首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Based on the results of in vitro studies of many experimental models, a silicone hollow fiber membrane oxygenator for pediatric cardiopulmonary bypass (CPB) and extracorporeal membrane oxygenation (ECMO) was developed using an ultrathin silicone hollow fiber with a 300 microm outer diameter and a wall thickness of 50 microm. In this study, we evaluated the gas transfer performance of this oxygenator simulating pediatric CPB and ECMO conditions. Two ex vivo studies in a pediatric CPB condition for 6 h and 5 ex vivo studies in an ECMO condition for 1 week were performed with venoarterial bypass using healthy calves. At a blood flow rate of 2 L/min and V/Q = 4 (V = gas flow rate, Q = blood flow rate) (pediatric CPB condition), the O2 and CO2 gas transfer rates were maintained at 97.44 +/- 8.88 (mean +/- SD) and 43.59 +/- 15.75 ml/min/m2, respectively. At a blood flow rate of 1 L/min and V/Q = 4 (ECMO condition), the O2 and CO2 gas transfer rates were maintained at 56.15 +/- 8.49 and 42.47 +/- 9.22 ml/min/m2, respectively. These data suggest that this preclinical silicone membrane hollow fiber oxygenator may be acceptable for both pediatric CPB and long-term ECMO use.  相似文献   

2.
A retrospective study to determine the relationship between early microporous membrane oxygenator (MMO) failure and blood pressure at the MMO outlet (Pmo) was conducted using data collected with 19 dogs (22 +/- 1 kg, mean +/- SEM) undergoing routine normothermic cardiopulmonary bypass. Because gas flow was maintained at a high level, it could not be used to control CO2 exchange. Instead, blood PCO2 was controlled by adding CO2 to the sweep gas. Blood PO2 was controlled as suggested by the manufacturer, by adjusting the %O2 in the gas phase (g). Blood flow was 2575 +/- 54 ml/min; Pmo ranged from 173 to 790 mm Hg; and hematocrit was 33 +/- 1%. O2 exchange was calculated from blood gas parameters. Changes in the diffusion potential of O2 (delta PO2) and CO2 (delta PCO2) and MMO performance (P, taken as oxygen exchange normalized to a diffusion potential of 100 mm Hg) indicated MMO failure. Initial values, taken within 60 min of bypass initiation, were compared to final values taken at 226 +/- 9 min of bypass. Despite higher final delta PO2 (411 +/- 9 vs. 538 +/- 19 mm Hg, p less than 0.0001 paired t-test) and delta PCO2 (18.6 +/- 2.4 vs. 30.5 +/- 4.7 mm Hg, p less than 0.0017), arterial blood PO2 decreased (159 +/- 15 to 89 +/- 6 mm Hg, p less than 0.0005) and PCO2 increased (36.4 +/- 1.5 to 46.1 +/- 3.0 mm Hg, p less than 0.0039), and the performance decreased [24.5 +/- 1.1 to 20.1 +/- 0.7 (ml/min)/(100 mm Hg), p less than 0.0001].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
There is no established theory to determine the cerebral blood flow rate (CBF) during not only the standard cardiopulmonary bypass but during the cardiopulmonary bypass with separated brain perfusion. This study was carried out to answer the following questions. (1) what is the relationship during the cardiopulmonary bypass between CBF and systemic flow rate or blood pressure?. (2) what is the optimal flow rate to the innominate artery during the separated brain perfusion? Twenty-one patients were selected for this study, who were operated under the cardiopulmonary bypass with a standard roller pump and a membrane oxygenator under moderate hypothermia (nasopharyngeal temperature of 26-28 degrees C). Systemic flow rate was maintained between 40 and 70 ml/kg/min. CBF before the cardiopulmonary bypass was 30.6 +/- 5.5 ml/100 g brain/min, and increased to 33.8 +/- 8.9 ml/100 g brain/min during the cardiopulmonary bypass. CBF was proportional to systemic flow rate (r = 0.62, p less than 0.01) and showed poor association with blood pressure ranged from 35 to 94 mmHg. As for the relationship between innominate arterial and cerebral blood flow rate, CBF linearly followed the decrease of innominate arterial flow rate to below about 9 ml/kg/min, but showed almost no changes when innominate arterial flow rate was over 9 ml/kg/min. It was observed that cerebral oxygen consumption did not decrease significantly under moderate hypothermia (26-28 degrees C), as far as CBF of 25 ml/100 g brain/min was maintained. Based on the relationship between innominate arterial and cerebral blood flow rate, it was shown that the innominate arterial flow rate to provide CBF of 25 ml/100 g brain/min was 5.5 ml/kg/min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Cancellation of on-pump coronary artery bypass grafting after the circuit is primed may result in the discarding of unused circuits. In some off-pump cases, a surgeon may request that the circuit be primed, but complete the surgical procedure without utilizing the circuit. The major concerns about the unused circuit are its sterility and the performance of the oxygenator after it has been primed for a long period of time. The goal of this study is to determine whether prepriming of the circuit with and without albumin has an effect on the gas transfer efficiency of oxygenators during simulated cardiopulmonary bypass. Monolyth integrated membrane lungs (Sorin Biomedical, Arvada, CO) were used to deoxygenate and oxygenate the bovine blood. Oxygenators were preprimed for 72 (N = 6) and 24 (N = 6) hours before testing. In control group (N = 6), oxygenators were tested immediately (0 h) after they were primed. Three different priming solutions were used: physiological saline solution (Group A); 1.25% of human albumin (Group B); and 5% human albumin (Group C). The blood was modified to the American Association of Medical Instrumentation Standards before testing. The blood flow through the oxygenators was set at 2 Lpm and 4 Lpm, with gas (FiO2 at 1.0) to blood flow ratio at 1:1. Cultures were also obtained from preprimed oxygenators to test circuit sterility. Oxygen transfer in oxygenators primed for 0 h at blood flow of 4 Lpm were 203 mL/min +/- 9.7 (Group A), 263.1 mL/min +/- 52.9 (Group B), and 270.5 mL/min +/- 13.1(Group C, p < .01 vs. Group A). In oxygenators preprimed for 72 h, the CO2 transfers were 135.0 mL/min +/- 21.8 (Group A), 104.9 mL/min +/- 2.4 (Group B), and 148.9 +/- 26.6 (Group C, p < .006 vs. Group B). In addition, the pressure drops were 56.5 mmHg +/- 5.5 (Group A), 82.6 mmHg +/- 13.4 (Group B), and 67.6 mmHg +/- 15.3 (Group C, p < .05 vs. Group B). In group A, O2 transfer were 203.5 mL/min +/- 9.7 (0 h), 272.4 mL/min +/- 66.6 (24 h), and 260.8 mL/min +/- 31.1 (72 h, p < .01 vs. 0 h). In group B, O2 transfer were 263.1 mL/min +/- 52.0 (0 h), 302.7 mL/min +/- 77.4 (24 h), and 235.2 mL/min +/- 16.5 (72 hr, p < .02 vs. 24 hr). Cultures obtained from 12 preprimed oxygenators presented no organism growth for up to 5 days. In conclusion, oxygen transfer increases in oxygenators preprimed with albumin immediately after they were primed. However, gas transfer decreased after they were primed with albumin for 72 h. Oxygenators preprimed for 24 h and 72 h with 0.9% saline had better O2 transfer than those primed for 0 h.  相似文献   

