共查询到20条相似文献,搜索用时 31 毫秒
1.
Nabil Killiny Rodrigo P. P. Almeida 《Proceedings of the National Academy of Sciences of the United States of America》2009,106(52):22416-22420
Many insect-borne pathogens have complex life histories because they must colonize both hosts and vectors for successful dissemination. In addition, the transition from host to vector environments may require changes in gene expression before the pathogen''s departure from the host. Xylella fastidiosa is a xylem-limited plant-pathogenic bacterium transmitted by leafhopper vectors that causes diseases in a number of economically important plants. We hypothesized that factors of host origin, such as plant structural polysaccharides, are important in regulating X. fastidiosa gene expression and mediating vector transmission of this pathogen. The addition of pectin and glucan to a simple defined medium resulted in dramatic changes in X. fastidiosa''s phenotype and gene-expression profile. Cells grown in the presence of pectin became more adhesive than in other media tested. In addition, the presence of pectin and glucan in media resulted in significant changes in the expression of several genes previously identified as important for X. fastidiosa''s pathogenicity in plants. Furthermore, vector transmission of X. fastidiosa was induced in the presence of both polysaccharides. Our data show that host structural polysaccharides mediate gene regulation in X. fastidiosa, which results in phenotypic changes required for vector transmission. A better understanding of how vector-borne pathogens transition from host to vector, and vice versa, may lead to previously undiscovered disease-control strategies. 相似文献
2.
3.
The developmental selector AS1 is an evolutionarily conserved regulator of the plant immune response 下载免费PDF全文
Nurmberg PL Knox KA Yun BW Morris PC Shafiei R Hudson A Loake GJ 《Proceedings of the National Academy of Sciences of the United States of America》2007,104(47):18795-18800
The MYB-related gene ASYMMETRIC LEAVES 1 (AS1) and its orthologs have an evolutionarily conserved role in specification of leaf cell identity. AS1 is expressed in leaf founder cells, where it functions as a heterodimer with the structurally unrelated AS2 proteins to repress activity of KNOTTED 1-like homeobox (KNOX) genes. AS1 therefore confines KNOX activity to the shoot apical meristem, where it promotes stem cell function through the regulation of phytohormone activities. Here, we show that loss-of-function mutations in AS1 unexpectedly convey heightened protection against necrotrophic fungi. AS1 operates as a negative regulator of inducible resistance against these pathogens by selectively binding to the promoters of genes controlled by the immune activator, jasmonic acid (JA), damping the defense response. In contrast, AS1 is a positive regulator of salicylic acid (SA)-independent extracellular defenses against bacterial pathogens. Neither the absence of AS2 nor ERECTA function, which enhances the morphological phenotype of as1, nor the conditional or constitutive expression of KNOX genes impacted disease resistance. Thus, the function of AS1 in responses to phytopathogens is independent of its AS2-associated role in development. Loss of function in the AS1 orthologs PHAN in Antirrhinum majus and NSPHAN in Nicotiana sylvestris produced pathogen-response phenotypes similar to as1 plants, and therefore the defense function of AS1 is evolutionarily conserved in plant species with a divergence time of approximately 125 million years. 相似文献
4.
Ian S. Pearse Andrew L. Hipp 《Proceedings of the National Academy of Sciences of the United States of America》2009,106(43):18097-18102
Introduced plants tend to experience less herbivory than natives, although herbivore loads vary widely. Herbivores may switch hosts onto an introduced plant for at least two reasons. They may recognize the novel plant as a potential host based on similarity of the plant''s traits to the traits of one of its native hosts, a similarity that may or may not exhibit phylogenetic signal. Alternatively, herbivores may feed optimally, assessing which introduced plants provide the best nutrition irrespective of similarity to native species. Here, we created a phylogeny of 57 oak (Quercus) taxa, which were grown outside of their ranges in a common botanical garden that contained one abundant native oak (Quercus lobata). We used the phylogeny to estimate the phylogenetic conservatism of herbivory by two feeding guilds of insects (leaf chewers and leaf miners) and 11 plant traits expected to affect herbivore performance. We found high phylogenetic signal in chewing damage but not mining damage and all traits except for leaf maturation time. Introduced oaks that are more closely related to the native oak received more chewing and mining damage than distantly related oaks, and introduced oaks that had greater overall similarity in leaf traits also received higher chewing damage but not mining damage. These results demonstrate that interactions between introduced plants and their herbivores are driven independently by traits that track plant phylogeny and leaf traits that likely affect herbivore performance. 相似文献
5.
6.
