首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several reports have shown heterogeneity of [3H]imipramine binding to brain membranes. Recently, a high affinity and 5-HT sensitive [3H]imipramine binding site of protein nature, that was suggested to be identical to the substrate recognition site for 5-HT uptake, was demonstrated. Since most studies on the regulation of the [3H]imipramine binding sites by antidepressants have used desipramine displaceable binding, which is heterogenous in nature and contains binding not related to 5-HT uptake sites, the present report studies the possible effects of chronic (3 weeks) administration of imipramine or norzimeldine (10 mg/kg intraperitoneally twice daily) on 5-HT sensitive [3H]imipramine binding sites. For comparison, desipramine sensitive binding was also studied, as well as the physiological correlate 5-HT uptake. There were no changes in either [3H]imipramine binding or 5-HT uptake after the antidepressant treatment.Supported by the Swedish Medical Research Council Offprint requests to: J. Marcusson at Dept. of Geriatric Medicine  相似文献   

2.
Summary Previous work has shown an age-related reduction in neuronal uptake of noradrenaline in the prostatic, but not in the epididymal portion of the rat vas deferens. In the present paper, the influence of ageing on the number of [3H]desipramine binding sites and on the effect of lithium on neuronal [3H]noradrenaline uptake were studied in the prostatic and epididymal portions of vasa deferentia from 4- and 20-month-old rats. The affinity for [3H]desipramine (K d values) in the epididymal and prostatic portions did not change with age. However, ageing reduced the maximal number of [3H]desipramine binding sites (Bmax values) in the prostatic, but not in the epididymal portion. Lithium potentiated neuronal [3H]noradrenaline uptake only in the prostatic portion and this potentiation was not changed by ageing. The results showed differences in neuronal noradrenaline uptake between the two portions of the vas deferens. Furthermore, the data suggest that the age-related reduction in neuronal uptake in the prostatic portion is due to a reduction in the number of neuronal uptake sites for noradrenaline. Correspondence to R. Pekelmann Markus at the above address  相似文献   

3.
Effects of the intravenous anaesthetic ketamine on the desipramine-sensitive noradrenaline transporter (NAT) were examined in cultured bovine adrenal medullary cells and in transfected Xenopus laevis oocytes expressing the bovine NAT (bNAT). Incubation (1–3 h) of adrenal medullary cells with ketamine (10–300 μM) caused an increase in appearance of catecholamines in culture medium. Ketamine (10–1000 μM) inhibited desipramine-sensitive uptake of [3H] noradrenaline (NA) (IC50=97 μM). Saturation analysis showed that ketamine reduced V max of [3H]NA uptake without changing K m, indicating a non-competitive inhibition. Other inhibitors of NAT, namely cocaine and desipramine, showed a competitive inhibition of [3H]NA uptake while a derivative of ketamine, phencyclidine, showed a mixed type of inhibition. Ketamine (10–1000 μM) also inhibited the specific binding of [3H]desipramine to plasma membranes isolated from bovine adrenal medulla. Scatchard analysis of [3H]desipramine binding revealed that ketamine increased K d without altering B max, indicating a competitive inhibition. In transfected Xenopus oocytes expressing the bNAT, ketamine attenuated [3H]NA uptake with a kinetic characteristic similar to that of cultured adrenal medullary cells. These findings are compatible with the idea that ketamine non-competitively inhibits the transport of NA by interacting with a site which partly overlaps the desipramine binding site on the NAT. Received: 18 December 1997 / Accepted: 17 June 1998  相似文献   

4.
Tritiated sertraline, a radiolabeled form of a potent and selective inhibitor of serotonin uptake, was found to bind with high affinity to rat whole brain membranes. Characterization studies showed that [3H] sertraline binding occurred at a single site with the following parameters:K d 0.57 nM,B max 821 fmol/mg protein,n h 1.06. This binding was reversible; the dissociation constant calculated from kinetic measurements (K d 0.81 nM) agreed with that determined by saturation binding experiments. [3H] Sertraline binding in the presence of serotonin, paroxetine, fluoxetine or imipramine suggested competitive inhibition of binding (large increase inK d with little change inB max). The rank order of potency of inhibition of [3H] sertraline binding was similar to that of inhibition of serotonin uptake for known uptake inhibitors and the 1-amino-4-phenyltetralin uptake blockers. A marked decrease in ex vivo [3H] sertraline binding in the brain of rats 7 days after treatment withp-chloroamphetamine was consistent with the loss of serotonin uptake sites induced by this agent. The results of our study indicated that [3H] sertraline labels serotonin uptake sites in rat brain.  相似文献   

