首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Presynaptic terminal depolarization modulates the efficacy of transmitter release. Residual Ca2+ remaining after presynaptic depolarization is thought to play a critical role in facilitation of transmitter release, but its downstream mechanism remains unclear. By making simultaneous pre- and postsynaptic recordings at the rodent calyx of Held synapse, we have investigated mechanisms involved in the facilitation and depression of postsynaptic currents induced by presynaptic depolarization. In voltage-clamp experiments, cancellation of the Ca2+-dependent presynaptic Ca2+ current ( I pCa) facilitation revealed that this mechanism can account for 50% of postsynaptic current facilitation, irrespective of intraterminal EGTA concentrations. Intraterminal EGTA, loaded at 10 m m , failed to block postsynaptic current facilitation, but additional BAPTA at 1 m m abolished it. Potassium-induced sustained depolarization of non-dialysed presynaptic terminals caused a facilitation of postsynaptic currents, superimposed on a depression, with the latter resulting from reductions in presynaptic action potential amplitude and number of releasable vesicles. We conclude that presynaptic depolarization bidirectionally modulates transmitter release, and that the residual Ca2+ mechanism for synaptic facilitation operates in the immediate vicinity of voltage-gated Ca2+ channels in the nerve terminal.  相似文献   

2.
The modulation of synaptic transmission by presynaptic ionotropic and metabotropic receptors is an important means to control and dynamically adjust synaptic strength. Even though synaptic transmission and plasticity at the hippocampal mossy fibre synapse are tightly controlled by presynaptic receptors, little is known about the downstream signalling mechanisms and targets of the different receptor systems. In the present study, we identified the cellular signalling cascade by which adenosine modulates mossy fibre synaptic transmission. By means of electrophysiological and optical recording techniques, we found that adenosine activates presynaptic A1 receptors and reduces Ca2+ influx into mossy fibre terminals. Ca2+ currents are directly modulated via a membrane-delimited pathway and the reduction of presynaptic Ca2+ influx can explain the inhibition of synaptic transmission. Specifically, we found that adenosine modulates both P/Q- and N-type presynaptic voltage-dependent Ca2+ channels and thereby controls transmitter release at the mossy fibre synapse.  相似文献   

3.
During the last decade, advances in experimental techniques and quantitative modelling have resulted in the development of the calyx of Held as one of the best preparations in which to study synaptic transmission. Here we review some of these advances, including simultaneous recording of pre- and postsynaptic currents, measuring the Ca2+ sensitivity of transmitter release, reconstructing the 3-D anatomy at the electron microscope (EM) level, and modelling the buffered diffusion of Ca2+ in the nerve terminal. An important outcome of these studies is an improved understanding of the Ca2+ signal that controls phasic transmitter release. This article illustrates the spatial and temporal aspects of the three main steps in the presynaptic signalling cascade: Ca2+ influx through voltage-gated calcium channels, buffered Ca2+ diffusion from the channels to releasable vesicles, and activation of the Ca2+ sensor for release. Particular emphasis is placed on how presynaptic Ca2+ buffers affect the Ca2+ signal and thus the amplitude and time course of the release probability. Since many aspects of the signalling cascade were first conceived with reference to the squid giant presynaptic terminal, we include comparisons with the squid model and revisit some of its implications. Whilst the characteristics of buffered Ca2+ diffusion presented here are based on the calyx of Held, we demonstrate the circumstances under which they may be valid for other nerve terminals at mammalian CNS synapses.  相似文献   

4.
Effects of adenosine on voltage-gated Ca2+ channel currents and on arginine vasopressin (AVP) and oxytocin (OT) release from isolated neurohypophysial (NH) terminals of the rat were investigated using perforated-patch clamp recordings and hormone-specific radioimmunoassays. Adenosine, but not adenosine 5'-triphosphate (ATP), dose-dependently and reversibly inhibited the transient component of the whole-terminal Ba2+ currents, with an IC50 of 0.875 μ m. Adenosine strongly inhibited, in a dose-dependent manner (IC50= 2.67 μ m ), depolarization-triggered AVP and OT release from isolated NH terminals. Adenosine and the N-type Ca2+ channel blocker ω-conotoxin GVIA, but not other Ca2+ channel-type antagonists, inhibited the same transient component of the Ba2+ current. Other components such as the L-, Q- and R-type channels, however, were insensitive to adenosine. Similarly, only adenosine and ω-conotoxin GVIA were able to inhibit the same component of AVP release. A1 receptor agonists, but not other purinoceptor-type agonists, inhibited the same transient component of the Ba2+ current as adenosine. Furthermore, the A1 receptor antagonist 8-cyclopentyltheophylline (CPT), but not the A2 receptor antagonist 3, 7-dimethyl-1-propargylxanthine (DMPGX), reversed inhibition of this current component by adenosine. The inhibition of AVP and OT release also appeared to be via the A1 receptor, since it was reversed by CPT. We therefore conclude that adenosine, acting via A1 receptors, specifically blocks the terminal N-type Ca2+ channel thus leading to inhibition of the release of both AVP and OT.  相似文献   