5.
An experimental silicone hollow fiber membrane oxygenator for long-term extracorporeal membrane oxygenation (ECMO) was developed in our laboratory using an ultrathin silicone hollow fiber. However, the marginal gas transfer performances and a high-pressure drop in some cases were demonstrated in the initial models. In order to improve performance the following features were incorporated in the most recent oxygenator model: increasing the fiber length and total surface area, decreasing the packing density, and modifying the flow distributor. The aim of this study was to evaluate the gas transfer performances and biocompatibility of this newly improved model with in vitro experiments. According to the established method in our laboratory, in vitro studies were performed using fresh bovine blood. Gas transfer performance tests were performed at a blood flow rate of 0.5 to 6 L/min and a V/Q ratio (V = gas flow rate, Q = blood flow rate) of 2 and 3. Hemolysis tests were performed at a blood flow rate of 1 and 5 L/min. Blood pressure drop was also measured. At a blood flow rate of 1 L/min and V/Q = 3, the O2 and CO2 gas transfer rates were 72.45 +/- 1.24 and 39.87 +/- 2.92 ml/min, respectively. At a blood flow rate of 2 L/min and V/Q = 3, the O2 and CO2 gas transfer rates were 128.83 +/- 1.09 and 47.49 +/- 5.11 ml/min. Clearly, these data were superior to those obtained with previous models. As for the pressure drop and hemolytic performance, remarkable improvements were also demonstrated. These data indicate that this newly improved oxygenator is superior to the previous model and may be clinically acceptable for long-term ECMO application.  相似文献   

