA decrease in the NAC of either sP or sNP offspring. These results suggest that subtle behavioral alterations induced by developmental exposure to low doses of alcohol, which do not cause malformations and/or overt neurotoxicity, may be associated with genetic factors, although not necessarily those responsible for differences in alcohol preference.  相似文献   

5.
Cocaine is known to enhance nucleus accumbens dopamine (NAcc DA), to serve as a positive reinforcer and to produce negative effects, such as anxiety. The influence of diazepam on cocaine intake, cocaine-stimulated behavioral activity and NAcc DA was investigated using self-administration and experimenter-administered intravenous (i.v.) cocaine. In Experiment 1, rats were pretreated with diazepam (0.25 mg/kg) or saline (0.1 ml) 30 min prior to 20 daily 1-hour cocaine (0.75 mg/kg/injection) self-administration sessions. Cocaine intake increased for all animals across sessions, but was highest in diazepam-pretreated animals. Diazepam rats also self-administered their first cocaine injection of each session faster than controls. Experiment 2 utilized in vivo microdialysis to assess NAcc DA levels before and after experimenter-administered i.v. cocaine injections (0.75 mg/kg/injectionx2; 10-min interval) in diazepam- and saline-pretreated rats. Group differences were not revealed across basal and cocaine-stimulated NAcc DA assessments, indicating that diazepam did not decrease NAcc DA during cocaine self-administration. Findings that diazepam enhances cocaine self-administration and decreases cocaine response latency support the notion that cocaine-induced anxiety limits voluntary cocaine intake. It is further suggested that individual variations in cocaine-induced aversive effects may determine whether cocaine use is avoided or repeated.  相似文献   

6.
Rationale: We have previously shown that environmental novelty enhances the behavioral activating effects of amphetamine and amphetamine-induced expression of the immediate early gene c-fos in the striatal complex, particularly in the most caudal portion of the caudate. In contrast, we found no effect of novelty on the ability of amphetamine to induce dopamine (DA) overflow in the rostral caudate or in the core of the nucleus accumbens. Objectives: The twofold aim of the present study was to determine the effect of environmental novelty on (1) amphetamine-induced DA overflow in the shell of the nucleus accumbens and in the caudal portions of the caudate, and (2) glutamate and aspartate overflow in the caudal portions of the caudate. Methods: Two groups of rats with a unilateral 6-hydroxydopamine lesion of the mesostriatal dopaminergic system received amphetamine (0.5 mg/kg, i.v.) in physically identical cages. For one group, the cages were also the home environment, whereas, for the other group, they were a completely novel environment. In vivo microdialysis was used to estimate DA, glutamate, and aspartate concentrations. Results: Environmental novelty enhanced amphetamine-induced rotational behavior (experiments 1–3) but did not alter amphetamine-induced DA overflow in either the shell of the nucleus accumbens (experiment 1) or the caudate (experiment 2). In addition, the ability of environmental novelty to enhance amphetamine-induced behavioral activation was not associated with changes in glutamate or aspartate efflux in the caudate (experiment 3). Conclusions: The present data indicate that the psychomotor activating effects of amphetamine can be modulated by environmental context independent of its primary neuropharmacological actions in the striatal complex. Received: 27 July 1999 / Accepted: 30 November 1999  相似文献   

7.
T-type calcium channels are important in burst firing and expressed in brain regions implicated in schizophrenia. Therefore, we examined the effects of novel selective T-type calcium channel antagonists in preclinical assays predictive of antipsychotic-like activity. TTA-A2 blocked the psychostimulant effects of amphetamine and MK-801 and decreased conditioned avoidance responding. These effects appeared mechanism based, rather than compound specific, as two structurally dissimilar T-type antagonists also reduced amphetamine-induced psychomotor activity. Importantly, the ability to reduce amphetamine's effects was maintained following 20 days pre-treatment with TTA-A2. To explore the neural substrates mediating the observed behavioral effects, we examined the influence of TTA-A2 on amphetamine-induced c-fos expression as well as basal and stimulant-evoked dopamine and glutamate release in the nucleus accumbens. TTA-A2 decreased amphetamine-induced c-fos expression as well as MK-801-induced, but not basal, glutamate levels in the nucleus accumbens. Basal, amphetamine- and MK-801-induced dopamine efflux was altered. These findings suggest that T-type calcium channel antagonism could represent a novel mechanism for treating schizophrenia.  相似文献   