5.
At the nerve terminal, both N- and P/Q-type Ca2+ channels mediate synaptic transmission, with their relative contribution varying between synapses and with postnatal age. To clarify functional significance of different presynaptic Ca2+ channel subtypes, we recorded N-type and P/Q-type Ca2+ currents directly from calyces of Held nerve terminals in α1A-subunit-deficient mice and wild-type (WT) mice, respectively. The most prominent feature of P/Q-type Ca2+ currents was activity-dependent facilitation, which was absent for N-type Ca2+ currents. EPSCs mediated by P/Q-type Ca2+ currents showed less depression during high-frequency stimulation compared with those mediated by N-type Ca2+ currents. In addition, the maximal inhibition by the GABAB receptor agonist baclofen was greater for EPSCs mediated by N-type channels than for those mediated by P/Q-type channels. These results suggest that the developmental switch of presynaptic Ca2+ channels from N- to P/Q-type may serve to increase synaptic efficacy at high frequencies of activity, securing high-fidelity synaptic transmission.  相似文献   

6.
During early postnatal development, the calyx of Held synapse in the auditory brainstem of rodents undergoes a variety of morphological and functional changes. Among ionic channels expressed in the calyx, voltage-dependent K+ channels regulate transmitter release by repolarizing the nerve terminal. Here we asked whether voltage-dependent K+ channels in calyceal terminals undergo developmental changes, and whether they contribute to functional maturation of this auditory synapse. From postnatal day (P) 7 to P14, K+ currents became larger and faster in activation kinetics, but did not change any further to P21. Likewise, presynaptic action potentials became shorter in duration from P7 to P14 and remained stable thereafter. The density of presynaptic K+ currents, assessed from excised patch recording and whole-cell recordings with reduced [K+]i, increased by 2–3-fold during the second postnatal week. Pharmacological isolation of K+ current subtypes using tetraethylammonium (1 m m ) and margatoxin (10 n m ) revealed that the density of Kv3 and Kv1 currents underwent a parallel increase, and their activation kinetics became accelerated by 2–3-fold. In contrast, BK currents, isolated using iberiotoxin (100 n m ), showed no significant change during the second postnatal week. Pharmacological block of Kv3 or Kv1 channels at P7 and P14 calyceal terminals indicated that the developmental changes of Kv3 channels contribute to the establishment of reliable action potential generation at high frequency, whereas those of Kv1 channels contribute to stabilizing the nerve terminal. We conclude that developmental changes in K+ currents in the nerve terminal contribute to maturation of high-fidelity fast synaptic transmission at this auditory relay synapse.  相似文献   

7.
Whole-cell recordings of EPSCs and G-protein-activated inwardly rectifying (GIRK) currents were made from cultured hippocampal neurones to determine the effect of long-term agonist treatment on the presynaptic and postsynaptic responses mediated by GABAB receptors (GABABRs). GABABR-mediated presynaptic inhibition was unaffected by agonist (baclofen) treatment for up to 48 h, and was desensitized by about one-half after 96 h. In contrast, GABABR-mediated GIRK currents were desensitized by a similar amount after only 2 h of agonist treatment. In addition, presynaptic inhibition mediated by A1 adenosine receptors (A1Rs) was unaffected by prolonged GABABR activation, whereas A1R-mediated GIRK currents were desensitized. Desensitization of postsynaptic GABABR and A1R responses was blocked by the GABABR antagonist (1-(S)-3,4-dichlorophenylethyl)amino-2-(S) hydroxypropyl-p-benzyl-phosphonic acid (CGP 55845A), but not by the A1R antagonist cyclopentyldipropylxanthine (DPCPX). GIRK current amplitude could be partially restored after baclofen treatment by either coapplication of baclofen and adenosine, or intracellular infusion of the non-hydrolysable GTP analog 5'-guanylylimidodiphosphate (Gpp(NH)p). Short-term (4-24 h) baclofen treatment also significantly desensitized the inhibition of postsynaptic voltage-gated calcium channels by activation of GABABRs or A1Rs. These results show that responses mediated by GABABRs and A1Rs desensitize differently in presynaptic and postsynaptic compartments, and demonstrate the heterologous desensitization of postsynaptic A1R responses.  相似文献   

