首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Immunity》2023,56(6):1320-1340.e10
  1. Download : Download high-res image (230KB)
  2. Download : Download full-size image
  相似文献   

3.
4.
染色质重塑复合体SWI/SNF亚基基因在肿瘤中突变率高达20%,突变造成编码蛋白失活及整个复合体功能异常,导致肿瘤发生。目前SWI/SNF抑制肿瘤的已知机制主要包括其与Polycomb复合体间的表观拮抗及与c-Myc及PIK3CA等原癌基因信号通路协同作用等。  相似文献   

5.
6.
ATP-dependent chromatin remodeling complexes alter chromatin structure through interactions with chromatin substrates such as DNA, histones, and nucleosomes. However, whether chromatin remodeling complexes have the ability to regulate nonchromatin substrates remains unclear. Saccharomyces cerevisiae checkpoint kinase Mec1 (ATR in mammals) is an essential master regulator of genomic integrity. Here we found that the SWI/SNF chromatin remodeling complex is capable of regulating Mec1 kinase activity. In vivo, Mec1 activity is reduced by the deletion of Snf2, the core ATPase subunit of the SWI/SNF complex. SWI/SNF interacts with Mec1, and cross-linking studies revealed that the Snf2 ATPase is the main interaction partner for Mec1. In vitro, SWI/SNF can activate Mec1 kinase activity in the absence of chromatin or known activators such as Dpb11. The subunit requirement of SWI/SNF-mediated Mec1 regulation differs from that of SWI/SNF-mediated chromatin remodeling. Functionally, SWI/SNF-mediated Mec1 regulation specifically occurs in S phase of the cell cycle. Together, these findings identify a novel regulator of Mec1 kinase activity and suggest that ATP-dependent chromatin remodeling complexes can regulate nonchromatin substrates such as a checkpoint kinase.  相似文献   

7.
The switch/sucrose non‐fermenting (SWI/SNF) complex has recently emerged as a novel tumor suppressor in various human cancers. In the present study, we analyzed the expression of multiple SWI/SNF subunits in primary non‐small cell lung cancer (NSCLC). A total of 133 NSCLC, consisting of 25 squamous cell carcinomas (SCC), 70 adenocarcinomas (AD), 16 large cell carcinomas (LC), and 22 pleomorphic carcinomas (PL), were immunohistochemically examined for the expression of BRG1, BRM, BAF47, ARID1A, and ARID1B. The frequency at which reductions in the expression of BRG1 were observed was significantly higher in the LC‐PL group (13/38, 34.2%) than in the SCC‐AD group (7/95, 7.4%). Similarly, the frequency at which reductions in the expression of BRM were observed was significantly higher in the LC‐PL group (17/38, 44.7%) than in the SCC‐AD group (14/95, 14.7%). The loss of the expression of ARID1A, ARID1B, and BAF47 was observed only in a fraction of NSCLC cases. Furthermore, the frequency at which the concurrent loss of multiple subunits of the SWI/SNF complex was observed was significantly higher in the LC‐PL group (10/38, 26.3%) than in the SCC‐AD group (8/95, 8.4%). Collectively, these results indicate that the loss of the SWI/SNF complex was related to dedifferentiation in NSCLC.  相似文献   

8.
9.
10.
The SWItch Sucrose non-fermentable (SWI/SNF) complex is a highly conserved multi-subunit complex of proteins encoded by numerous genes mapped to different chromosomal regions. The complex regulates the process of chromatin remodelling and hence plays a central role in the epigenetic regulation of gene expression, cell proliferation and differentiation. During the last three decades, the SWI/SNF complex has been increasingly recognized as a central molecular event driving the initiation and/or progression of several benign and malignant neoplasms of different anatomic origin and having diverse histomorphological appearance. Atypical teratoid/rhabdoid tumors (AT/RT) and renal/extrarenal malignant rhabdoid tumors of childhood, epithelioid sarcoma and small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) represent the most commonly recognized SWI/SNF-driven neoplasms. Approximately one-third of pediatric malignant rhabdoid tumors are linked to germline SWI/SNF alterations (SMARCB1/INI1, rarely SMARCA4) resulting in occasional familial clustering of these highly aggressive malignancies (so-called rhabdoid tumor predisposition syndrome, RTPS, types 1 and 2, respectively). However, more recently, inherited SWI/SNF-deficiency has been linked to several benign syndromic tumors including a subset of familial schwannomatosis (linked to SMARCB1) and multiple meningiomas (linked to SMARCE1) as well as others. Beyond neoplasms, several congenital developmental functional disorders such as Coffin-Siris syndrome and intellectual disability are now known to be SWI/SNF-related. The latter are essentially not associated with SWI/SNF-driven neoplasms, although at least anecdotal cases have documented concurrence of both neoplastic and developmental disorders. This review summarizes the most important SWI/SNF-driven diseases with a main focus on neoplasms.  相似文献   

