首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
After ingestion by mosquitoes, gametocytes of malaria parasites become activated and form extracellular gametes that are no longer protected by the red blood cell membrane against immune effectors of host blood. We have studied the action of complement on Plasmodium developmental stages in the mosquito blood meal using the rodent malaria parasite Plasmodium berghei and rat complement as a model. We have shown that in the mosquito midgut, rat complement components necessary to initiate the alternative pathway (factor B, factor D, and C3) as well as C5 are present for several hours following ingestion of P. berghei-infected rat blood. In culture, 30 to 50% of mosquito midgut stages of P. berghei survived complement exposure during the first 3 h of development. Subsequently, parasites became increasingly sensitive to complement lysis. To investigate the mechanisms involved in their protection, we tested for C3 deposition on parasite surfaces and whether host CD59 (a potent inhibitor of the complement membrane attack complex present on red blood cells) was taken up by gametes while emerging from the host cell. Between 0.5 and 22 h, 90% of Pbs21-positive parasites were positive for C3. While rat red and white blood cells stained positive for CD59, Pbs21-positive parasites were negative for CD59. In addition, exposure of parasites to rat complement in the presence of anti-rat CD59 antibodies did not increase lysis. These data suggest that parasite or host molecules other than CD59 are responsible for the protection of malaria parasites against complement-mediated lysis. Ongoing research aims to identify these molecules.  相似文献   

2.
Mouse monoclonal antibody 13.1 (mAb 13.1) directed against Pbs21, a 21-kDa sexual-stage surface protein of Plasmodium berghei, is known to inhibit oocyst development from gametocytes and ookinetes in the mosquito midgut. To examine the properties and potential uses of a single-chain antibody fragment (scFv) for blocking transmission of malaria parasites to mosquitoes, we have cloned and sequenced the genes encoding variable regions of the immunoglobulin heavy and light chains (V(H) and V(L)) of mAb 13.1. The V(H) and V(L) genes were assembled as an scFv gene, and expressed in a baculovirus expression system. Following purification of 13.1 scFv, Western blotting and inhibition ELISA assays confirmed that 13.1 scFv retained the binding specificity of the parent mAb 13.1 for Pbs21. Furthermore, 13.1 scFv bound to the surface of P. berghei ookinetes, and blocked oocyst development in the mosquito midgut by at least 93%, as assessed by oocyst counts in mosquitoes. We suggest that the 13.1 scFv gene could be useful not only in studying the mechanism of transmission blockade, but also in generating, by mosquito germline transformation, a model system to evaluate the production of mosquitoes refractory to malaria.  相似文献   

3.
Peroxiredoxins (Prxs) constitute a ubiquitous family of antioxidant enzymes involved in diverse cellular functions including cell proliferation and differentiation. To investigate the physiologic role of typical 2-Cys Prx in malaria parasites (TPx-1), we disrupted this gene in the rodent malaria parasite Plasmodium berghei (pbtpx-1). The gene-disrupted parasite (Prx KO) developed normally in mouse erythrocytes and multiplied at a rate similar to that of the parent strain (WT) during the experimental period. The normal growth rate was not altered after 10 passages, and the level of 8-hydroxy-2'-deoxyguanosine, which accumulates in the parasite genome during the cell cycle, was similar between Prx KO and WT. These results suggest that TPx-1 does not prevent parasite DNA oxidation, in contrast to mammalian Prx, and that it is not essential for asexual parasite growth in mouse erythrocytes. However, Prx KO produced up to 60% fewer gametocytes, sexual-stage parasites involved in the transition between the mammalian host and the mosquito, than WT did. The peak of gametocytemia was also delayed; however, the male/female ratio of gametocytes and the exflagellation activity of male gametocytes were normal. These results suggest that TPx-1 is required for normal gametocyte development but does not affect the male/female gametocyte ratio or male gametogenesis. Although the mechanism by which PbTPx-1 contributes to gametocyte development remains unknown, these findings suggest, for the first time, the involvement of Prx in the sexual development of the malaria parasite.  相似文献   