8.
Systemic or intraventricular administration of cannabinoids causes analgesic effects, but relatively little is known for their cellular mechanism. Using brainstem slices with the mandibular nerve attached, we examined the effect of cannabinoids on glutamatergic transmission in superficial trigeminal caudal nucleus of juvenile rats. The exogenous cannabinoid receptor agonist WIN 55,212-2 (WIN), as well as the endogenous agonist anandamide, hyperpolarized trigeminal caudal neurones and depressed the amplitude of excitatory postsynaptic potentials (EPSPs) or currents (EPSCs) monosynaptically evoked by stimulating mandibular nerves in a concentration-dependent manner. The inhibitory action of WIN was blocked or fully reversed by the CB1 receptor antagonist SR 141716A. WIN had no effect on the amplitude of miniature excitatory postsynaptic currents (mEPSCs) recorded in the presence of tetrodotoxin or cadmium. The inhibitory effect of WIN on EPSCs was greater for those with longer synaptic latency, suggesting that cannabinoids have a stronger effect on C-fibre EPSPs than on Aδ-fibre EPSPs. Ba2+ (100 μ m ) blocked the hyperpolarizing effect of cannabinoids, but did not affect their inhibitory effect on EPSPs. The N-type Ca2+ channel blocker ω-conotoxin GVIA (ω-CgTX) occluded the WIN-mediated presynaptic inhibition, whereas the P/Q-type Ca2+ channel blocker ω-agatoxin TK (ω-Aga) had no effect. These results suggest that cannabinoids preferentially activate CB1 receptors at the nerve terminal of small-diameter primary afferent fibres. Upon activation, CB1 receptors may selectively inhibit presynaptic N-type Ca2+ channels and exocytotic release machinery, thereby attenuating the transmitter release at the trigeminal nociceptive synapses.  相似文献   

9.
Activation of presynaptic receptors plays an important role in modulation of transmission at many synapses, particularly during high-frequency trains of stimulation. Adenosine-triphosphate (ATP) is coreleased with several neurotransmitters and acts at presynaptic sites to reduce transmitter release; such presynaptic P2X receptors occur at inhibitory and excitatory terminals in the medial nucleus of the trapezoid body (MNTB). We have investigated the mechanism of purinergic modulation during high-frequency repetitive stimulation at the calyx of Held synapse. Suppression of calyceal excitatory postsynaptic currents (EPSCs) by ATP and ATPgammaS (100 microM) was mimicked by adenosine application and was blocked by DPCPX (10 microM), indicating mediation by adenosine A1 receptors. DPCPX enhanced EPSC amplitudes during high-frequency synaptic stimulation, suggesting that adenosine has a physiological role in modulating transmission at the calyx. The Luciferin-Luciferase method was used to probe for endogenous ATP release (at 37 degrees C), but no release was detected. Blockers of ectonucleotidases also had no effect on endogenous synaptic depression, suggesting that it is adenosine acting on A1 receptors, rather than degradation of released ATP, which accounts for presynaptic purinergic suppression of synaptic transmission during physiological stimulus trains at this glutamatergic synapse.  相似文献   

10.
Calcium influx into the presynaptic nerve terminal is well established as a trigger signal for transmitter release by exocytosis. By studying dissociated preoptic neurons with functional adhering nerve terminals, we here show that presynaptic Ca2+ influx plays dual and opposing roles in the control of spontaneous transmitter release. Thus, application of various Ca2+ channel blockers paradoxically increased the frequency of spontaneous (miniature) inhibitory GABA-mediated postsynaptic currents (mIPSCs). Similar effects on mIPSC frequency were recorded upon washout of Cd2+ or EGTA from the external solution. The results are explained by a model with parallel Ca2+ influx through channels coupled to the exocytotic machinery and through channels coupled to Ca2+-activated K+ channels at a distance from the release site.  相似文献   