6.
Compactness and high performance are the most important requirements for a cardiopulmonary support system. The Nikkiso (HPM-15) centrifugal pump is the smallest (priming volume; 25 ml, impeller diameter; 50 mm) in clinically available centrifugal pumps. The Kuraray Menox (AL-2000) membrane oxygenator, made of double-layer polyolefin hollow fiber, has a minimum priming volume (80 ml) and a low pressure loss (65 mm Hg at 2.0 L/min of blood flow) compared with other oxygenators. The aim of this study was to evaluate the performance of the most compact cardiopulmonary support system (total priming volume: 125 ml) in animal experiments. The cardiopulmonary bypass was constructed in a canine model with the Nikkiso pump and Menox oxygenator in comparison with a conventional cardiopulmonary support system. The partial cardiopulmonary bypass was performed for 4 h to evaluate the gas exchange ability, blood trauma, serum leakage, hemodynamics, and blood coagulative parameters. The postoperative plasma free hemoglobin level of the compact cardiopulmonary system was 29.5 +/- 10.21 mg/dl (mean +/- SD), which was lower than that of the conventional cardiopulmonary system, 48.75 +/- 27.39 mg/dl (mean +/- SD). This compact cardiopulmonary system provided the advantage in terms of reduction of the priming volume and less blood damage. These results suggested the possibility of miniaturization for the cardiopulmonary bypass support system in open-heart surgery in the near future.  相似文献   

7.
Based on the results of many experimental models, a hollow fiber silicone membrane oxygenator applicable for long-term extracorporeal membrane oxygenation (ECMO) was developed. For further high performance and antithrombogenicity, this preclinical model was modified, and a new improved oxygenator was successfully developed. In addition to ECMO application, the superior biocompatibility of silicone must be advantageous for pediatric cardiopulmonary bypass (CPB). An ex vivo short-term durability test for pediatric CPB was performed using a healthy miniature calf for six hours. Venous blood was drained from the left jugular vein of a calf, passed through the oxygenator and infused into the left carotid artery using a Gyro C1E3 centrifugal pump. For six hours, the O2 and CO2 gas transfer rates were maintained around 90 and 80 ml/min at a blood flow rate of 2 L/min and V/Q=3, respectively. The plasma free hemoglobin was maintained around 5 mg/dl. These data suggest that this newly improved oxygenator has superior efficiency, less blood trauma, and may be suitable for not only long-term ECMO but also pediatric CPB usage.  相似文献   

8.
The poor prognosis of certain cardiac abnormalities detected prenatally by echocardiography has led some investigators to consider intrauterine cardiac surgery. Investigation into the efficacy of open cardiac procedures in-utero will require techniques for safe and effective fetal extracorporeal circulation and myocardial protection. We performed cardiopulmonary bypass in 8 fetal lambs to assess the feasibility of fetal cardiopulmonary bypass. Four fetuses underwent studies at 37 degrees C (Group I) and 4 at 25 degrees C (Group II). The aorta was clamped and cold crystalloid cardioplegia administered. Perfusion was carried out for 10 minutes each at high (95 +/- 18 cc/kg/min), moderate (67 +/- 10 cc/kg/min), and low (49 +/- 8 cc/kg/min) flow rates while hemodynamic and blood gas measurements were made. Total time on bypass averaged 57 min in Group I and 75 min in Group II. Four fetuses were successfully weaned from bypass following the study period. Fetal pO2 and oxygen saturation was very low at all flow rates in Group II and at low flow rates in Group I, indicating poor function of the placenta as an oxygenator at 25 degrees C and at low flow rates during normothermia. Lambs undergoing bypass at 37 degrees C had a progressive rise in pCO2 levels as flow decreased, while pCO2 was relatively normal at all flow rates at 25 degrees C. These studies serve as a starting point for the development of techniques to allow intrauterine correction of experimentally produced fetal cardiac lesions.  相似文献   