5.
Summary The binding characteristics of [3H]ICS 205-930, a 5-hydroxytryptamine 5-HT3 receptor antagonist, were investigated in membranes prepared from cat and rabbit vagus nerve (VN) and superior cervical ganglion (SCG). The autoradiographic localisation of 5-HT3 recognition sites was also assessed using [3H]ICS 205-930 in slices from cat medulla oblongata, nodose ganglion and vagus nerve.[3H]ICS 205-930 bound to a homogeneous population of high affinity recognition sites in cat VN: Bmax = 201 ± 43 fmol/mg protein, pKD = 9.26 ± 0.17 and SCG: Bmax = 291 ± 40 fmol/mg, pKD = 9.35 ± 0.80 (n = 3). Competition experiments performed in membranes from cat VN and SCG with agonists and antagonists suggested the presence of a homogeneous population of [3H]ICS 205-930 recognition sites. Competition curves were steep and monophasic and were best fitted by a 1 receptor site model. The following rank order of affinity for [3H]ICS 205-930 binding sites was observed with antagonists: SDZ 206-830 = ICS 205-930 > BRL 43694 > SDZ 206–792 > quipazine > MDL 72222 > metoclopramide > mCPP and agonists: 2-methyl-5-HT = 5-HT > phenylbiguanide. A similar profile was observed for a limited series of compounds in rabbit membranes. Drugs acting at 5-HT1, 5-HT2 and dopamine receptors (domperidone, spiperone and metergoline) showed very low affinities for [3H]ICS 205-930 recognition sites. The sites labelled with [3H]ICS 205-930 in vagus nerve and superior cervical ganglion of both species displayed the pharmacological profile of a 5-HT3 receptor. There was a significant correlation between the rank order of affinity of the tested compounds for [3H]ICS 205-930 recognition sites in cat and rabbit membranes and their rank order of affinity for 5-HT3 receptors from neuroblastoma-glioma NG 108-15 cells. Autoradiographic studies suggest that [3H]ICS 205-930 binding sites are present over and around the nodose ganglion cell somata, along certain fibers of the vagus nerve and in the terminal areas of this nerve in the medullar nucleus of the vagus.The present data demonstrate that [3H]ICS 205-930 identifies 5-HT3 receptors in preparations of cat and rabbit vagus nerve and superior cervical ganglion.Send offprint requests to D. Hoyer at the above addressThe present results have been presented in part at the Winter Meeting of the British Pharmacological Society, London, December 20–22, 1988 (Hoyer et al. 1989)  相似文献   

6.
The high-affinity binding sites for [3H]-imipramine (IMI) present in human platelets are associated with the neuronal uptake system for 5HT. It was recently demonstrated that previous antidepressant therapy with drugs which inhibit 5HT uptake could down-regulate [3H]-IMI binding and that this effect could persist up to 1 month after the end of treatment. We therefore re-examined the reported differences inB max of [3H]-IMI binding in platelets between control and depressed untreated patients, to evaluate the residual influence of previous antidepressant medication. The saturation characteristics of [3H]-IMI binding were compared in platelets from 17 depressed patients care-fully selected according to previous antidepressant therapy and washout period, who were closely matched, for age and sex, with a group of control healthy volunteers. The results reveal a significant decrease by 47% in theB max of [3H]-IMI binding in platelets of untreated depressed patients when compared with controls. There was no significant modification ofK d values for platelet [3H]-IMI binding between the depressed and the control groups. Our results support the view that platelet [3H]-IMI binding is a useful tool as a biological marker in depression.  相似文献   