11.
Using whole-cell recordings from presynaptic terminals and postsynaptic principal neurons in the mouse medial nucleus of the trapezoid body (MNTB), we have characterized properties of the calyx of Held synapse during the first three postnatal weeks. We observed that evoked excitatory postsynaptic currents (EPSCs) mediated by NMDA receptors (NMDAR) increased until postnatal day 11/12 (P11/12) after which they declined to very low or undetectable levels at P16. Meanwhile, EPSCs mediated by AMPA receptors (AMPAR) showed an approximate three-fold increase in amplitude. These changes were paralleled by NMDAR and AMPAR currents evoked by exogenous NMDA and kainate to MNTB neurons except that whole-cell kainate currents remained constant after P7/8 while AMPAR-EPSCs continued to increase. We found that the decay time constant τ for NMDAR-EPSCs and AMPAR-EPSCs declined by about 30 % and 70 %, respectively. Analyses of NMDAR-EPSCs with subunit-specific pharmacological agents including ifenprodil, N,N,N',N' -tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN), zinc and Mg2+ revealed subtle developmental changes in subunit composition. As maturation progressed, this synapse displayed a reduction in the number of presynaptic spike failures and the extent of synaptic depression in response to trains of stimuli (50–300 Hz) while the recovery rate from depression accelerated. These results demonstrate profound changes in the size and kinetics of postsynaptic glutamate receptors and in the spike-firing capability of presynaptic terminals at the calyx of Held-MNTB synapse during early development. We suggest that these concurrent presynaptic and postsynaptic adaptations represent important steps for synapse consolidation and refinement and ultimately for the development of fast high-fidelity transmission at this synapse.  相似文献   

12.
Large calyceal synapses are often regarded as simple relay points, built for high-fidelity and high-frequency synaptic transmission and a minimal requirement for synaptic plasticity, but this view is oversimplified. Calyceal synapses can exhibit surprising activity-dependent developmental plasticity. Here we compare basal synaptic transmission and activity-dependent plasticity at two stereotypical calyceal synapses in the auditory pathway, the endbulb and the calyx of Held. Basal synaptic transmission was more powerful at the calyx than the endbulb synapse: the amplitude of evoked AMPA receptor-mediated excitatory postsynaptic currents (eEPSCs) was significantly greater at the calyx, as were the release probability, and the number of release sites. The quantal amplitude was smaller at the calyx, consistent with the smaller amplitude of spontaneous miniature EPSCs at this synapse. High-frequency trains of stimuli revealed that the calyx had a larger readily releasable pool of vesicles (RRP), less tetanic depression and less asynchronous transmitter release. Activity-dependent synaptic plasticity was assessed in congenitally deaf mutant mice ( dn/dn ). Previously we showed that a lack of synaptic activity in deaf mice increases synaptic strength at the endbulb of Held via presynaptic mechanisms. In contrast, we have now found that deafness does not affect synaptic transmission at the calyx synapse, as eEPSC and mEPSC amplitude, release probability, number of release sites, size of RRP, tetanic depression and asynchronous release were unchanged compared to normal mice. Synaptic transmission at the calyx synapse is more powerful and has less capacity for developmental plasticity compared to the endbulb synapse.  相似文献   

13.
The isolated chick ciliary neuron calyx synapse preparation was used to test cysteine string protein (CSP) action on presynaptic N-type Ca2+ channels. Endogenous CSP was localized primarily to secretory vesicle clusters in the presynaptic nerve terminal. Introduction of recombinant CSP into the voltage clamped terminal resulted in a prominent increase in Ca2+ current amplitude. However, this increase could not be attributed to a change in Ca2+ channel kinetics, voltage dependence, prepulse inactivation, or G protein inhibition but was attributed to the recruitment of dormant channels. Secretory vesicle associated endogenous CSP may play an important role in enhancing Ca2+ channel activity at the transmitter release site.  相似文献   