9.
A complete phosphorylcholine coated cardiopulmonary bypass circuit, including the Dideco D901 oxygenator, was tested for gas transfer, blood path resistance, and biocompatibility in a standardized setting. Blood compatibility was tested by measuring complement and platelet activation. Three dogs (mean body weight 28 +/- 3 kg) were placed on cardiopulmonary bypass at a flow rate of 600 mL/min during 6 hours. The animals were weaned from cardiopulmonary bypass and sacrificed electively after 7 days. Oxygen and carbon dioxide transfer were 26.6 +/- 2.4 mL/min and 33.0 +/- 1.9 mL/min, respectively. Mean pressure drop across the oxygenator was 52.6 +/- 0.2 mmHg. The respective baseline values for thromboxane B2, prostaglandin E2 and platelet factor 4 were 1817 +/- 283 pg/mL, 12783 +/- 2109 pg/mL, and 0.35 +/- 0.08 IU/mL. Thromboxane B2 and prostaglandin E2 increased slightly to 2881 +/- 868 pg/mL and 18083 +/- 3144 pg/mL at 30 minutes of bypass, whereas platelet factor 4 values remained stable curing the procedure. Concentrations of complement split products C5a were only mildly increased. After use scanning electron microscopy was performed on the inner housing, heat exchanger, and outer surface of the hollow fibers. No thrombi nor organized cellular deposits were found on any of the components. Phosphorylcholine coating of CPB seems to be very promising regarding platelet activation and complement activation.  相似文献   

10.
目的 为了改进胎羊体外循环技术 ,探讨膜式氧合器在胎羊体外循环中的应用。 方法 将健康怀孕山羊8只 ,采用 Dideco 90 1膜式氧合器和滚轴泵建立胎羊体外循环 ,常温 (37℃ )转流 6 0分钟 ,氧合器内充低氧混合气体 (8%O2 和 92 % N2 ) ,监测胎羊的血压、心率、血气、血清乳酸和胎盘血管阻力。 结果 胎羊体外循环中动脉氧分压 (PO2 )和二氧化碳分压 (PCO2 )维持在宫内生理水平 ,胎羊心搏有力 ,血压正常。但胎羊 p H值缓慢下降 (P<0 .0 5 ) ,血清乳酸值明显增高 (P<0 .0 1) ,胎盘血管阻力显著上升 (P<0 .0 1)。停体外循环后胎羊出现低氧、高碳酸血症和酸中毒。 结论 胎羊体外循环影响胎盘功能 ,膜式氧合器可以代替胎盘气体交换功能 ,体外循环中胎羊生理低水平 PO2 是否适合其需要值得探讨。  相似文献   

11.
Development of an Ultracompact Integrated Heart-Lung Assist Device   总被引:1,自引:0,他引:1  
A novel integrated heart-lung assist device has been developed as a simple to use portable cardiopulmonary support system. The device comprises a centrifugal pump and an artificial lung, which is located around the pump, in an all in one system. The special membrane employed precludes plasma breakthrough in protracted use and enables preprimed setup. Test lungs consisting of the same membrane preserved gas exchange function well after 3 months of preprimed storage. The entire blood contacting surface is treated with covalent heparin bonding to impart good antithrombogenicity. Heparin bonded test lungs could be continuously perfused without systemic anticoagulation as long as 36 days in a venoarterial bypass chronic animal study using goats. The prototype device (diameter, 126 mm; height, 59 mm; membrane area, 0.85 m2; priming volume, 180 ml) demonstrated 9 L/min pump output at a 400 mm Hg pressure head and 180 ml/min oxygen and 110 ml/min carbon dioxide transfer rates at 5 L/min blood flow. We conclude that this device has potential to be the next generation cardiopulmonary support system.  相似文献   

12.
Despite new minimally invasive techniques, cardiopulmonary bypass (CPB) is still necessary for many major operations in the field of cardiac surgery. Unwanted side effects of CPB are well known but poorly understood. We therefore developed a rodent model to study the pathophysiology of these potential complications. Male Fischer rats were anaesthetized, intubated and ventilated. The carotid artery and jugular vein were cannulated. The blood was actively drained from the venous circulation and further transferred by a miniaturized roller pump to a hollow fibre oxygenator and back to the animal via the carotid artery. The roller pump produces a pulsatile blood flow between 5 and 40 ml/min. The surface of the hollow fibre oxygenator is 0.025 m2. The priming volume (Ringer solution) of the whole system is 12 ml. Animals were catheterized and brought in partial bypass for a mean of 50+/-15 min. Normal cardiac function after successful weaning was confirmed by electrocardiography and blood pressure measurements. This technical study demonstrates the feasibility of a small animal model of CPB. The main improvement over existing techniques is the use of a highly effective hollow fibre oxygenator with a minimized priming volume. Therefore, no additional animals are needed as blood donors.  相似文献   

