首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the effect of concurrent strength and endurance training on strength, endurance, endocrine status and muscle fibre properties. A total of 45 male and female subjects were randomly assigned to one of four groups; strength training only (S), endurance training only (E), concurrent strength and endurance training (SE), or a control group (C). Groups S and E trained 3 days a week and the SE group trained 6 days a week for 12 weeks. Tests were made before and after 6 and 12 weeks of training. There was a similar increase in maximal oxygen consumption (O2 max) in both groups E and SE (P < 0.05). Leg press and knee extension one repetition maximum (1 RM) was increased in groups S and SE (P < 0.05) but the gains in knee extension 1 RM were greater for group S compared to all other groups (P < 0.05). Types I and II muscle fibre area increased after 6 and 12 weeks of strength training and after 12 weeks of combined training in type II fibres only (P < 0.05). Groups SE and E had an increase in succinate dehydrogenase activity and group E had a decrease in adenosine triphosphatase after 12 weeks of training (P < 0.05). A significant increase in capillary per fibre ratio was noted after 12 weeks of training in group SE. No changes were observed in testosterone, human growth hormone or sex hormone binding globulin concentrations for any group but there was a greater urinary cortisol concentration in the women of group SE and decrease in the men of group E after 12 weeks of training (P < 0.05). These findings would support the contention that combined strength and endurance training can suppress some of the adaptations to strength training and augment some aspects of capillarization in skeletal muscle. Accepted: 10 November 1998  相似文献   

2.
This study investigated the effect of strength training, endurance training, and combined strength plus endurance training on fibre-type transitions, fibre cross-sectional area (CSA) and MHC isoform content of the vastus lateralis muscle. Forty volunteers (24 males and 16 females) were randomly assigned to one of four groups: control (C), endurance training (E), strength training (S), or concurrent strength and endurance training (SE). The S and E groups each trained three times a week for 12 weeks; the SE group performed the same S and E training on alternate days. The development of knee extensor muscle strength was S>SE>E (P<0.05) and has been reported elsewhere. The reduction in knee extensor strength development in SE as compared to S corresponded to a 6% increase in MHCIIa content (P<0.05) in SE at the expense of the faster MHCIId(x) isoform (P<0.05), as determined by electrophoretic analyses; reductions in MHCIId/x content after S or E training were attenuated by comparison. Both S and SE induced three- to fourfold reductions (P<0.05) in the proportion of type IIA/IID(X) hybrid fibres. S also induced fourfold increases in the proportion of type I/IIA hybrid fibres within both genders, and in a population of fibres expressing a type I/IID(X) hybrid phenotype within the male subjects. Type I/IIA hybrid fibres were not detected after SE. Both S and SE training paradigms induced similar increases (16–19%, P<0.05) in the CSA of type IIA fibres. In contrast, the increase in CSA of type I fibres was 2.9-fold greater (P<0.05) in S as compared to SE after 12 weeks. We conclude that the interference of knee extensor strength development in SE versus S was related to greater fast-to-slow fibre-type transitions and attenuated hypertrophy of type I fibres. Data are given as mean (SEM) unless otherwise stated.  相似文献   

3.
During a winter training season, the effects of 12 weeks of intense training and 4 weeks of tapering off (taper) on plasma hormone concentrations and competition performance were investigated in a group of highly trained swimmers (n = 8). Blood samples were collected and the swimmers performed their speciality in competition at weeks 10 (mid-season), 22 (pre-taper) and 26 (post-taper). No statistically significant changes were observed in the concentrations of total testosterone (TT), non-sex hormone binding globulin-boundtestosterone (NSBT), cortisol (C), luteinising hormone, thyroid stimulating hormone, triiodothyronine, thyroxine plasma catecholamines, creatine kinase and ammonia during training and taper. Mid-season NSBT: C ratio and the amount of training were statistically related (r = 0.82,P < 0.05). Competition performance slightly declined during intense training [0.52 (SD 2.51) %, NS] and improved during taper [2.32 (SD 1.69)%,P < 0.01]. Changes in performance during training and taper correlated with changes in ratios TT: C (r = 0.86,P < 0.01andr = 0.81,P < 0.05, respectively) and NSBT: C (r = 0.77,P < 0.05 andr = 0.76,P < 0.05, respectively). In summary, these results showed that the monitored plasma hormones and metabolic indices were unaltered by 12 weeks of intense training and 4 weeks of taper. The TT: C and NSBT: C ratios, however, appeared to be effective markers of the swimmers' performance capacities throughout the training season.  相似文献   