8.
The influence of neuronal alterations induced by early undernutrition on the stimulant effect of cocaine was assessed in adult rats submitted to a protein deprivation schedule at perinatal age. To evaluate the sensitization phenomenon induced by repeated cocaine administration, different groups of control (C) and deprived (D) rats received a daily injection of cocaine (5, 10 or 15 mg/kg, i.p.) for 16 days. Behavioral parameters were assessed every two days in an open-field. Dose-response curves obtained with different doses of cocaine used revealed a shift to the left in the locomotor activity curves of D rats compared to controls. Thus, D animals showed a clear behavioral sensitization to the lower dose of cocaine, whereas this phenomenon was only observed in C rats for the higher dose used. To correlate this differential development of sensitization with neurochemical parameters, we assessed extracellular dopamine (DA) levels in nucleus accumbens (core and shell) and in the dorsal caudate-putamen, using a microdialysis technique. A challenge with cocaine in cocaine pre-exposed animals produced a different increase in DA output only in nucleus accumbens "core" of D animals. Comparable DA levels were observed in nucleus accumbens shell and in dorsal caudate-putamen of both groups. These results demonstrate that D rats had a lower threshold developing a progressive behavioral sensitization following repeated cocaine administration, as well as higher responsiveness of the nucleus accumbens (core) expressed by increased DA release.  相似文献   

9.
Withdrawal following chronic exposure to opiates or other drugs of abuse, administered as frequent doses, or a chronic infusion can cause reductions in mesolimbic dopamine (DA) transmission. However, mesolimbic DA transmission can be enhanced by opiates or psychostimulants administered intermittently as a single daily injection. Both enhanced and attenuated responsiveness of the mesolimbic DA system may have important implications for substance abuse disorders. Previous studies have shown that procedures that use electrical stimulation or drug treatments to augment neurotransmitter release are more effective for demonstrating declines in mesolimbic DA transmission that persist for extended periods following opiate withdrawal. The present study evaluated the effects of pretreatment with noncontingent morphine on amphetamine-induced DA release in the nucleus accumbens core and conditioned place preference (CPP). Morphine pretreatment was administered as a constant infusion, which was gradually increased to a dose of 50 mg/kg/day over a 1-week period in Wistar rats. At 10 days after cessation of morphine pretreatment, baseline dialysate DA levels in the nucleus accumbens core were unchanged, but amphetamine-induced increases in DA were attenuated by greater than 50% in morphine-pretreated animals. Morphine pretreatment did not modify locomotor activity during conditioning sessions, expressed as absolute values or change in activity counts between saline and morphine injections. Place preference, conditioned by two morphine pairings at 10 and 11 days after the onset of opiate withdrawal, was enhanced by opiate pretreatment between 12 and 33 days after the onset of withdrawal. In conclusion, morphine pretreatment delivered as a constant infusion can have pronounced and long-lasting effects on DA release and CPP, which may have important implications for drug-seeking behavior and treatment of substance abuse disorders.  相似文献   

10.
Earlier work had shown that L-tyrosine administration, precursor to both dopamine (DA) and norepinephrine (NE), could increase brain DA metabolite concentrations after amphetamine treatment and restore amphetamine-induced decreases in whole brain NE. Both monoamines have been suggested to participate in some aspects of continued drug abuse. Rats trained to self-administer IV d-amphetamine were treated with IP tyrosine during test sessions to examine the behavioral and neurochemical response. In animals with less than 35 days of amphetamine exposure, L-tyrosine treatments did not alter amphetamine self-administration. Experiments using a computer-controlled injection apparatus which administered IV amphetamine to naive rats in patterns mimicking those of self-administration animals indicated tyrosine could antagonize amphetamine-induced NE depletions. The increases in DA metabolite dihydroxyphenylacetic acid (DOPAC) were found limited to the striatum, an area not involved in the positive reinforcing effects of amphetamine. Concentrations of DOPAC in nucleus accumbens septi were unchanged by the amphetamine or the amphetamine-tyrosine regimen. In rats with 4-6 months of chronic amphetamine exposure, however, L-tyrosine administration significantly reduced daily drug self-injection. While neurochemical responses to tyrosine could not be performed, it is speculated that chronic long-term amphetamine abuse might alter the tyrosine-induced changes in DA and/or NE synthesis and release compared to that in the acute or short-term amphetamine abuse animals. These data suggest that the success or failure of an experimental pharmacologic treatment strategy in psychomotor stimulant abusers might be dependent on the subjects history of drug abuse.  相似文献   