4.
Gene targeting in the rodent malaria parasite Plasmodium yoelii   总被引:5,自引:0,他引:5  
It is anticipated that the sequencing of Plasmodium falciparum genome will soon be completed. Rodent models of malaria infection and stable transformation systems provide powerful means of using this information to study gene function in vivo. To date, gene targeting has only been developed for one rodent malaria species, Plasmodium berghei. Another rodent species, Plasmodium yoelii, however, is favored to study the mechanisms of protective immunity to the pre-erythrocytic stages of infection and vaccine development. In addition, it offers the opportunity to investigate unique aspects of pathogenesis of blood stage infection. Here, we report on the stable transfection and gene targeting of P. yoelii. Purified late blood stage schizonts were used as targets for electroporation with a plasmid that contains a pyrimethamine-resistant form of the P. berghei dihydrofolate reductase-thymidylate synthase (Pbdhfr-ts) fused to green fluorescent protein (gfp) gene. After drug selection, fluorescent parasites contained intact, non-rearranged plasmids that remain stable under drug-pressure. In addition, we used another dhfr-ts/gfp based plasmid to disrupt the P. yoelii trap (thrombospondin-related anonymous protein) locus by site-specific integration. The phenotype of P. yoelii TRAP knockout was identical to that previously reported for the P. berghei TRAP knockout. In the absence of TRAP, the erythrocytic cycle, gametocyte and oocyst development of the mutant parasites were indistinguishable from wild type (WT). Although the sporozoites appeared morphologically normal, they failed to glide and to invade the salivary glands of mosquitoes.  相似文献   

5.
Previously we have used the Plasmodium dihydrofolate reductase thymidylate synthase (DHFR-TS) selectable marker to generate Plasmodium berghei TRAP null mutant parasites. These TRAP null mutants do not glide and they showed a great reduction in their ability to infect mosquito salivary glands and the hepatocytes of the vertebrate host. Thus far, complementation of these knockout parasites was not possible due to the lack of additional selectable markers. Recently, a new selectable marker, based on the human dihydrofolate reductase (hDHFR) gene, has been developed which confers resistance to the antifolate drug WR99210. This drug has been found to be highly active against pyrimethamine-sensitive and -resistant strains of P. berghei. In this study, we have used the hDHFR gene as a second selectable marker for the complementation of P. berghei TRAP null mutant parasites. Restoration of the TRAP null mutant parasites to the wild-type phenotype was achieved in this study via autonomously replicating episomes bearing a wild-type copy of the TRAP gene. This is the first report of complementation of a mutant phenotype in malaria parasites.  相似文献   

6.
The malaria parasite encodes a wide range of proteases necessary to facilitate its many developmental transitions in vertebrate and insect hosts. Amongst these is a predicted cysteine protease structurally related to caspases, named Plasmodium metacaspase 1 (PxMC1). We have generated Plasmodium berghei parasites in which the PbMC1coding sequence is removed and replaced with a green fluorescent reporter gene to investigate the expression of PbMC1, its contribution to parasite development, and its involvement in previously reported apoptosis-like cell death of P. berghei ookinetes. Our results show that the pbmc1 gene is expressed in female gametocytes and all downstream mosquito stages including sporozoites, but not in asexual blood stages. We failed to detect an apparent loss-of-function phenotype, suggesting that PbMC1 constitutes a functionally redundant gene. We discuss these findings in the context of two other putative Plasmodium metacaspases that we describe here.  相似文献   