4.
Strength training improves cycling efficiency in master endurance athletes   总被引:1,自引:0,他引:1  
The purpose of this study was to test the effect of a 3-week strength training program of knee extensor muscles on cycling delta efficiency in master endurance athletes. Nine master (age 51.5 ± 5.5 years) and 8 young (age 25.6 ± 5.9 years) endurance athletes with similar training levels participated in this study. During three consecutive weeks, all the subjects were engaged in a strength training program of the knee extensor muscles. Every week, they performed three training sessions consist of 10 × 10 knee extensions at 70% of maximal repetition with 3 min rest between in a leg extension apparatus. Maximal voluntary contraction torque (MVC torque) and force endurance (End) were assessed before, after every completed week of training, and after the program. Delta efficiency (DE) in cycling was evaluated before and after the training period. Before the training period, MVC torque, End, and DE in cycling were significantly lower in masters than in young. The strength training induced a significant improvement in MVC torque in all the subjects, more pronounced in masters (+17.8% in masters vs. +5.9% in young, P < 0.05). DE in cycling also significantly increased after training in masters, whereas it was only a trend in young. A significant correlation (r = 0.79, P < 0.01) was observed between MVC torque and DE in cycling in masters. The addition of a strength training program for the knee extensor muscles to endurance-only training induced a significant improvement in strength and cycling efficiency in master athletes. This enhancement in muscle performance alleviated all the age-related differences in strength and efficiency.  相似文献   

5.
The purpose of this study was to investigate the effect of heavy strength training on thigh muscle cross-sectional area (CSA), determinants of cycling performance, and cycling performance in well-trained cyclists. Twenty well-trained cyclists were assigned to either usual endurance training combined with heavy strength training [E + S; n = 11 (♂ = 11)] or to usual endurance training only [E; n = 9 (♂ = 7, ♀ = 2)]. The strength training performed by E + S consisted of four lower body exercises [3 × 4–10 repetition maximum (RM)], which were performed twice a week for 12 weeks. Thigh muscle CSA, maximal force in isometric half squat, power output in 30 s Wingate test, maximal oxygen consumption (VO2max), power output at 2 mmol l−1 blood lactate concentration ([la]), and performance, as mean power production, in a 40-min all-out trial were measured before and after the intervention. E + S increased thigh muscle CSA, maximal isometric force, and peak power in the Wingate test more than E. Power output at 2 mmol l−1 [la] and mean power output in the 40-min all-out trial were improved in E + S (P < 0.05). For E, only performance in the 40-min all-out trial tended to improve (P = 0.057). The two groups showed similar increases in VO2max (P < 0.05). In conclusion, adding strength training to usual endurance training improved determinants of cycling performance as well as performance in well-trained cyclists. Of particular note is that the added strength training increased thigh muscle CSA without causing an increase in body mass.  相似文献   

6.
The aim of this study was to compare the effects of a weight training program for the leg extensors with isokinetic cycling training (80 rpm) on maximal power output and endurance performance. Both strength training interventions were incorporated twice a week in a similar endurance training program of 12 weeks. Eighteen trained male cyclists (VO2peak 60 ± 1 ml kg−1 min−1) were grouped into the weight training (WT n = 9) or the isokinetic training group (IT n = 9) matched for training background and sprint power (P max), assessed from five maximal sprints (5 s) on an isokinetic bicycle ergometer at cadences between 40 and 120 rpm. Crank torque was measured (1 kHz) to determine the torque distribution during pedaling. Endurance performance was evaluated by measuring power, heart rate and lactate during a graded exercise test to exhaustion and a 30-min performance test. All tests were performed on subjects’ individual race bicycle. Knee extension torque was evaluated isometrically at 115° knee angle and dynamically at 200° s−1 using an isokinetic dynamometer. P max at 40 rpm increased in both the groups (~15%; P < 0.05). At 120 rpm, no improvement of P max was found in the IT training group, which was possibly related to an observed change in crank torque at high cadences (P < 0.05). Both groups improved their power output in the 30-min performance test (P < 0.05). Isometric knee extension torque increased only in WT (P < 0.05). In conclusion, at low cadences, P max improved in both training groups. However, in the IT training group, a disturbed pedaling technique compromises an improvement of P max at high cadences.  相似文献   