Nicholas Brennecke Ignazio Cali Tze How Mok Helen Speedy Genomics England Research Consortium Laszlo L. P. Hosszu Christiane Stehmann Laura Cracco Gianfranco Puoti Thomas W. Prior Mark L. Cohen Steven J. Collins Simon Mead Brian S. Appleby 《Viruses》2021,13(9)
Genetic prion disease accounts for 10–15% of prion disease. While insertion of four or more octapeptide repeats are clearly pathogenic, smaller repeat insertions have an unclear pathogenicity. The goal of this case series was to provide an insight into the characteristics of the 2-octapeptide repeat genetic variant and to provide insight into the risk for Creutzfeldt–Jakob disease in asymptomatic carriers. 2-octapeptide repeat insertion prion disease cases were collected from the National Prion Disease Pathology Surveillance Center (US), the National Prion Clinic (UK), and the National Creutzfeldt–Jakob Disease Registry (Australia). Three largescale population genetic databases were queried for the 2-octapeptide repeat insertion allele. Eight cases of 2-octapeptide repeat insertion were identified. The cases were indistinguishable from the sporadic Creutzfeldt–Jakob cases of the same molecular subtype. Western blot characterization of the prion protein in the absence of enzymatic digestion with proteinase K revealed that 2-octapeptide repeat insertion and sporadic Creutzfeldt–Jakob disease have distinct prion protein profiles. Interrogation of large-scale population datasets suggested the variant is of very low penetrance. The 2-octapeptide repeat insertion is at most a low-risk genetic variant. Predictive genetic testing for asymptomatic blood relatives is not likely to be justified given the low risk. 相似文献
7.
Todd M. Palmer Daniel F. Doak Maureen L. Stanton Judith L. Bronstein E. Toby Kiers Truman P. Young Jacob R. Goheen Robert M. Pringle 《Proceedings of the National Academy of Sciences of the United States of America》2010,107(40):17234-17239
Understanding cooperation is a central challenge in biology, because natural selection should favor “free-loaders” that reap benefits without reciprocating. For interspecific cooperation (mutualism), most approaches to this paradox focus on costs and benefits of individual partners and the strategies mutualists use to associate with beneficial partners. However, natural selection acts on lifetime fitness, and most mutualists, particularly longer-lived species interacting with shorter-lived partners (e.g., corals and zooxanthellae, tropical trees and mycorrhizae) interact with multiple partner species throughout ontogeny. Determining how multiple partnerships might interactively affect lifetime fitness is a crucial unexplored link in understanding the evolution and maintenance of cooperation. The tropical tree Acacia drepanolobium associates with four symbiotic ant species whose short-term individual effects range from mutualistic to parasitic. Using a long-term dataset, we show that tree fitness is enhanced by partnering sequentially with sets of different ant symbionts over the ontogeny of a tree. These sets include a “sterilization parasite” that prevents reproduction and another that reduces tree survivorship. Trees associating with partner sets that include these “parasites” enhance lifetime fitness by trading off survivorship and fecundity at different life stages. Our results demonstrate the importance of evaluating mutualism within a community context and suggest that lifespan inequalities among mutualists may help cooperation persist in the face of exploitation. 相似文献
8.
Stuart A. Campbell André Kessler 《Proceedings of the National Academy of Sciences of the United States of America》2013,110(10):3973-3978
Understanding the factors that shape macroevolutionary patterns in functional traits is a central goal of evolutionary biology. Alternative strategies of sexual reproduction (inbreeding vs. outcrossing) have divergent effects on population genetic structure and could thereby broadly influence trait evolution. However, the broader evolutionary consequences of mating system transitions remain poorly understood, with the exception of traits related to reproduction itself (e.g., pollination). Across a phylogeny of 56 wild species of Solanaceae (nightshades), we show here that the repeated, unidirectional transition from ancestral self-incompatibility (obligate outcrossing) to self-compatibility (increased inbreeding) leads to the evolution of an inducible (vs. constitutive) strategy of plant resistance to herbivores. We demonstrate that inducible and constitutive defense strategies represent evolutionary alternatives and that the magnitude of the resulting macroevolutionary tradeoff is dependent on the mating system. Loss of self-incompatibility is also associated with the evolution of increased specificity in induced plant resistance. We conclude that the evolution of sexual reproductive variation may have profound effects on plant–herbivore interactions, suggesting a new hypothesis for the evolution of two primary strategies of plant defense. 相似文献
9.
Günther Silbernagel M. John Chapman Bernd Genser Marcus E. Kleber Günter Fauler Hubert Scharnagl Tanja B. Grammer Bernhard O. Boehm Kari-Matti Mäkelä Mika Kähönen Rafael Carmena Ernst R. Rietzschel Eric Bruckert John E. Deanfield Tatu A. Miettinen Olli T. Raitakari Terho Lehtimäki Winfried März 《Journal of the American College of Cardiology》2013
10.
11.