7.
The effects of clozapine and other antipsychotic drugs on noradrenaline (NA) transport were examined in cultured bovine adrenal medullary cells and in transfected Xenopus laevis oocytes expressing the bovine NA transporter. Incubation of adrenal medullary cells with clozapine (30–1000 ng/ml) inhibited desipramine (DMI)-sensitive uptake of [3H]NA in a concentration-dependent manner (IC50=110 ng/ml or 336 nM). Other antipsychotic drugs such as haloperidol, chlorpromazine, and risperidone also decreased [3H]NA uptake (IC50= 144, 220, and 210 ng/ml or 383, 690, and 512 nM, respectively). Eadie-Hofstee analysis showed that clozapine reduced Vmax of uptake of [3H]NA and increased Km. Furthermore, clozapine inhibited specific binding of [3H]DMI to plasma membranes isolated from bovine adrenal medulla (IC50=48 ng/ml or 146 nM). Scatchard plot analysis of [3H]DMI binding revealed that clozapine decreased both Bmax and Kd. Other antipsychotic drugs, including haloperidol, chlorpromazine, and risperidone, also reduced [3H]DMI binding to the membranes. In transfected Xenopus oocytes expressing the bovine NA transporter, clozapine inhibited [3H]NA uptake in a concentration-dependent manner similar to that observed in adrenal medullary cells. These results suggest that clozapine and haloperidol directly inhibit transport of NA by acting on the site of an NA transporter that influences both substrate transport and binding of tricyclic antidepressants. Received: 13 April 1999 / Final version: 2 November 1999  相似文献   

8.
Summary Special conditions - tricine buffer containing Ca2+ and Mg2+, 22°C (TCM) — allow to label a much higher proportion of muscarinic receptors by [3H]cis-methyldioxolane (CD) than hitherto described (Vickroy et al. 1984 a). Taking the maximum number of binding sites, B max, of [3H]QNB as 100%, B max of [3H]CD amounts to 83% in the rat heart instead of the reported 17%, 33% in the cerebral cortex instead of 6%, 20% in hippocampus and 55% in pons/medulla. In the salivary glands specific binding was negligible. The affinities of a number of muscarinic agonists and antagonists to [3H]CD and [3H]QNB binding sites in different tissues of the rat are compared. Apparent affinities of agonists are much higher in the [3H]CD system, affinities of antagonists are slightly higher in the [3H]QNB system. In both assay systems receptors of heart and pons/ medulla membranes seem to have similar drug specificity. They differ somewhat from those in the cortex. Receptors in the salivary glands, however, seem to be completely different from those in the other three tissues. In the heart [3H]CD binding can be abolished almost completely by GppNHp. In the cortex about half of the [3H]CD binding is susceptible to GppNHp. The reduction of binding in the cortex is due to a change in B max and not in the dissociation constant K D. Competition of unlabelled pirenzepine with [3H]CD: In heart and pons/medulla only low affinity sites for pirenzepine (M2-receptors) are labelled by [3H]CD. In regions rich in M1 receptors like hippocampus (80% M1 receptors) or cortex (65–70% M1 receptors) the proportion of M1 receptors labelled by [3H]CD is smaller than expected considering the concentration of M1 receptors present in these tissues. Thus [3H]CD, under the conditions described in this paper, seems to label preferentially but not exclusively M2 receptors in their agonist high affinity form. Send offprint requests to A. Closse at the above address  相似文献   

9.
This study has employed receptor autoradiography to localise the distribution of binding sites for the 5-HT3 receptor ligand [3H]BRL 43694 in sections of the brain of the rat (using a concentration of 10 nM [3H]BRL 43694 with 100 μM GR38032F to define non-specific binding). The highest density of binding sites for [3H]BRL 43694 was observed in the nucleus tractus solitarius and amounted to 652 fmol/mg tissue. The binding of [3H]BRL 43694 was also examined in sections prepared 10 days after unilateral nodose ganglionectomy, in an attempt to determine the neuronal location of these binding sites. Denervation reduced the binding of [3H]BRL 43694 by around 50% in the ipsilateral side of the nucleus tractus solitarius, relative to the contralateral side. This would indicate that the 5-HT2 binding sites may have a presynaptic location on vagal afferent terminals.  相似文献   