7.
Summary To investigate the effects of a combination of simultaneous strength and endurance training on selected neuromuscular and aerobic performance characteristics seven male cross-country skiers underwent training for a period of 6 weeks. The experimental group trained 6–9 times per week with a programme consisting of 34% explosive type strength training and 66% endurance training during the first 3 weeks of the experiment and 42% and 58% respectively during the last 3 weeks of the experiment. The total volume of training of the control group (eight skiers) was of the same magnitude but consisted of 85% pure endurance training and 15% endurance type strength training. The experimental training regime resulted in specific changes in neuromuscular performance. This was demonstrated by improvements (P<0.01) in the maximal heights of rise of the centre of gravity in the squat and countermovement jumps. A significant decrease (P<0.05) took place also in the time of rapid isometric force production during experimental training, while no changes occurred in the maximal force of the trained muscles. Aerobic performance characteristics of the experimental group did not change during the experimental training period. No significant changes occurred in neuromuscular or aerobic performance characteristics in the control group. These findings indicated that training-induced improvements in explosive force production may not be fully inhibited by this kind of aerobic training. They also suggested that endurance athletes could undertake explosive type strength training programmes without a concomitant reduction in aerobic capacity, if the overall loading of training were within predefined limits.  相似文献   

8.
In this study adaptations in body composition, physical fitness and metabolic health were examined during 21 weeks of endurance and/or strength training in 39- to 64-year-old healthy women. Subjects (n = 62) were randomized into endurance training (E), strength training (S), combined strength and endurance training (SE), or control groups (C). S and E trained 2 and SE 2 + 2 times in a week. Muscle strength and maximal oxygen uptake (VO2max) were measured. Leg extension strength increased 9 ± 8% in S (P < 0.001), 12 ± 8% in SE (P < 0.001) and 3 ± 4% in E (P = 0.036), and isometric bench press 20% only in both S and SE (P < 0.001). VO2max increased 23 ± 18% in E and 16 ± 12% in SE (both P < 0.001). The changes in the total body fat (dual X-ray absorptiometry) did not differ between groups, but significant decreases were observed in E (−5.9%, P = 0.022) and SE (−4.8%, P = 0.005). Lean mass of the legs increased 2.2–2.9% (P = 0.004–0.010) in S, SE and E. There were no differences between the groups in the changes in blood lipids, blood pressure or serum glucose and insulin. Total cholesterol and low-density lipoprotein cholesterol decreased and high-density lipoprotein cholesterol increased in E. Both S and SE showed small decreases in serum fasting insulin. Both endurance and strength training and their combination led to expected training-specific improvements in physical fitness, without interference in fitness or muscle mass development. All training methods led to increases in lean body mass, but decreases in body fat and modest improvements in metabolic risk factors were more evident with aerobic training than strength training.  相似文献   

9.
The purpose of the present study was to compare the effect of 12 weeks of strength training combined with a large volume of endurance training with the effect of strength training alone on the strength training adaptations. Well-trained cyclists with no strength training experience performed heavy strength training twice a week in addition to a high volume of endurance training during a 12-week preparatory period (S + E; n = 11). A group of non-strength trained individuals performed the same strength training as S + E, but without added endurance training (S; n = 7). Thigh muscle cross-sectional area, 1 repetition maximum (1RM) in leg exercises, squat jump performance, and peak rate of force development (RFD) were measured. Following the intervention period, both S + E and S increased 1RM strength, thigh muscle cross-sectional area, and squat jump performance (p < 0.05), and the relative improvements in S were greater than in S + E (p < 0.05). S increased peak RFD while S + E did not, and this improvement was greater than in S + E (p < 0.05). To the best of our knowledge, this is the first controlled study to demonstrate that the strength training response on muscle hypertrophy, 1RM strength, squat jump performance, and peak RFD is attenuated in well-trained endurance athletes during a period of concurrent endurance training.  相似文献   