7.
Malaria parasites express a broad repertoire of proteins whose expression is tightly regulated depending on the life-cycle stage of the parasite and the environment of target organs in the respective host. Transmission of malaria parasites from the human to the anopheline mosquito is mediated by intraerythrocytic sexual stages, termed gametocytes, which circulate in the peripheral blood and are essential for the spread of the tropical disease. In Plasmodium falciparum, gametocytes express numerous extracellular proteins with adhesive motifs, which might mediate important interactions during transmission. Among these is a family of six secreted proteins with adhesive modules, termed PfCCp proteins, which are highly conserved throughout the apicomplexan clade. In P. falciparum, the proteins are expressed in the parasitophorous vacuole of gametocytes and are subsequently exposed on the surface of macrogametes during parasite reproduction in the mosquito midgut. One characteristic of the family is a co-dependent expression, such that loss of all six proteins occurs if expression of one member is disrupted via gene knockout. The six PfCCp proteins interact by adhesion domain-mediated binding and thus form complexes on the sexual stage surface having adhesive properties. To date, the PfCCp proteins represent the only protein family of the malaria parasite sexual stages that assembles to multimeric complexes, and only a small number of such protein complexes have so far been identified in other life-cycle stages of the parasite.  相似文献   

8.
The malaria parasite sporozoite stage develops in the mosquito vector and is transmitted to the mammalian host by bite. Sporozoites engage in multiple interactions with vector and host tissue on the journey from their oocyst origin to their final destination inside hepatocytes. Several malaria proteins have been identified that mediate sporozoite interactions with target tissues such as secreted and surface-associated ligands CSP and TRAP, which contain a thrombospondin type 1 repeat (TSR). Recently, we identified thrombospondin-related sporozoite protein (TRSP) in Plasmodium sporozoites, which exhibits a single TSR in its putative extracellular N-terminal region and is highly conserved among Plasmodium species. Here, we show using targeted gene disruption in the rodent malaria model Plasmodium berghei, that lack of TRSP has no effect on the asexual blood stage cycle, parasite transmission to the mosquito, sporozoite development and infection of mosquito salivary glands. However, analysis of TRSP knockout sporozoites in vitro and in vivo indicates that this protein has a significant role in hepatocyte entry and therefore liver infection. Thus, TRSP is an additional TSR-containing malaria parasite protein that is mainly involved in initial infection of the mammalian host.  相似文献   

9.
The L35 strain of Anopheles gambiae Giles was genetically selected for its ability to melanize and kill malaria parasites. A wide range of Plasmodium species are subject to this response when orally ingested, including the rodent malaria, P. berghei. However, when we directly injected P. berghei into the hemocoel, we found that parasites developed normally to the oocyst stage. This work suggests that the parasite melanization response depends on the interaction of the ookinetes and the midgut. This result is surprising because it contrasts with a genetically validated model system, where injection of CM-Sephadex beads directly into the hemocoel results in bead melanization.  相似文献   

10.
11.
The mosquito midgut plays a central role in the development and subsequent transmission of malaria parasites. Using a rodent malaria parasite, Plasmodium berghei, and the mosquito vector Anopheles stephensi, we investigated the effect of anti-mosquito-midgut antibodies on the development of malaria parasites in the mosquito. In agreement with previous studies, we found that mosquitoes that ingested antimidgut antibodies along with infectious parasites had significantly fewer oocysts than mosquitoes in the control group. We also found that the antimidgut antibodies inhibit the development and/or translocation of the sporozoites. Together, these observations open an avenue for research toward the development of a vector-based malaria parasite transmission-blocking vaccine.  相似文献   

12.
Laminin is a major constituent of the basal lamina surrounding the midgut of the malaria vectors that has been implicated in the development of the Plasmodium oocyst. In this report we describe the cloning of the Anopheles gambiae gene encoding the laminin gamma 1 polypeptide and follow its expression during mosquito development. To further investigate the putative role of laminin in the transmission of the malaria parasite we studied the potential binding of the P25 surface protein of Plasmodium berghei using a yeast two-hybrid system. Heterodimer formation was observed and does not require any additional protein factors since purified fusion proteins can also bind each other in vitro. Laminin gamma 1 also interacts with the paralogue of P25, namely P28, albeit more weakly, possibly explaining why the two parasite proteins can substitute for each other in deletion mutants. This represents the first direct evidence for molecular interactions between a surface protein of the Plasmodium parasite with an Anopheles protein; the strong interplay between laminin gamma 1 and P25 suggests that this pair of proteins may function as a receptor/ligand complex regulating parasite development in the mosquito vector.  相似文献   