10.
Summary Imidazolines bind with high affinity not only to -adrenoceptors but also to specific imidazoline binding sites (IBS) labelled by either [3H]clonidine or [3H]idazoxan and termed I1- and I2-IBS, respectively. Since bovine adrenal chromaffin cells lack 2-adrenoceptors, we investigated the pharmacological characteristics of [3H]clonidine binding sites in the bovine adrenal medulla. The binding of [3H]clonidine was rapid, reversible, partly specific (as defined by naphazoline 0.1 mmol/l; 55% specific binding at [3H]clonidine 10 nmol/l), saturable and of high affinity. The specific binding of [3H]clonidine to bovine adrenal medullary membranes was concentration-dependently inhibited by various imidazolines, guanidines and an oxazoline derivative but not, or with negligible affinity, by rauwolscine and (–)-adrenaline. In most cases, the competition curves were best fitted to a two-site model. The rank order of affinity for the high affinity site (in a few cases the single detectable site) was as follows: naphazoline >- BDF 7579 (4-chloro-2-isoindolinyl guanidine) >-clonidine>- cirazoline >_ BDF 6143 (4-chloro-2-(2-imidazolin-2-ylamino)isoindoline hydrochloride) > BDF 7572 (4,7-chloro-2-(2-imidazolin-2-ylamino)-isoindoline) > moxonidine = rilmenidine > BDF 6100 (2-(2-imidazolin-2-ylamino)-isoindoline) = idazoxan > phentolamine > aganodine = guanabenz > amiloride > histamine. This rank order is compatible with the pharmacological properties of the I1-IBS. The non-hydrolysable GTP-analogue Gpp(NH)p (5guanylylimidodiphosphate; 100 mol/l) inhibited specific [3H]clonidine binding by about 50%. Equilibrium [3H]clonidine binding was also significantly reduced by K+ and Mg2+ In conclusion, [3H]clonidine labels non-adrenergic high-affinity sites in plasma membranes of the bovine adrenal medulla; these sites exhibit the pharmacological properties of I1-IBS, but not of I2-IBS. Furthermore, the IBS in the adrenal medulla appear to be coupled to a G-protein.Correspondence to G. J. Molderings at the above address  相似文献   

11.
We have compared the effect of treating rat striatal cell membranes with ionic hydrophilic sulfhydryl reagents on the specific bindings of [3H]cocaine and of [3H]GBR 12783 (1-[2-(diphenylmethoxy)ethyl]4-(3-phenyl-2-[1-3H]propenyl)-piperazine) to the neuronal transporter of dopamine. Treatment with 1 mmol/1 5,5-dithiobis(2-nitrobenzoic acid) (DTNB) resulted in similar time-and concentration-dependent reductions of the specific binding of both radioligands. None of the uptake blockers tested afforded any protection against 1 mmol/1 DTNB. Addition of (sub)millimolar concentrations of CaCl2 or MgCl2, or 250 mmol/1 KCl to a treatment medium containing 10 mmol/l Na + significantly increased the DTNB-induced reduction of the specific binding of both radioligands. Cations were likely to be responsible for this effect since ions in combination with DTNB induced similar reductions in binding when either 1 mmol/l CaCl2 or 50–250 mmol/l NaCl were added. Effects of cations on the DTNB-induced inhibition of binding were generally more marked on [3H]GBR 12783 than on [3H]cocaine binding. When added to a medium containing 10 mmol/1 Na+ 1 mmol/1 DTNB induced a reduction in the Bmax of the specific binding of both radioligands. Addition of 1 mmol/l Ca2+ maintained or increased this Bmax reduction and elicited a decrease in affinity which was significant for [3H]GBR 12783 binding.Treatment of membranes with the sodium salt of p-hydroxymercurybenzenesulfonate (pHMBS) induced time-and concentration-dependent decreases in [3H]GBR 12783 binding which were significantly greater than decreases in [3H]cocaine binding. However, 50mol/lpHMBS produced a similar decrease in the Bmax of the specific binding of both radioligands. The pHMBS-induced reduction of [3H]GBR 12783 binding was not reversed by drugs whose action is purely that of uptake inhibition or by substrates of the dopamine carrier. Some of these drugs (100 mol/l dopamine, 1 mol/l mazindol or 100 mol/l cocaine) protected the specific binding of [3H]cocaine against the effects of pHMBS, whereas 1 mmol/1 p-tyramine, 10 mol/l nomifensine and 10 nmol/l GBR 12783 were ineffective. Addition of 120 mmol/l Na+, 1 mmol/l Ca2+ or 10 mmol/l Mg2+ to a treatment medium containing 10 mmol/l Na+ significantly reduced the effects of pHMBS on the specific binding of both radioligands. When striatal cell membranes were treated in a medium containing 130 mmol/1 Na+, there was a general decrease in the effects of ions on the reductions of specific binding produced by DTNB or pHMBS. Cation concentrations which interfered with the actions of DTNB and pHMBS were approximately those which blocked the specific binding of [3H]GBR 12783 when they were present during association of the radioligand (K+, Ca 2+, Mg2+), or, in the case of Na+, which are effective in reducing this blockade (Bonnet et al. 1988).The present data are consistent with the existence of mutually exclusive binding sites for [3H]GBR and [3H]cocaine on the neuronal dopamine transporter. The hypothesis of a cation recognition site which could gate admission of uptake inhibitors or carrier substrates to their binding domain on the transporter is discussed.  相似文献   