10.
We examined whether inspiratory muscle training (IMT) improved cycling time-trial performance and changed the relationship between limit work (W lim) and limit time (T lim), which is described by the parameters critical power (CP) and anaerobic work capacity (AWC). Eighteen male cyclists were assigned to either a pressure-threshold IMT or sham hypoxic-training placebo (PLC) group. Prior to and following a 6 week intervention subjects completed a 25-km cycling time-trial and three constant-power tests to establish the W limT lim relationship. Constant-power tests were prescribed to elicit exercise intolerance within 3–10 (Ex1), 10–20 (Ex2), and 20–30 (Ex3) min. Maximal inspiratory mouth pressure increased by (mean ± SD) 17.1 ± 12.2% following IMT (P < 0.01) and was accompanied by a 2.66 ± 2.51% improvement in 25-km time-trial performance (P < 0.05); there were no changes following PLC. Constant-power cycling endurance was unchanged following PLC, as was CP (pre vs. post: 249 ± 32 vs. 250 ± 32 W) and AWC (30.7 ± 12.7 vs. 30.1 ± 12.5 kJ). Following IMT Ex1 and Ex3 cycling endurance improved by 18.3 ± 15.1 and 15.3 ± 19.1% (P < 0.05), respectively, CP was unchanged (264 ± 62 vs. 263 ± 61 W), but AWC increased from 24.8 ± 5.6 to 29.0 ± 8.4 kJ (P < 0.05). In conclusion, these data provide novel evidence that improvements in constant-power and cycling time-trial performance following IMT in cyclists may be explained, in part, by an increase in AWC.  相似文献   

11.
We investigated the effects of strength maintenance training on thigh muscle cross-sectional area (CSA), leg strength, determinants of cycling performance, and cycling performance. Well-trained cyclists completed either (1) usual endurance training supplemented with heavy strength training twice a week during a 12-week preparatory period followed by strength maintenance training once a week during the first 13 weeks of a competition period (E + S; n = 6 [♂ = 6]), or (2) usual endurance training during the whole intervention period (E; n = 6 [♂ = 5, ♀ = 1]). Following the preparatory period, E + S increased thigh muscle CSA and 1RM (p < 0.05), while no changes were observed in E. Both groups increased maximal oxygen consumption and mean power output in the 40-min all-out trial (p < 0.05). At 13 weeks into the competition period, E + S had preserved the increase in CSA and strength from the preparatory period. From the beginning of the preparatory period to 13 weeks into the competition period, E + S increased peak power output in the Wingate test, power output at 2 mmol l−1 [la], maximal aerobic power output (W max), and mean power output in the 40-min all-out trial (p < 0.05). The relative improvements in the last two measurements were larger than in E (p < 0.05). For E, W max and power output at 2 mmol l−1 [la] remained unchanged. In conclusion, in well-trained cyclists, strength maintenance training in a competition period preserved increases in thigh muscle CSA and leg strength attained in a preceding preparatory period and further improved cycling performance determinants and performance.  相似文献   

12.
This study aimed to investigate the effects of a short-term period of intermittent hypoxic training (IHT) on cycling performance in athletes. Nineteen participants were randomly assigned to two groups: normoxic (NT, n = 9) and intermittent hypoxic training group (IHT, n = 10). A 3-week training program (5 × 1 h–1 h 30 min per week) was completed. Training sessions were performed in normoxia (∼30 m) or hypoxia (simulated altitude of 3,000 m) for NT and IHT group, respectively. Each subject performed before (W0) and after (W4) the training program, three cycling tests including an incremental test to exhaustion in normoxia and hypoxia for determination of maximal aerobic power and peak power output (PPO) as well as a 10-min cycle time trial in normoxia (TT) to measure the average power output (P aver). No significant difference in was observed between the two training groups before or after the training period. When measured in normoxia, the PPO significantly increased (P < 0.05) by 7.2 and 6.6% in NT and IHT groups, respectively. However, only the IHT group significantly improved (11.3%; P < 0.05) PPO when measured in hypoxia. The NT group improved (P < 0.05) P aver in TT by 8.1%, whereas IHT group did not show any significant difference. Intermittent training performed in hypoxia was less efficient for improving endurance performance at sea level than similar training performed in normoxia. However, IHT has the potential to assist athletes in preparation for competition at altitude.  相似文献   