13.
Two subeellular fractions from the midgut of the malaria mosquito Anopheles stephensi (Liston) were used to immunize BALB/c mice. Mice were subsequently infected with the rodent malaria parasite Plasmodium berghei (Vineke & Lips), and the effects of anti-mosquito immunity on mosquito survival and fecundity and on parasite transmission were investigated. Mosquitoes were infected directly from mice (in vivo) or by feeding cultured ookinetes through a membrane (in vitro). Infections were monitored by counting oocysts on the midgut wall. Microvilli extracts induced a strong and partially specific antibody reaction against the midgut, which was manifest as decreased survival in in vivo fed mosquitoes and reduced fecundity in both kinds of feeding. Antisera against microvilli reduced the mean intensity of P. berghei oocysts when fed in vitro, while mosquitoes fed antiserum against basolateral plasma membranes in vivo, showed higher oocyst burdens.  相似文献   

14.
Green fluorescent protein (GFP) is a well-established reporter protein for the examination of biological processes. This report describes a recombinant Plasmodium berghei, PbGFPCON, that constitutively expresses GFP in a growth responsive manner in its cytoplasm from a transgene that is integrated into the genome and controlled by the strong promoter from a P. berghei elongation factor-1alpha gene. All life cycle forms of PbGFPCON except for male gametes can be easily visualized by fluorescent microscopy. PbGFPCON showed similar growth characteristics to wild type P. berghei parasites throughout the whole life cycle and can therefore be used as a reference line for future investigations of parasite-host cell interactions. The principle of automated fluorescence-based counting and sorting of live parasites from host cell backgrounds and different parasite forms from complex mixtures such as asynchronous blood stages is established. PbGFPCON allows the visualization and investigation of live parasite stages that are difficult and labor-intensive to observe, such as the liver and mosquito stages. PbGFPCON can be employed to establish the phenotype of independent mutant parasites. With the recent development of a second, independent selectable marker in P. berghei, PbGFPCON is a useful tool to investigate the effect of further genetic modifications on host-parasite interactions.  相似文献   

15.
16.
Following gametogenesis and fertilisation in the bloodmeal within the mosquito midgut, the newly formed zygotes of the malaria parasite develop into motile invasive ookinetes. During this development, surface molecules are synthesised de novo including molecules of 21-28 kDa from the zygote-ookinete stages. An antiserum recognising a 26 kDa protein of Plasmodium berghei was used to clone the corresponding gene from a cDNA library, which was shown to be identical to the reported Pbs25 gene sequence. We show here that Pbs25 was detectable in preparations of gametes 30 min post-gametocyte activation, expression continued on zygotes, ookinetes and oocysts indicating there is a significant overlap of expression of the two immunogenic zygote-ookinete proteins belonging to the P25/28 protein family of sexual stage antigens. Biochemical analysis of Pbs25 demonstrates the presence of a malaria-specific glycosylphosphatidylinositol (GPI) anchor. Antibodies recognising Pbs25 impaired parasite development in the mosquito.  相似文献   

17.
Anopheles gambiae is the major African vector of Plasmodium falciparum, the most deadly species of human malaria parasite and the most prevalent in Africa. Several strategies are being developed to limit the global impact of malaria via reducing transmission rates, among which are transmission-blocking vaccines (TBVs), which induce in the vertebrate host the production of antibodies that inhibit parasite development in the mosquito midgut. So far, the most promising components of a TBV are parasite-derived antigens, although targeting critical mosquito components might also successfully block development of the parasite in its vector. We previously identified A. gambiae genes whose expression was modified in P. falciparum-infected mosquitoes, including one midgut carboxypeptidase gene, cpbAg1. Here we show that P. falciparum up-regulates the expression of cpbAg1 and of a second midgut carboxypeptidase gene, cpbAg2, and that this up-regulation correlates with an increased carboxypeptidase B (CPB) activity at a time when parasites establish infection in the mosquito midgut. The addition of antibodies directed against CPBAg1 to a P. falciparum-containing blood meal inhibited CPB activity and blocked parasite development in the mosquito midgut. Furthermore, the development of the rodent parasite Plasmodium berghei was significantly reduced in mosquitoes fed on infected mice that had been immunized with recombinant CPBAg1. Lastly, mosquitoes fed on anti-CPBAg1 antibodies exhibited reduced reproductive capacity, a secondary effect of a CPB-based TBV that could likely contribute to reducing Plasmodium transmission. These results indicate that A. gambiae CPBs could constitute targets for a TBV that is based upon mosquito molecules.  相似文献   