11.
Repeated exposure to drugs of abuse results in an increased sensitivity to their behavioral effects, a phenomena referred to as behavioral sensitization. It has been suggested that the same neuroadaptations underlying behavioral sensitization contribute to the maintenance and reinstatement of addiction. Dysregulation of dopamine (DA) neurotransmission in the mesoaccumbens system is one neuroadaptation that is thought to lead to the compulsive drug-seeking that characterizes addiction. Evidence that sensitization to psychostimulants and opiates is associated with an enhancement of drug-evoked DA levels in the nucleus accumbens has also been obtained. Like other drugs of abuse, the acute administration of ethanol (ETOH) stimulates DA release in this brain region. Moreover, repeated ETOH experience results in an enhanced behavioral response to a subsequent ethanol challenge. Data regarding the influence of repeated ethanol intoxication and withdrawal upon mesoaccumbal DA neurotransmission is limited. Studies examining ETOH-evoked alterations in mesoaccumbal DA neurotransmission as a function of withdrawal duration are lacking. The present experiments quantified basal and ethanol-evoked DA levels 14 days and 24 h following the cessation of a repeated ETOH intoxication protocol, which results in sensitization to the locomotor activating effects of ethanol. Locomotor activity was assessed in parallel groups of animals. Studies were conducted in two mouse strains, C57BL/6J and DBA/2J, which differ in their behavioral responses to ETOH. The results indicate the development of transient tolerance to both ETOH-induced behavioral activation and evoked accumbens DA release at early withdrawal. Moreover, no enhanced DA response to a subsequent ETOH challenge could be demonstrated in ETOH experienced animals 2 weeks after withdrawal, in spite of the observation of clear behavioral sensitization at this time point. These results suggest that, at least in the case of ethanol, sensitization of the DA mesolimbic system may not be necessary for the development of behavioral sensitization.  相似文献   

12.
There are estrous cycle-dependent differences in amphetamine-stimulated behaviors and striatal dopamine (DA) release; intact female rats exhibit a greater behavioral response to amphetamine on estrus than on other days of the cycle. Following ovariectomy amphetamine-induced behavior is attenuated, as is the striatal DA response to amphetamine in vitro. Repeated estrogen treatment in ovariectomized rats reinstates both of these responses to a level comparable to estrous females. In addition, 30 min after a single treatment with a physiological dose of estrogen there is enhanced amphetamine-induced behavior and increased amphetamine-induced striatal DA detected during microdialysis. This experiment was conducted to determine whether the acute effect of estradiol and the effect of repeated exposure to estrogen are functionally related. We report here that prior treatment with estrogen (three daily treatments of 5 microg estradiol benzoate) results in a significant enhancement of the effect of acute estrogen (5 microg estradiol benzoate) or progesterone (500 microg) on amphetamine-induced striatal DA release and stereotyped behaviors. Both the peak response and the duration of the response are greater in estrogen-primed animals treated with estrogen or progesterone 30 min prior to amphetamine, than in all other groups. Either prior treatment with estrogen (last dose 24 h before) or a single acute injection of estrogen result in an enhanced peak response to amphetamine, with no effect on the duration of amphetamine-induced striatal DA release. Treatment with progesterone in animals not primed with estrogen was not different from treatment with oil vehicle. These results demonstrate that there are both acute and long-term effects of estrogen on the striatum that underlie the dynamic changes in stimulated DA release and amphetamine-induced behaviors during the reproductive cycle.  相似文献   

13.
In female rats the gonadal hormones estrogen and progesterone modulate dopamine (DA) activity in the striatum and nucleus accumbens. For example, there is estrous cycle-dependent variation in basal extracellular concentration of striatal DA, in amphetamine (AMPH)-stimulated DA release, and in striatal DA-mediated behaviors. Ovariectomy attenuates basal extracellular DA, AMPH-induced striatal DA release, and behaviors mediated by the striatal DA system. Estrogen rapidly and directly acts on the striatum and accumbens, via a G-protein-coupled external membrane receptor, to enhance DA release and DA-mediated behaviors. In male rats, estrogen does not affect striatal DA release, and removal of testicular hormones is without effect. These effects of estrogen also result in gender differences in sensitization to psychomotor stimulants. The effects of the gonadal hormones on the striatum and ascending DA systems projecting to the striatum and nucleus accumbens are hypothesized to occur as follows: estrogen induces a rapid change in neuronal excitability by acting on membrane receptors located in intrinsic striatal GABAergic neurons and on DA terminals. The effect of these two actions results in enhanced stimulated DA release through modulation of terminal excitability. These effects of gonadal hormones are postulated to have important implications for gender differences in susceptibility to addiction to the psychomotor stimulants. It is suggested that hormonal modulation of the striatum may have evolved to facilitate reproductive success in female rats by enhancing pacing behavior.  相似文献   