12.
Paroxetine is the most potent and one of the most specific serotonin uptake inhibitors. High-affinity3H-paroxetine and3H-imipramine binding was compared in rat neuronal membranes. TheK d value for3H-paroxetine binding to neuronal membranes was 0.08 nM, which is exactly the same value as with platelet membranes. TheK d value for3H-imipramine binding to neuronal membranes was about 4 nM, which is higher than theK d value for3H-imipramine binding to platelet membranes (0.5 nM). The results indicated that the3H-paroxetine binding site is identical in neuronal membranes and in platelet membranes; this binding site is probably located on the serotonin transport mechanism. In addition, part of the highaffinity3H-imipramine binding to neuronal membranes is probably located on the serotonin transport mechanism, but another part is located elsewhere. Furthermore the polypeptides containing the3H-imipramine binding sites may not be identical in neuronal and platelet membranes.  相似文献   

13.
Summary In order to label dopamine D2 receptors selectively we tritiated the potent benzamide neuroleptic, YM-09151-2 (26.7 Ci/mmol). The binding of [3H]-YM-09151-2 to canine striatal membranes was saturable and specific with a K D of 57 pmol/l and B max of 36 pmol/g tissue as determined by Scatchard analysis. The K D, but not the B max, of [3H]-YM-09151-2 increased 6-fold in the absence of sodium chloride. [3H]-YM-09151-2 labeled 40% more sites than [3H]-spiperone in the same tissue homogenate. [3H]-YM-09151-2 binding was inhibited by dopaminergic drugs in a concentration and stereoselective manner with the appropriate dopamine D2 receptor profile. Thus, dopamine agonists inhibited [3H]-YM-09151-2 binding to canine striatal membranes with the following rank order of potency: (–)-N-n-propylnorapomorphine > apomorphine > (±)-6,7-dihydroxy-2-aminotetralin > (+)-N-n-propylnorapomorphine > dopamine > (–)-noradrenaline > serotonin > (–)-isoprenaline. Dopaminergic antagonists competed for [3H]-YM-09151-2 binding with the following order of potency: spiperone > (+)-butaclamol > haloperidol > clebopride > (–)-sulpiride > SCH-23390 > (–)-butaclamol. Furthermore, dopamine agonists recognized 2 states of the receptor labeled by [3H]-YM-09151-2, D 2 high and D 2 low . The D 2 high state of the receptor could be converted to D 2 low by guanine nucleotides and sodium ions as is the case for [3H]-spiperone binding to D2 receptors. [3H]-YM-09151-2 appears to be a more selective ligand for dopamine D2 receptors than [3H]-spiperone, since YM-09151-2 displays approximately 9-fold lower affinity than spiperone for cortical serotonergic (S2) receptors. [3H]-YM-09151-2 may become a useful tool for the selective characterization of dopamine D2 receptors.Abbreviations used (±)ADTN (±)-2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene - NPA N-n-propylnorapomorphine - Gpp(NH)p 5-guanylylimidodiphosphate  相似文献   