13.
Cerebral blood flow (CBF) during human hypothermic cardiopulmonary bypass has been reported to decrease with time, suggesting that progressive cerebral vasoconstriction or embolic obstruction may occur. We tested the hypotheses: 1) that observed CBF reductions were due to continued undetected brain cooling and 2) that CBF during cardiopulmonary bypass would be stable after achievement of constant brain temperature. Anesthetized New Zealand White rabbits underwent cardiopulmonary bypass (membrane oxygenator, centrifugal pump, bifemoral arterial perfusion) and were assigned to one of three bypass management groups based on perfusate temperature and PaCO2 management: group 1 (37 degrees C, n = 8); group 2 (27 degrees C, pH-stat, n = 9); and group 3 (27 degrees C, alpha-stat, n = 8). Systemic hemodynamics, and cerebral cortical, esophageal, and arterial perfusate temperatures were recorded every 10 min for the first hour of bypass and again at 90 min. CBF and masseter blood flow (radiolabeled microspheres) were determined at 30, 60, and 90 min of bypass, while the cerebral metabolic rate for oxygen (CMRO2) was determined at 60 and 90 min. Groups were comparable with respect to mean arterial pressure, central venous pressure, hematocrit, and arterial oxygen content throughout bypass. Cortical temperature was stable in normothermic (group 1) animals, and there was no significant change in CBF between 30 and 90 min of bypass: 68 +/- 18 versus 73 +/- 20 ml.100 g-1.min-1 (mean +/- SD). In the hypothermic groups (2 and 3), cortical temperature equilibration (95% of the total change) required 41 +/- 6 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Eighty patients had cardiopulmonary bypass (CPB), half having short (109 +/- 11 minutes) perfusions and half having long (188 +/- 14 min) perfusions. Twenty patients in each group were perfused with bubble oxygenators (Bentley, Harvey, or Galen) and 20 with membrane oxygenators (Modulung or Teflo). Hemodilution to a hematocrit value of 22.5% +/- 1.4% and hypothermia to 28 degrees +/- 2 degrees C were used in all patients. Complete hemograms, sequential multiple analyzer 18 tests, coagulation profiles, blood gases and pH, three immunoglobulins, and two complement fraction proteins were sampled as follows: three times before perfusion, one to ten times during perfusion, 1 hour immediately after perfusion, and 4, 24, and 48 hours postoperatively. Data in concentration terms were compared statistically and reported as mean and standard error for each subset. Additionally, rates of gain or loss were calculated in terms of quantity per liter of blood pumped per minute. During perfusion for both duration sets, use of a membrane oxygenator resulted in greater pump flows (4.55 +/- 0.15 L/min versus 3.75 +/- 0.11 L/min), lower total peripheral resistances (1,125 +/- 63 dynes.sec.cm-5 versus 1,652 +/- 115 dynes.sec.cm-5), and greater urinary outputs (9.4 +/- 1.1 ml/min versus 2.2 +/- 0.6 ml/min) than in the bubble oxygenator subsets. Comparisons of measured and calculated data in the immediate postperfusion interval showed no differences between bubble and membrane oxygenator subsets for short perfusions. In long perfusions, the membrane subset had lower plasma hemoglobin and white cell concentrations and generation rates, smaller (3 to 8 1/2 times) losses of IgG, IgM, C3 and shed blood necessitating less transfusion, and greater C4 losses. The membrane oxygenator systems used were more complex and costly and offered no advantages for short perfusion in adults. In anticipated long perfusions or where bleeding may be a problem, a membrane oxygenator appears more efficacious than bubble systems. For perfusions of less than 2 hours, membrane oxygenators had no biochemical or hematologic advantage over the bubble devices used in this study.  相似文献   