13.
The effects of a 16-week training period (2 days per week) of resistance training alone (upper- and lower-body extremity exercises) (S), endurance training alone (cycling exercise) (E), or combined resistance (once weekly) and endurance (once weekly) training (SE) on muscle mass, maximal strength (1RM) and power of the leg and arm extensor muscles, maximal workload (Wmax) and submaximal blood lactate accumulation by using an incremental cycling test were examined in middle-aged men [S, n=11, 43 (2) years; E, n=10, 42 (2) years; SE, n=10, 41 (3) years]. During the early phase of training (from week 0 to week 8), the increase 1RM leg strength was similar in both S (22%) and SE (24%) groups, while the increase at week 16 in S (45%) was larger (P<0.05) than that recorded in SE (37%). During the 16-week training period, the increases in power of the leg extensors at 30% and 45% of 1RM were similar in all groups tested. However, the increases in leg power at the loads of 60% and 70% of 1RM at week 16 in S and SE were larger (P<0.05) than those recorded in E, and the increase in power of the arm extensors was larger (P<0.05) in S than in SE (P<0.05) and E (n.s.). No significant differences were observed in the magnitude of the increases in Wmax between E (14%), SE (12%) and E (10%) during the 16-week training period. During the last 8 weeks of training, the increases in Wmax in E and SE were greater (P<0.05–0.01) than that observed in S (n.s.). No significant differences between the groups were observed in the training-induced changes in submaximal blood lactate accumulation. Significant decreases (P<0.05–0.01) in average heart rate were observed after 16 weeks of training in 150 W and 180 W in SE and E, whereas no changes were recorded in S. The data indicate that low-frequency combined training of the leg extensors in previously untrained middle-aged men results in a lower maximal leg strength development only after prolonged training, but does not necessarily affect the development of leg muscle power and cardiovascular fitness recorded in the cycling test when compared with either mode of training alone.  相似文献   

14.
The purpose of this study was to investigate effects of concurrent strength and endurance training (SE) (2 plus 2 days a week) versus strength training only (S) (2 days a week) in men [SE: n=11; 38 (5) years, S: n=16; 37 (5) years] over a training period of 21 weeks. The resistance training program addressed both maximal and explosive strength components. EMG, maximal isometric force, 1 RM strength, and rate of force development (RFD) of the leg extensors, muscle cross-sectional area (CSA) of the quadriceps femoris (QF) throughout the lengths of 4/15–12/15 (L f) of the femur, muscle fibre proportion and areas of types I, IIa, and IIb of the vastus lateralis (VL), and maximal oxygen uptake (O2max) were evaluated. No changes occurred in strength during the 1-week control period, while after the 21-week training period increases of 21% (p<0.001) and 22% (p<0.001), and of 22% (p<0.001) and 21% (p<0.001) took place in the 1RM load and maximal isometric force in S and SE, respectively. Increases of 26% (p<0.05) and 29% (p<0.001) occurred in the maximum iEMG of the VL in S and SE, respectively. The CSA of the QF increased throughout the length of the QF (from 4/15 to 12/15 L f) both in S (p<0.05–0.001) and SE (p<0.01–0.001). The mean fibre areas of types I, IIa and IIb increased after the training both in S (p<0.05 and 0.01) and SE (p<0.05 and p<0.01). S showed an increase in RFD (p<0.01), while no change occurred in SE. The average iEMG of the VL during the first 500 ms of the rapid isometric action increased (p<0.05–0.001) only in S. V˙O2max increased by 18.5% (p<0.001) in SE. The present data do not support the concept of the universal nature of the interference effect in strength development and muscle hypertrophy when strength training is performed concurrently with endurance training, and the training volume is diluted by a longer period of time with a low frequency of training. However, the present results suggest that even the low-frequency concurrent strength and endurance training leads to interference in explosive strength development mediated in part by the limitations of rapid voluntary neural activation of the trained muscles. Electronic Publication  相似文献   