14.
The present study describes the preparation and binding properties of a new, potent, and selective A2A adenosine receptor (AR) antagonist radioligand, [3H]3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine ([3H]MSX-2). [3H]MSX-2 binding to rat striatal membranes was saturable and reversible. Saturation experiments showed that [3H]MSX-2 labeled a single class of binding sites with high affinity (Kd=8.0 nM) and limited capacity (Bmax=1.16 fmol·mg−1 of protein). The presence of 100 μM GTP, or 10 mM magnesium chloride, respectively, had no effect on [3H]MSX-2 binding. AR agonists competed with the binding of 1 nM [3H]MSX-2 with the following order of potency: 5′-N-ethylcarboxamidoadenosine (NECA)>2-[4-(carboxyethyl)phenylethylamino]-5′-N-ethylcarboxamidoadenosine (CGS-21680)>2-chloroadenosine (2-CADO)>N6-cyclopentyladenosine (CPA). AR antagonists showed the following order of potency: 8-(m-bromostyryl)-3,7-dimethyl-1-propargylxanthine (BS-DMPX)>1,3-dipropyl-8-cyclopentylxanthine (DPCPX)>(R)-5,6-dimethyl-7-(1-phenylethyl)-2-(4-pyridyl)-7H-pyrrolo[2,3-d]pyrimidine-4-amine (SH-128)>3,7-dimethyl-1-propargylxanthine (DMPX)>caffeine. The Ki values for antagonists were in accordance with data from binding studies with the agonist radioligand [3H]CGS21680, while agonist affinities were 3–7-fold lower. [3H]MSX-2 is a highly selective A2A AR antagonist radioligand exhibiting a selectivity of at least two orders of magnitude versus all other AR subtypes. The new radioligand shows high specific radioactivity (85 Ci/mmol, 3150 GBq/mmol) and acceptable nonspecific binding at rat striatal membranes of 20–30%, at 1 nM.  相似文献   

15.
The effects of acute (5 mg/kg, IP twice daily for 2 days) and chronic (5 mg/kg IP twice daily for 21 days) administration of desipramine (DMI) on [125I]-Tyr11-somatostatin binding sites in brain were examined. There was no change in [125I]Tyr11-somatostatin binding in membranes prepared from the frontal cortex, striatum, and hippocampus of rats acutely or chronically treated with DMI as compared to non treated animals. [125I]Tyr11-Somatostatin binding was increased in membranes prepared from the rat nucleus accumbens only after chronic DMI administration. Scatchard analysis of the binding data from the nucleus accumbens showed that [125I]Tyr11-somatostatin labels a single population of somatostatin binding sites with an affinity constant, Kd, of 1.8±0.60 nM and a Bmax of 330±90 fmol/mg protein. Chronic treatment with DMI increased the Bmax (500±140 fmol/mg protein) but had no effect on the Kd. This finding shows a regional effect of DMI on [125I]Tyr11-somatostatin binding sites in rat brain and suggests that somatostatin may play a role in the pathophysiology of depression.  相似文献   

16.
The specific binding of [3H]desipramine to various brain regions and peripheral tissues of the rat was of high affinity, rapid and reversible. It was inhibited with high affinity only by tricyclic antidepressants and noradrenaline uptake blockers. There was a highly significant correlation between the potencies of a series of drugs for the inhibition of [3H]desipramine binding and for the inhibition of noradrenaline uptake. Substrates for the noradrenaline uptake system however inhibited the binding of [3H]desipramine only at very high concentrations. Postganglionic sympathetic denervation of the submaxillary gland and the heart both resulted in a pronounced decrease in [3H]desipramine binding sites, which paralleled the reduction in endogenous noradrenaline levels. High-affinity [3H]desipramine binding sites thus appear to be localised on noradrenergic nerve endings and are probably closely associated with the neuronal uptake system for noradrenaline.  相似文献   

17.
Effects of various forms of stress on the GABAA receptor-chloride ionophore complex in the brain of NMRI mice were investigated. Male albino mice were subjected to stress by placing them on small platforms (SP; 3.5 cm diameter) surrounded by water for 24 h. This experimental model contains several stress factors like rapid eye movement (REM) sleep deprivation, isolation, immobilization, falling into water and soaking. As additional stress control groups we used animals subjected to isolation, large platform (9.0 cm diameter) and repeated swimming stress. SP stress induced an increase in the number of cortical benzodiazepine (BDZ) receptors and a reduction in the GABA-stimulated 36C1 uptake by brain microsacs, whereas none of these changes could be observed in animals exposed to isolation, swimming or large platform stresses. Furthermore, the amount of GABA-induced stimulation of [3H]flunitrazepam binding was reduced in cortical brain membranes of SP-stressed animals, an effect due to fact that these animals dispayed an increase in the basal [3H]flunitrazepam binding, whereas the absolute level of maximally enhanced BDZ binding in the presence of GABA did not differ from those found in controls. Neither basal [3H]muscimol binding or thiopentone sodium-induced stimulation of [3H]flunitrazepam binding were changed in any group of stressed mice. It is proposed that the observed upregulation in the number (B max ) of cortical BDZ receptors in SP-stressed mice may represent a compensatory response to a stress-induced attenuation of GABAergic neurotransmission.  相似文献   