14.
RATIONALE: Nucleus accumbens dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired accumbens DA transmission reallocate their behavior away from food-reinforced activities that have high response requirements and instead select less-effortful types of food-seeking behavior. Although accumbens DA is considered a critical component of the brain circuitry regulating effort-related processes, emerging evidence also implicates adenosine A(2A) receptors. OBJECTIVE: The present work was undertaken to test the hypothesis that accumbens A(2A) receptor stimulation would produce effects similar to those produced by DA depletion or antagonism. MATERIALS AND METHODS: Three experiments assessed the effects of the adenosine A(2A) agonist CGS 21680 on performance of a concurrent choice task (lever pressing for preferred food vs. intake of less preferred chow) that is known to be sensitive to DA antagonists and accumbens DA depletions. RESULTS: Systemic injections of CGS 21680 reduced lever pressing but did not increase feeding. In contrast, bilateral infusions of the adenosine A(2A) receptor agonist CGS 21680 (6.0-24.0 ng) into the nucleus accumbens decreased lever pressing for the preferred food but substantially increased consumption of the less preferred chow. Injections of CGS 21680 into a control site dorsal to the accumbens were ineffective. CONCLUSIONS: Taken together, these results are consistent with the hypothesis that local stimulation of adenosine A(2A) receptors in nucleus accumbens produces behavioral effects similar to those induced by accumbens DA depletions. Accumbens adenosine A(2A) receptors appear to be a component of the brain circuitry regulating effort-related choice behavior.  相似文献   

15.
This study assessed the relationship between extracellular nucleus accumbens (NAc) dopamine (DA) concentrations and sensitized locomotor activation following repeated administration of the DA D2-like receptor agonist quinpirole. Locomotor activity measures and nucleus accumbens microdialysis samples were collected concurrently in response to the first (acute) and tenth (repeated) quinpirole injection (0.5 mg/kg s.c., every other day). Results indicate that acute quinpirole produced locomotor activation and that repeated quinpirole resulted in locomotor sensitization. Acute quinpirole significantly decreased the detection of extracellular concentrations of DA and the DA metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the NAc. Following repeated quinpirole, basal NAc DA levels were decreased, whereas basal DOPAC levels were increased. Nevertheless, quinpirole challenge elicited a significant decrease in DA, DOPAC and HVA following repeated treatment. In addition, although acute quinpirole did not affect NAc levels of the serotonin metabolite 5-hydroxyindolacetic acid (5-HIAA), quinpirole challenge produced a significant increase in 5-HIAA levels following repeated treatment. Taken together, these data indicate that functional DA autoreceptor subsensitivity is not a necessary condition for the expression of behavioral sensitization to quinpirole. Instead, it appears that behavioral sensitization to quinpirole occurs predominantly as a consequence of neuroadaptations that are post-synaptic to DA release.  相似文献   

16.
Infusion in the nucleus accumbens of the glutamate uptake inhibitor L-trans-PDC prevented the amphetamine-induced locomotor response. Since L-trans-PDC has been shown to block the amphetamine-induced increase in glutamate but not in DA release, our result indicates that the glutamate transporter is an obligatory target for the activating properties of amphetamine.  相似文献   