18.
During mosquito transmission, malaria ookinetes must cross a chitin-containing structure known as the peritrophic matrix (PM), which surrounds the infected blood meal in the mosquito midgut. In turn, ookinetes produce multiple chitinase activities presumably aimed at disrupting this physical barrier to allow ookinete invasion of the midgut epithelium. Plasmodium chitinase activities are demonstrated targets for human and avian malaria transmission blockade with the chitinase inhibitor allosamidin. Here, we identify and characterize the first chitinase gene of a rodent malaria parasite, Plasmodium berghei. We show that the gene, named PbCHT1, is a structural ortholog of PgCHT1 of the avian malaria parasite Plasmodium gallinaceum and a paralog of PfCHT1 of the human malaria parasite Plasmodium falciparum. Targeted disruption of PbCHT1 reduced parasite infectivity in Anopheles stephensi mosquitoes by up to 90%. Reductions in infectivity were also observed in ookinete feeds-an artificial situation where midgut invasion occurs before PM formation-suggesting that PbCHT1 plays a role other than PM disruption. PbCHT1 null mutants had no residual ookinete-derived chitinase activity in vitro, suggesting that P. berghei ookinetes express only one chitinase gene. Moreover, PbCHT1 activity appeared insensitive to allosamidin inhibition, an observation that raises questions about the use of allosamidin and components like it as potential malaria transmission-blocking drugs. Taken together, these findings suggest a fundamental divergence among rodent, avian, and human malaria parasite chitinases, with implications for the evolution of Plasmodium-mosquito interactions.  相似文献   

19.
Plasmodium, the malaria parasite, undergoes a complex developmental program in its mosquito vector. The ookinete is the parasite form which invades the mosquito midgut and is an important stage for genetic mixing. To identify genes expressed during ookinete development and mosquito midgut invasion, purified zygotes and ookinetes of the rodent parasite Plasmodium berghei were used to construct a suppression subtractive hybridization cDNA library, enriched in sequences expressed in the ookinete stage. In addition to four genes coding for previously described major ookinete-secreted proteins, we isolated ookinete-expressed sequences representing 18 predicted genes. Their gene products include proteins involved in signal transduction and regulatory processes. For six of these genes our analysis provides the first evidence for expression in the ookinete stage. A majority of the genes are not expressed in the zygote, the preceding developmental stage. Furthermore, four of the genes are also transcribed in sporozoites, and one of these in merozoites, suggesting that they code for proteins with a function common to Plasmodium invasive stages.  相似文献   

20.
The aim of a malaria transmission-blocking vaccine is to block the development of malaria parasites in the mosquito and thus prevent subsequent infection of the human host. Previous studies have demonstrated that the gametocyte/gamete surface protein Pfs230 can induce transmission-blocking immunity and have evaluated Escherichia coli-produced Pfs230 as a transmission-blocking vaccine candidate. In this study, we used the wheat germ cell-free expression system to produce N-terminal fragments of Pfs230 and evaluated the transmission-blocking activity of antisera raised against the recombinant Pfs230 protein. The rabbit antisera reacted to the surface of cultured gametocytes and gametes of the Plasmodium falciparum NF54 line, recognized the 360-kDa form of parasite-produced Pfs230 by Western blot assay, and reduced the infectivity of NF54 parasites to Anopheles stefensi mosquitoes in the presence of complement in a standard membrane feeding assay. Thus, our data demonstrate that the N-terminal pro domain of Pfs230 is sufficient to induce complement-dependent transmission-blocking activity against P. falciparum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号