14.
We studied the kinetics of transmitter release during trains of action potential (AP)-evoked excitatory postsynaptic currents (EPSCs) at the calyx of Held synapse of juvenile rats. Using a new quantitative method based on a combination of ensemble fluctuation analysis and deconvolution, we were able to analyse mean quantal size ( q ) and release rate (ξ) continuously in a time-resolved manner. Estimates derived this way agreed well with values of q and quantal content ( M ) calculated for each EPSC within the train from ensemble means of peak amplitudes and their variances. Separate analysis of synchronous and asynchronous quantal release during long stimulus trains (200 ms, 100 Hz) revealed that the latter component was highly variable among different synapses but it was unequivocally identified in 18 out of 37 synapses analysed. Peak rates of asynchronous release ranged from 0.2 to 15.2 vesicles ms−1 (ves ms−1) with a mean of 2.3 ± 0.6 ves ms−1. On average, asynchronous release accounted for less than 14% of the total number of about 3670 ± 350 vesicles released during 200 ms trains. Following such trains, asynchronous release decayed with several time constants, the fastest one being in the order of 15 ms. The short duration of asynchronous release at the calyx of Held synapse may aid in generating brief postsynaptic depolarizations, avoiding temporal summation and preserving action potential timing during high frequency bursts.  相似文献   

15.
Glycinergic synapses are implicated in the coordination of reflex responses, sensory signal processing and pain sensation. Their activity is pre- and postsynaptically regulated, although mechanisms are poorly understood. Using patch-clamp recording and Ca2+ imaging in hypoglossal motoneurones from rat and mouse brainstem slices, we address here the role of cytoplasmic Ca2+ (Cai) in glycinergic synapse modulation. Ca2+ influx through voltage-gated or NMDA receptor channels caused powerful transient inhibition of glycinergic IPSCs. This effect was accompanied by an increase in both the failure rate and paired-pulse ratio, as well as a decrease in the frequency of mIPSCs, suggesting a presynaptic mechanism of depression. Inhibition was reduced by the cannabinoid receptor antagonist SR141716A and occluded by the agonist WIN55,212-2, indicating involvement of endocannabinoid retrograde signalling. Conversely, in the presence of SR141716A, glycinergic IPSCs were potentiated postsynaptically by glutamate or NMDA, displaying a Ca2+-dependent increase in amplitude and decay prolongation. Both presynaptic inhibition and postsynaptic potentiation were completely prevented by strong Cai buffering (20 m m BAPTA). Our findings demonstrate two independent mechanisms by which Ca2+ modulates glycinergic synaptic transmission: (i) presynaptic inhibition of glycine release and (ii) postsynaptic potentiation of GlyR-mediated responses. This dual Ca2+-induced regulation might be important for feedback control of neurotransmission in a variety of glycinergic networks in mammalian nervous systems.  相似文献   

16.
Mammalian cochlear inner hair cells (IHCs) are specialized to process developmental signals during immature stages and sound stimuli in adult animals. These signals are conveyed onto auditory afferent nerve fibres. Neurotransmitter release at IHC ribbon synapses is controlled by L-type CaV1.3 Ca2+ channels, the biophysics of which are still unknown in native mammalian cells. We have investigated the localization and elementary properties of Ca2+ channels in immature mouse IHCs under near-physiological recording conditions. CaV1.3 Ca2+ channels at the cell pre-synaptic site co-localize with about half of the total number of ribbons present in immature IHCs. These channels activated at about −70 mV, showed a relatively short first latency and weak inactivation, which would allow IHCs to generate and accurately encode spontaneous Ca2+ action potential activity characteristic of these immature cells. The CaV1.3 Ca2+ channels showed a very low open probability (about 0.15 at −20 mV: near the peak of an action potential). Comparison of elementary and macroscopic Ca2+ currents indicated that very few Ca2+ channels are associated with each docked vesicle at IHC ribbon synapses. Finally, we found that the open probability of Ca2+ channels, but not their opening time, was voltage dependent. This finding provides a possible correlation between presynaptic Ca2+ channel properties and the characteristic frequency/amplitude of EPSCs in auditory afferent fibres.  相似文献   

17.
Purinergic regulation of epithelial transport   总被引:4,自引:0,他引:4  
Purinergic receptors are a family of ubiquitous transmembrane receptors comprising two classes, P1 and P2 receptors, which are activated by adenosine and extracellular nucleotides (i.e. ATP, ADP, UTP and UDP), respectively. These receptors play a significant role in regulating ion transport in epithelial tissues through a variety of intracellular signalling pathways. Activation of these receptors is partially dependent on ATP (or UTP) release from cells and its subsequent metabolism, and this release can be triggered by a number of stimuli, often in the setting of cellular damage. The function of P2Y receptor stimulation is primarily via signalling through the Gq/PLC-β pathway and subsequent activation of Ca2+-dependent ion channels. P1 signalling is complex, with each of the four P1 receptors A1, A2A, A2B, and A3 having a unique role in different epithelial tissue types. In colonic epithelium the A2B receptor plays a prominent role in regulating Cl and water secretion. In airway epithelium, A2B and A1 receptors are implicated in the control of Cl and other currents. In the renal tubular epithelium, A1, A2A, and A3 receptors have all been identified as playing a role in controlling the ionic composition of the lumenal fluid. Here we discuss the intracellular signalling pathways for each of these receptors in various epithelial tissues and their roles in pathophysiological conditions such as cystic fibrosis.  相似文献   