15.
To determine the effects of simultaneous explosive strength and soccer training in young men, 8 experimental (S) and 11 control (C) players, aged 17.2 (0.6) years, were tested before and after an 11-week training period with respect to the load-vertical jumping curve [loads of 0–70 kg (counter-movement jump CMJ0–70)], 5- and 15-m sprint performances, submaximal running endurance and basal serum concentrations of testosterone, free testosterone and cortisol. In the S group, the 11-week training resulted in significant increases in the low-force portion of the load-vertical jumping curve (5–14% in CMJ0–30, P<0.01) and in resting serum total testosterone concentrations (7.5%, P<0.05), whereas no changes were observed in sprint running performance, blood lactate during submaximal running, resting serum cortisol and resting serum free testosterone concentrations. In the C group, no changes were observed during the experimental period. In the S group, the changes in CMJ0 correlated (P<0.05–0.01) with the changes in the 5-m (r=0.86) and 15-m (r=0.92) sprints, whereas the changes in CMJ40 correlated negatively with the changes in the testosterone:cortisol ratio (r=–0.84, –0.92, respectively, P<0.05). These data indicate that young trained soccer players with low initial strength levels can increase explosive strength by adding low-frequency, low-intensity explosive-type strength training. The inverse correlations observed between changes in CMJ40 and changes in the testosterone:cortisol ratio suggest that a transient drop in this ratio below 45% cannot always be interpreted as a sign of overstrain or neuroendocrine dysfunction.An erratum to this article can be found at  相似文献   

16.
The present study investigated the effects of three different strength training regimes on the isokinetic strength profile of the knee extensors (quadriceps, Q) and flexors (hamstrings, H) and if increases in isokinetic strength were accompanied by an enhanced performance during a more complex leg movement, the soccer kick. Twenty-two elite soccer players performed 12 weeks of strength training (three times per week) at either high resistance (HR group: 4 sets, 8 reps, 8RM loading), low resistance (LR group: 4 sets, 24 reps, 24RM loading), loaded kicking movements (LK group: 4 sets, 16 reps, 16RM loading) while one group served as controls (CO group). Isokinetic concentric and eccentric moment of force was obtained (KinCom) as peak moment (Mpeak) and moment at 50° knee flexion (M50) at angular velocities of 30, 120, 240° s-1. Isokinetic knee joint strength was unchanged in groups LR, LK, CO. However, after the HR strength training, concentric Mpeak (±SD) increased (P<0.01) at 30° s-1 (Q, 258±37 to 297±57 Nm; H, 122±22 to 140±21 Nm). Furthermore, eccentric Mpeak increased at 30, 120 and 240° s-1 (Q, 274±60 to 345±57 Nm (P<0.01), 291±56 to 309±49 Nm and 275±43 to 293±36 Nm (P<0.05), respectively; H, 143±32 to 158±25 Nm, 152±39 to 169±31 Nm and 148±27 to 163±19 Nm (P<0.05)). Corresponding increases (P<0.05) were observed for M50. The H/Q ratio calculated as eccentric hamstring strength divided by concentric quadriceps strength (Hecc/Qcon, representative for knee extension) at 240° s-1 increased (P<0.05) from 107 to 118% (based on Mpeak) and from 90 to 105% (M50). Kicking performance estimated by maximal ball flight velocity was unaffected by any of the strength training regimes investigated. In conclusion, only heavy-resistance strength training induced increases in isokinetic muscle strength in the absence of learning effects. Concentric strength gains were observed at the actual velocity of training, while eccentric strength gains were found over the entire range of velocities examined. The capacity of the hamstring muscles for providing stability to the knee joint during fast extension was augmented as a result of the heavy-resistance strength training. Strength training should be integrated with other types of training involving the actual movement pattern in order to increase the performance within more complex movement patterns.  相似文献   

17.
We tested whether the increased cycling endurance observed after respiratory muscle training (RMT) in healthy sedentary humans was associated with a training-induced increase in cardiac stroke volume (SV) during exercise, similar to the known effect of endurance training. Thirteen subjects underwent RMT by normocapnic hyperpnea, nine underwent aerobic endurance training (cycling and/or running) and fifteen served as non-training controls. Training comprised 40 sessions performed within 15 weeks, where each session lasted 30 min. RMT increased cycling endurance at 70% maximal aerobic power ( ) by 24% [mean (SD) 35.6 (11.9) min vs 44.2 (17.6) min, P<0.05], but SV at 60% was unchanged [94 (21) ml vs 93 (20) ml]. Aerobic endurance training increased both SV [89 (24) ml vs 104 (32) ml, P<0.01] and cycling endurance [37.4 (12.8) min vs 52.6 (16.9) min, P<0.01]. In the control group, no changes were observed in any of these variables. It is concluded that the increased cycling endurance that is observed after RMT is not due to cardiovascular adaptations, and that the results provide evidence for the role of the respiratory system as an exercise-limitingfactor. Electronic Publication  相似文献   