15.
A new hollow fiber membrane oxygenator, the Medtronic Maxima Forté, was tested for gas transfer, blood path resistance and blood handling characteristics in a standardized setting with surviving animals. Three calves (mean body weight: 71 +/- 9.6 kg) were placed on cardiopulmonary bypass at a mean flow rate of 50 ml/kg/min for six hours. The circuit included the Maxima Forté oxygenator. The animals were weaned from cardiopulmonary bypass and then from the ventilator. After seven days, the animals were sacrificed electively. Physiologic blood gas values could be maintained throughout perfusion in all animals. Mean pressure drop through the oxygenator varied between 49 mmHg and 66 mmHg. The respective baseline values for red blood cell count, white blood cell count and platelets were 8.90 +/- 1.26 10(6)/mm3, 7.46 +/- 3.17 10(3)/mm3. and 680 +/- 216 10(3)/mm3. Red blood cell and platelet counts dropped slightly to 7.26 +/- 1.61 10(6)/mm3 and 400 +/- 126 10(3)/mm3 at the end of the bypass, whereas the white blood cell count increased up to 9.13 +/- 5.25 10(3)/mm3. All three cell lines returned to near their baseline values after seven days. Blood trauma evaluated as a function of plasma hemoglobin (plasma Hb) and lactate dehydrogenase (LDH) showed stable values during all the perfusion time. Both peaked at 24 hours before returning to their baseline values at seven days. LDH showed a statistically significant variation: 3255 +/- 693 IU at 24 hours versus 2029 +/- 287 IU at baseline (p = 0.04). The variation of plasma Hb was not statistically significant (93.5 +/- 7.7 mumol/l at 24 hours versus 77.3 +/- 52.3 mumol/l at baseline) indicating a weak effect of the perfusion on blood trauma. The Medtronic Maxima Forté hollow fiber membrane oxygenator offered good gas exchange capabilities, a low pressure drop, and low blood trauma over a prolonged perfusion time of six hours in this evaluation.  相似文献   

16.
The relationship between the perfusion flow rate and cerebral oxygen consumption during deep hypothermic cardiopulmonary bypass at 20 degrees C was investigated in dogs. In 10 dogs the perfusion flow rate was decreased in steps from 100 to 60, 30, and 15 ml/kg/min every 30 minutes. Although cerebral blood flow decreased as perfusion flow rate decreased, the ratio of cerebral blood flow to the perfusion flow rate increased significantly (p less than 0.05) at a perfusion flow rate of 15 ml/kg/min compared to that at a perfusion flow rate of 100 or 60 ml/kg/min. The arterial-sagittal sinus blood oxygen content difference increased as perfusion flow rate decreased. Consequently, cerebral oxygen consumption did not vary significantly at perfusion flow rates of 100 (0.48 +/- 0.10), 60 (0.43 +/- 0.14), and 30 ml/kg/min (0.44 +/- 0.12 ml/100 gm/min), and it decreased significantly to 0.31 +/- 0.22 ml/100 gm/min at a perfusion flow rate of 15 ml/kg/min. In five dogs the perfusion flow rate was decreased in one step from 100 to 15 ml/kg/min, and after 60 minutes' perfusion at a perfusion flow rate of 15 ml/kg/min, the perfusion flow rate was returned to 100 ml/kg/min. Cerebral oxygen consumption decreased significantly during 60 minutes' perfusion at a perfusion flow rate of 15 ml/kg/min and did not return to its initial value after the perfusion flow rate was returned to 100 ml/kg/min. These data indicate that the optimal perfusion flow rate for the brain during deep hypothermic cardiopulmonary bypass at 20 degrees C appears to be 30 ml/kg/min, with a possible oxygen debt in the brain resulting in anaerobic metabolism if the perfusion flow rate is kept at 15 ml/kg/min or less.  相似文献   

17.
OBJECTIVE--The purpose of the present study was to evaluate the effects of pulsatile cardiopulmonary bypass (CPB) on sheep regional renal blood flow by comparing pulsatile and non-pulsatile perfusion at two different flow rates. DESIGN--Seven female Suffolk sheep were used and the animals were perfused with pulsatile and non-pulsatile CPB at flow rates of 60 and 100 ml/min/kg. Regional renal blood flow was measured by the colored microsphere method. General linear model ANOVA was performed to analyze the data. RESULTS--Regional renal blood flow was significantly higher in both outer and middle cortices of pulsatile CPB compared with non-pulsatile CPB (outer cortex: pulsatile CPB, 381+/-192 ml/min/100 g, non-pulsatile CPB, 255+/-151 ml/min/100g, p=0.002; middle cortex: pulsatile CPB, 239+/-114 ml/min/100 g, non-pulsatile CPB, 176+/-80 ml/min/100 g, p=0.02). The increase of flow rate from 60 to 100 ml/min/kg improved renal cortical blood flow significantly. CONCLUSION--The regional renal blood flow was significantly higher in both outer and middle cortices of pulsatile CPB compared with the non-pulsatile CPB.  相似文献   

18.
Background: Although low-flow cardiopulmonary bypass (CPB) has become a preferred technique for the surgical repair of complex cardiac lesions in children, the relative hypotension and decrease in cerebral blood flow (CBF) associated with low flow may contribute to the occurrence of postoperative neurologic injury. Therefore, it was determined whether phenylephrine administered to increase arterial blood pressure during low-flow CPB increases CBF.