18.
To investigate paired pulse facilitation of corticogeniculate EPSCs, whole-cell patch-clamp recordings were made from principal cells in the rat dorsal lateral geniculate nucleus (dLGN) in vitro . Thalamic slices, oriented so that both corticogeniculate and retinogeniculate axons could be stimulated, were cut from young (16- to 37-day-old) DA-HAN rats. Corticogeniculate EPSCs displayed pronounced paired pulse facilitation at stimulus intervals up to 400 ms. The facilitation had a fast and a slow component of decay with time constants of 12 ± 7 and 164 ± 47 ms (means ± s.d .), respectively. Maximum paired pulse ratio (EPSC2× EPSC1−1) was 3.7 ± 1.1 at the 20-30 ms interval. Similar to other systems, the facilitation was presynaptic. Retinogeniculate EPSCs recorded in the same dLGN cells displayed paired pulse depression at intervals up to at least 700 ms. The two types of EPSCs differed in their calcium response curves. At normal [Ca2+]o, the corticogeniculate synapse functioned over the early rising part of a Hill function, while the retinogeniculate synapse operated over the middle and upper parts of the curve. The paired pulse ratio of corticogeniculate EPSCs was maximal at physiological [Ca2+]o. The facilitation is proposed to have an important role in the function of the corticogeniculate circuit as a neuronal amplifier.  相似文献   

19.
Plasma membrane calcium ATPase isoforms (PMCAs) are expressed in a wide variety of tissues where cell-specific expression provides ample opportunity for functional diversity amongst these transporters. The PMCAs use energy derived from ATP to extrude submicromolar concentrations of intracellular Ca2+ ([Ca2+]i) out of the cell. Their high affinity for Ca2+ and the speed with which they remove [Ca2+]i depends upon splicing at their carboxy (C)-terminal site. Here we provide biochemical and functional evidence that a brain-specific, C-terminal truncated and therefore fast variant of PMCA2, PMCA2a, has a role at hippocampal CA3 synapses. PMCA2a was enriched in forebrain synaptosomes, and in hippocampal CA3 it colocalized with the presynaptic marker proteins synaptophysin and the vesicular glutamate transporter 1, but not with the postsynaptic density protein PSD-95. PMCA2a also did not colocalize with glutamic acid decarboxylase-65, a marker of GABA-ergic terminals, although it did localize to a small extent with parvalbumin-positive presumed inhibitory terminals. Pharmacological inhibition of PMCA increased the frequency but not the amplitude of mEPSCs with little effect on mIPSCs or paired-pulse depression of evoked IPSCs. However, inhibition of PMCA activity did enhance the amplitude and slowed the recovery of paired-pulse facilitation (PPF) of evoked EPSCs. These results indicated that fast PMCA2a-mediated clearance of [Ca2+]i from presynaptic excitatory terminals regulated excitatory synaptic transmission within hippocampal CA3.  相似文献   

20.
Intense motor neuron activity induces a long-term facilitation (LTF) of synaptic transmission at crayfish neuromuscular junctions (NMJs) that is accompanied by an increase in the accumulation of presynaptic Ca2+ ions during a test train of action potentials. It is natural to assume that the increased Ca2+ influx during action potentials is directly responsible for the increased transmitter release in LTF, especially as the magnitudes of LTF and increased Ca2+ influx are positively correlated. However, our results indicate that the elevated Ca2+ entry occurs through the reverse mode operation of presynaptic Na+/Ca2+ exchangers that are activated by an LTF-inducing tetanus. Inhibition of Na+/Ca2+ exchange blocks this additional Ca2+ influx without affecting LTF, showing that LTF is not a consequence of the regulation of these transporters and is not directly related to the increase in [Ca2+]i reached during a train of action potentials. Their correlation is probably due to both being induced independently by the strong [Ca2+]i elevation accompanying LTF-inducing stimuli. Our results reveal a new form of regulation of neuronal Na+/Ca2+ exchange that does not directly alter the strength of synaptic transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号