18.
Serum hormones during prolonged training of neuromuscular performance   总被引:1,自引:0,他引:1  
Summary The effects of a 24-weeks' progressive training of neuromuscular performance capacity on maximal strength and on hormone balance were investigated periodically in 21 male subjects during the course of the training and during a subsequent detraining period of 12 weeks. Great increases in maximal strength were noted during the first 20 weeks, followed by a plateau phase during the last 4 weeks of training. Testosterone/cortisol ratio increased during training. During the last 4 weeks of training changes in maximal strength correlated with the changes in testosterone/cortisol (P<0.01) and testosterone/SHBG (P<0.05) ratios. During detraining, correlative decreases were found between maximal strength and testosterone/cortisol ratio (P<0.05) as well as between the maximal strength and testosterone/SHBG ratio (P<0.05). No statistically significant changes were observed in the levels of serum estradiol, lutropin (LH), follitropin (FSH), prolactin, and somatotropin. The results suggest the importance of the balance between androgenic-anabolic activity and catabolizing effects of glucocorticoids during the course of vigorous strength training.  相似文献   

19.
The purpose of this study was to examine the relationship between skeletal muscle monocarboxylate transporters 1 and 4 (MCT1 and MCT4) expression, skeletal muscle oxidative capacity and endurance performance in trained cyclists. Ten well-trained cyclists (mean ± SD; age 24.4 ± 2.8 years, body mass 73.2 ± 8.3 kg, VO2max 58 ± 7 ml kg−1 min−1) completed three endurance performance tasks [incremental exercise test to exhaustion, 2 and 10 min time trial (TT)]. In addition, a muscle biopsy sample from the vastus lateralis muscle was analysed for MCT1 and MCT4 expression levels together with the activity of citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD). There was a tendency for VO2max and peak power output obtained in the incremental exercise test to be correlated with MCT1 (r = −0.71 to −0.74; P < 0.06), but not MCT4. The average power output (P average) in the 2 min TT was significantly correlated with MCT4 (r = −0.74; P < 0.05) and HAD (r = −0.92; P < 0.01). The P average in the 10 min TT was only correlated with CS activity (r = 0.68; P < 0.05). These results indicate the relationship between MCT1 and MCT4 as well as cycle TT performance may be influenced by the length and intensity of the task.  相似文献   

20.
Respiratory muscles can fatigue during prolonged and maximal exercise, thus reducing performance. The respiratory system is challenged during underwater exercise due to increased hydrostatic pressure and breathing resistance. The purpose of this study was to determine if two different respiratory muscle training protocols enhance respiratory function and swimming performance in divers. Thirty male subjects (23.4 ± 4.3 years) participated. They were randomized to a placebo (PRMT), endurance (ERMT), or resistance respiratory muscle training (RRMT) protocol. Training sessions were 30 min/day, 5 days/week, for 4 weeks. PRMT consisted of 10-s breath-holds once/minute, ERMT consisted of isocapnic hyperpnea, and RRMT consisted of a vital capacity maneuver against 50 cm H2O resistance every 30 s. The PRMT group had no significant changes in any measured variable. Underwater and surface endurance swim time to exhaustion significantly increased after RRMT (66%, P < 0.001; 33%, P = 0.003) and ERMT (26%, P = 0.038; 38%, P < 0.001). Breathing frequency (f b) during the underwater endurance swim decreased in RRMT (23%, P = 0.034) and tidal volume (V T) increased in both the RRMT (12%, P = 0.004) and ERMT (7%, P = 0.027) groups. Respiratory endurance increased in ERMT (216.7%) and RRMT (30.7%). Maximal inspiratory and expiratory pressures increased following RRMT (12%, P = 0.015, and 15%, P = 0.011, respectively). Results from this study indicate that respiratory muscle fatigue is a limiting factor for underwater swimming performance, and that targeted respiratory muscle training (RRMT > ERMT) improves respiratory muscle and underwater swimming performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号