11.
Mutation of the ARID1A gene and loss of the corresponding protein BAF250a has recently been described as a frequent event in clear cell and endometrioid carcinomas of the ovary. To determine whether BAF250a loss is common in other malignancies, immunohistochemistry (IHC) for BAF250a was performed on tissue microarrays (TMAs) in more than 3000 cancers, including carcinomas of breast, lung, thyroid, endometrium, kidney, stomach, oral cavity, cervix, pancreas, colon and rectum, as well as endometrial stromal sarcomas, gastrointestinal stromal tumours, sex cord-stromal tumours and four major types of lymphoma (diffuse large B cell lymphoma, primary mediastinal B cell lymphoma, mantle cell lymphoma and follicular lymphoma). We found that BAF250a loss is frequent in endometrial carcinomas but infrequent in other types of malignancies, with loss observed in 29% (29/101) of grade 1 or 2 and 39% (44/113) of grade 3 endometrioid carcinomas of the endometrium, 18% (17/95) of uterine serous carcinomas and 26% (6/23) of uterine clear cell carcinomas. Since endometrial cancers showed BAF250a loss, we stained whole tissue sections for BAF250a expression in nine cases of atypical hyperplasia and 10 cases of atypical endometriosis. Of the nine cases of complex atypical endometrial hyperplasia, all showed BAF250a expression; however, of 10 cases of atypical endometriosis (the putative precursor lesion for ovarian clear cell and endometrioid carcinoma), one case showed loss of staining for BAF250a in the atypical areas, with retention of staining in areas of non-atypical endometriosis. This was the sole case that recurred as an endometrioid carcinoma, indicating that BAF250a loss may be an early event in carcinogenesis. Since BAF250a loss is seen in endometrial carcinomas at a rate similar to that seen in ovarian carcinomas of clear cell and endometrioid type, and is uncommon in other malignancies, we conclude that loss of BAF250a is a particular feature of carcinomas arising from endometrial glandular epithelium.  相似文献   

12.
13.
14.
Coffin–Siris syndrome (CSS) is a congenital disorder characterized by intellectual disability, growth deficiency, microcephaly, coarse facial features, and hypoplastic or absent fifth fingernails and/or toenails. We previously reported that five genes are mutated in CSS, all of which encode subunits of the switch/sucrose non‐fermenting (SWI/SNF) ATP‐dependent chromatin‐remodeling complex: SMARCB1, SMARCA4, SMARCE1, ARID1A, and ARID1B. In this study, we examined 49 newly recruited CSS‐suspected patients, and re‐examined three patients who did not show any mutations (using high‐resolution melting analysis) in the previous study, by whole‐exome sequencing or targeted resequencing. We found that SMARCB1, SMARCA4, or ARID1B were mutated in 20 patients. By examining available parental samples, we ascertained that 17 occurred de novo. All mutations in SMARCB1 and SMARCA4 were non‐truncating (missense or in‐frame deletion) whereas those in ARID1B were all truncating (nonsense or frameshift deletion/insertion) in this study as in our previous study. Our data further support that CSS is a SWI/SNF complex disorder.  相似文献   

15.
16.
17.
18.
In this study, we analyzed the immunohistochemical and molecular profiles of an unusual RCC showed coexistent absence of INI1 and BRG1 expression, rhabdoid morphology, and poor prognosis. Histologically, the tumor had rhabdoid features, which were demonstrated by large round to polygonal cells with eccentric nuclei, prominent nucleoli, and eosinophilic cytoplasm varying from abundant to scanty. Immunohistochemically, the tumor were positive for BRM, PBRM1, ARID1A, CD10, CKpan, Vimentin, carbonic anhydrase IX (CA-IX), and P504S (AMACR) but negative for INI1, BRG1, HMB45, melan A, CK7, CD117, Ksp-cadherin, TFEB, TFE3, and Cathepsin K. We detected all three exons status of the VHL gene of the tumor and observed 1 somatic mutations in 1st exon. Chromosome 3p deletion, coupled with polysomy of chromosome 3 was also found. Based on these findings, it is further indicated that in some cases, rhabdoid RCC may arise from clear cell RCC. SWI/SNF chromatin remodeling complex may be an attractive candidate for being the “second hit” in RCCs and may play an important role during tumor progression. The role of SWI/SNF complex in rhabdoid RCC should be further studied on a larger number of cases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号