18.
Platelet 5-HT uptake sites were measured in 40 depressed patients and 40 controls using [3H] imipramine binding, defined with desmethylimipramine (DMI) and Na+ dependence, and [3H] paroxetine binding. In control subjects the Bmax of DMI defined [3H] imipramine binding was significantly higher than both Na+ dependent [3H] imipramine (by 30%) and [3H] paroxetine binding (by 22%). The Bmax of Na+ dependent [3H] imipramine and [3H] paroxetine binding did not differ significantly. The Kd of Na+ dependent [3H] imipramine binding was significantly lower than the Kd of DMI defined [3H] imipramine binding. The binding of DMI defined and Na+ dependent [3H] imipramine and [3H] paroxetine did not differ significantly between depressed patients and controls in the total group, in those depressed patients who had never taken antidepressants or in those depressed patients who had been recently with-drawn from antidepressants. This study provides no support for the view that the number of platelet 5-HT uptake sites are reduced in depression.  相似文献   

19.
Summary N6-Cyclohexyl[3H]adenosine([3H]CHA),[3H]adenosine, and 5N-ethylcarboxamide[3H]adenosine ([3H]NECA), potent agonists in adenosine-responsive cellular systems, have been used to identify adenosine binding sites in rat liver plasma membranes. Endogenous ligands were removed by prior dialysis of the membranes. Specific binding of the ligands tested was characterized by rapid forward and reverse kinetics and heterogeneity as indicated by curvilinear Scatchard plots. The K D in the high affinity range was 80 nM for [3H]adenosine, 84 nM for [3H]NECA, and 168 nM for [3H]CHA; the respective binding capacities of 1.19, 1.03, and 1.05 pmol/mg protein were of virtually the same magnitude, suggesting labeling of identical sites. However, all ligands also displayed binding to large numbers of low affinity sites. This high level of apparently non-receptor binding markedly influenced the adenosine structure-activity profile of [3H]CHA displacement, which differs with pharmacological findings. — NECA and CHA stimulated hepatic adenylate cyclase with an apparent ED50 of 60 and 580 nM, respectively; adenosine was stimulatory at a concentration range from 0.1–2.0 M, but inhibitory at higher concentrations. Hence, estimation of the true ED50 was not possible. Because the K D of high affinity binding and the ED50 of the biological effect of NECA and CHA are in the same range, it may be reasonable to assume that the high affinity sites represent adenosine receptors, recently classified as Ra-site receptors.Preliminary reports of this study have been presented at the 22nd Spring Meeting of the Deutsche Pharmakologische Gesellschaft (Naunyn-Schmiedeberg's Arch Pharmacol 316, R10, 1981) and at the 8th International Congress of Pharmacology [Tokyo 1981 (P 1459)]  相似文献   

20.
Summary [3H]-(-)-Dihydroalprenolol ([3H]-DHA) binds to rat spleen membranes with a dissociation equilibrium constant (K D) of about 0.7 nM and a maximal number of binding sites of 272 fmoles x mg protein–1. Approximately 90% of the sites labelled by 1 nM [3H]-DHA possess classical properties of beta-adrenoceptors. The labelled ligand is stereospecifically displaced by the isomers of propranolol and the order of potency of agonists is: isoprenaline>adrenaline >noradrenaline. Highly selective beta1 antagonists such as practolol and atenolol displaced [3H]-DHA from spleen membranes in a biphasic manner indicating the co-existence of beta1 and beta2 sites (30–35% beta1; 65–70% beta2) in this tissue. Support for this classification was provided by the binding of the beta2 agonist procaterol to spleen membranes. This drug possessed high affinity only for those sites that have low affinity for the beta1, selective agents.Chemical sympathectomy induced by chronic 6-hydroxydopamine administration did not alter the number or the pharmacological properties of beta-adrenoceptor binding sites. The results suggest that both beta1 and beta2 adrenoceptors are probably postsynaptic in spleen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号