Methods: Cardiopulmonary bypass was initiated in seven baboons during fentanyl, midazolam, and isoflurane anesthesia. Animals were cooled at a pump flow rate of 2.5 l *symbol* min-1 *symbol* m-2 until esophageal temperature decreased to 20 degrees C. Cardiopulmonary bypass flow was then reduced to 0.5 l *symbol* min-1 *symbol* m-2 (low flow). During low-flow CPB, arterial partial pressure of carbon dioxide (PCO2) and blood pressure were varied in random sequence to three conditions: (1) PCO2 30-39 mmHg (uncorrected for temperature), control blood pressure; (2) PCO2 50-60 mmHg, control blood pressure; and (3) PCO2 30-39 mmHg, blood pressure raised to twice control by phenylephrine infusion. Thereafter, CPB flow was increased to 2.5 l *symbol* min-1 *symbol* m-2, and baboons were rewarmed to normal temperature. Cerebral blood flow was measured by washout of intraarterial133 Xenon before and during CPB.

Results: Phenylephrine administered to increase mean blood pressure from 23+/-3 to 46+/-3 mmHg during low-flow CPB increased CBF from 14+/-3 to 31+/-9 ml *symbol* min-1 *symbol* 100 g-1, P < 0.05. Changes in arterial PCO2 alone during low flow bypass produced no changes in CBF.  相似文献   


19.
Twenty-seven patients were examined who were undergoing cardiopulmonary bypass (CPB) surgery with either a bubble oxygenator or a capillary membrane oxygenator. The latter incorporated an arterial filter and bubble trap. A noninvasive Doppler ultrasound technique is described for monitoring irregularities in the Doppler flow signals attributable to gaseous microemboli detected in the middle cerebral artery during CPB. The ultrasound index for detecting gaseous microemboli (MEI) indicated the presence of such microemboli in 22 of the 27 patients during insertion of the aortic cannula. Measurements during CPB showed the MEI ranged from 4 to 39 in the 17 patients with a bubble oxygenator. However, all 10 patients with a membrane oxygenator had an MEI of 0. Varying the gas flow rates in 3 patients with bubble oxygenators showed a change in MEI from 4 +/- 4 (SD) at a flow rate of 2 L/min to 17 +/- 9 at a flow rate of 5 L/min. This observation supports the assumption that the MEI is providing quantitative information regarding the presence of gaseous emboli in the middle cerebral artery.  相似文献   

20.
This study compares the gas transfer capacity, the blood trauma, and the blood path resistance of the hollow-fiber membrane oxygenator Dideco D 903 with a surface area of 1.7 m2 (oxygenator 1.7) versus a prototype built on the same principles but with a surface area of 2 m2 (oxygenator 2). Six calves (mean body weight: 68.2 +/- 3.2 kg) were connected to cardiopulmonary bypass (CPB) by jugular venous and carotid arterial cannulation, with a mean flow rate of 4 l/min for 6 h. They were randomly assigned to oxygenator 1.7 (N = 3) or 2 (N = 3). After 7 days, the animals were sacrificed. A standard battery of blood samples was taken before the bypass, throughout the bypass, and 24 h, 48 h, and 7 days after the bypass. The oxygenator 2 group showed significantly better total oxygen and carbon dioxide transfer values throughout the perfusion (p < .001 for both comparison). Hemolytic parameters (lactate dehydrogenase and free plasma hemoglobin) exhibited a slight but significant increase after 5 h of bypass in the oxygenator 1.7 group. The pressure drop through the oxygenator was low in both groups (range, 43-74 mmHg). With this type of hollow-fiber membrane oxygenator, an increased surface of gas exchange from 1.7 m2 to 2 m2 improves gas transfer, with a limited impact on blood trauma and no increase of blood path resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号