17.
The effects of a potent and specific antagonist of 5-HT3 receptors, ICS 205-930, on the dopamine (DA)-releasing properties of morphine (1.0 mg/kg s.c.), nicotine (0.6 mg/kg s.c.), ethanol (1.0 g/kg i.p.) and amphetamine (0.25 and 1.0 mg/kg s.c.) were studied in rats. DA release was estimated by trans-cerebral dialysis in the nucleus accumbens of freely moving rats. ICS 205-930 (15-30 micrograms/kg s.c.) failed to modify the basal output of DA and its metabolites, however, ICS 205-930 dose dependently reduced the stimulation of DA release by morphine, nicotine and ethanol. Thus, at doses of 30 micrograms/kg s.c., ICS 205-930 completely prevented the morphine-, nicotine- and ethanol-induced stimulation of DA release in the nucleus accumbens; doses of 15 micrograms/kg s.c. partially prevented the morphine-, nicotine- and ethanol-induced stimulation of DA release while doses of 7.5 micrograms/kg s.c. were ineffective. In contrast, ICS 205-930 (up to 30 micrograms/kg s.c.) failed to affect the amphetamine-induced stimulation of DA release in the nucleus accumbens. The inhibitory effects of ICS 205-930 (15 and 30 micrograms/kg s.c.) on the drug-induced stimulation of DA release could also be extended to the neuroleptic haloperidol (0.1 mg/kg s.c.). The results indicate that blockade of 5-HT3 receptors selectively prevents the stimulation of DA release induced by drugs known to stimulate the firing activity of DA neurons.  相似文献   

18.
Regional neurotransmitter changes after acute and chronic electroconvulsive shock (ECS) were studied using the technique of repeated microdialysis. Microdialysis was carried out on alternate sides of the brains of anaesthetised rats before and during the first and the eighth ECS or sham (control) treatments. Extracellular fluid release of monoamines and their metabolites was measured in the frontal cortex, striatum and nucleus accumbens using HPLC with electrochemical detection. The first ECS produced selective regional responses, shown by increased concentrations of noradrenaline (NA) and dopamine (DA) in frontal cortex, by unchanged DA content in striatum, and by a small rise in NA and a fall in DA concentrations in nucleus accumbens. Concentrations of metabolites increased after ECS in all regions studied, and for homovanillic acid and dihydroxyphenylacetic acid, the temporal pattern of these changes did not resemble that of DA. Comparison of neurotransmitter responses as per cent of baseline release after the first and eighth ECS treatments showed they were identical. Basal release of monoamines and metabolites before the first ECS or sham treatment was similar in all regions studied. Prior to the eighth treatment, basal release of NA in the frontal cortex and DA in the striatum was elevated in the ECS-treated animals, while basal release of NA in the nucleus accumbens was reduced in both ECS-and sham-treated animals. These data suggest that acute and chronic ECS have different and region-specific effects on neurotransmitter release, although the overall pattern of these responses is not changed by chronic treatment. The catecholamine-releasing actions of ECS, and the changes in basal release of neurotransmitters seen after chronic treatment may contribute to its therapeutic effects.  相似文献   

19.
In vivo microdialysis was used to study the effect of chronic desipramine (DMI, 5 mg/kg, twice daily for 21 days) on increases in interstitial dopamine (DA) produced by local administration of d-amphetamine (1.0, 3.3 and 10.0 microM) in the nucleus accumbens. Locally applied amphetamine increased interstitial DA in a dose-dependent manner. The amphetamine-induced increase was significantly greater in the DMI treated animals. These data suggest that chronic DMI may directly influence the functional status of the DA terminals in the nucleus accumbens.  相似文献   

20.
Acute administration of neuroleptic drugs alters the extracellular level of ascorbate in the neostriatum, and increasing evidence suggests a role for this vitamin in the behavioral, and possibly therapeutic, effects of these drugs. To shed further light on this issue, extracellular ascorbate was recorded in the neostriatum and nucleus accumbens of awake, behaving rats following chronic treatment with either classical (haloperidol) or atypical (clozapine) neuroleptics or ascorbate itself. Electrochemically modified, carbon-fiber microelectrodes were lowered in place the day after the last of 21 daily injections of either haloperidol (0.5 mg/kg, SC), clozapine (20 mg/kg, IP), sodium ascorbate (500 mg/kg, IP) or vehicle. Voltammetric measurements were obtained during quiet rest and following administration ofd-amphetamine (2.5 mg/kg). Repeated treatment with either haloperidol or ascorbate elevated basal extracellular ascorbate and potentiated the amphetamine-induced increase in ascorbate release in neostriatum but not nucleus accumbens. Both treatment groups also showed a significant increase in amphetamine-induced sniffing and repetitive head movements compared to vehicle-treated animals. In contrast, repeated clozapine had no effect on extracellular ascorbate in either neostriatum or nucleus accumbens, but increased the locomotor response to an amphetamine challenge. Thus, to the extent that increases in neostriatal ascorbate exert neuroleptic-like effects, such effects are likely to parallel haloperidol rather than clozapine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号