Agrawal AA Fishbein M 《Proceedings of the National Academy of Sciences of the United States of America》2008,105(29):10057-10060
As the basal resource in most food webs, plants have evolved myriad strategies to battle consumption by herbivores. Over the past 50 years, plant defense theories have been formulated to explain the remarkable variation in abundance, distribution, and diversity of secondary chemistry and other defensive traits. For example, classic theories of enemy-driven evolutionary dynamics have hypothesized that defensive traits escalate through the diversification process. Despite the fact that macroevolutionary patterns are an explicit part of defense theories, phylogenetic analyses have not been previously attempted to disentangle specific predictions concerning (i) investment in resistance traits, (ii) recovery after damage, and (iii) plant growth rate. We constructed a molecular phylogeny of 38 species of milkweed and tested four major predictions of defense theory using maximum-likelihood methods. We did not find support for the growth-rate hypothesis. Our key finding was a pattern of phyletic decline in the three most potent resistance traits (cardenolides, latex, and trichomes) and an escalation of regrowth ability. Our neontological approach complements more common paleontological approaches to discover directional trends in the evolution of life and points to the importance of natural enemies in the macroevolution of species. The finding of macroevolutionary escalating regowth ability and declining resistance provides a window into the ongoing coevolutionary dynamics between plants and herbivores and suggests a revision of classic plant defense theory. Where plants are primarily consumed by specialist herbivores, regrowth (or tolerance) may be favored over resistance traits during the diversification process. 相似文献
12.
Angel G. Guevara Richard D. Atherton Michael A. Wauters Yosselin Vicu?a Marcos Nelson Jose Prado Hirotomo Kato Manuel H. Calvopi?a Yoshihisa Hashiguchi 《Tropical Medicine and Health》2013,41(1):21-25
To determine the extent of Trypanosoma cruzi infection and/or transmission in the southern Amazon region of Ecuador, three indigenous communities in the provinces of Pastaza and Morona Santiago were serosurveyed. ChagatestTM, Immunocomb®II and immunofluorescent (IF) assays were used. Among the 385 inhabitants examined, nine (2.34%) were seropositive for T. cruzi infection. Of the nine positive sera, four (44.4%) fall in the 10–19, one each in the 20–29, 30–39 and 40–49, and two in the 50–59 age groups. These results suggested the possible existence of an autochthonous active T. cruzi transmission in the region and provide the first serological evidence for T. cruzi infection in the southern province of Morona Santiago bordering Peru. Further studies are needed in these Amazonian provinces to ascertain the spread of T. cruzi infection in the area. 相似文献
13.
Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping 总被引:1,自引:0,他引:1
Rakesh Santhanam Van Thi Luu Arne Weinhold Jay Goldberg Youngjoo Oh Ian T. Baldwin 《Proceedings of the National Academy of Sciences of the United States of America》2015,112(36):E5013-E5020
Plants maintain microbial associations whose functions remain largely unknown. For the past 15 y, we have planted the annual postfire tobacco Nicotiana attenuata into an experimental field plot in the plant’s native habitat, and for the last 8 y the number of plants dying from a sudden wilt disease has increased, leading to crop failure. Inadvertently we had recapitulated the common agricultural dilemma of pathogen buildup associated with continuous cropping for this native plant. Plants suffered sudden tissue collapse and black roots, symptoms similar to a Fusarium–Alternaria disease complex, recently characterized in a nearby native population and developed into an in vitro pathosystem for N. attenuata. With this in vitro disease system, different protection strategies (fungicide and inoculations with native root-associated bacterial and fungal isolates), together with a biochar soil amendment, were tested further in the field. A field trial with more than 900 plants in two field plots revealed that inoculation with a mixture of native bacterial isolates significantly reduced disease incidence and mortality in the infected field plot without influencing growth, herbivore resistance, or 32 defense and signaling metabolites known to mediate resistance against native herbivores. Tests in a subsequent year revealed that a core consortium of five bacteria was essential for disease reduction. This consortium, but not individual members of the root-associated bacteria community which this plant normally recruits during germination from native seed banks, provides enduring resistance against fungal diseases, demonstrating that native plants develop opportunistic mutualisms with prokaryotes that solve context-dependent ecological problems.Eukaryotes maintain many complex relationships with the microbes they host, which can be so abundant and diverse that they frequently are considered a eukaryote’s second genome. The complex relationships mediated by microbial associates are being revealed rapidly, thanks to the advances in sequencing, microbial culturing techniques, and the reconstitution of associated microbial communities in gnotobiotic systems (1, 2), even if some of these putative functional roles may need to be evaluated more critically (3).When plants germinate from their seed banks, they typically acquire a selection of the diverse fungi and bacteria that exist in native soils, and a subset of this community becomes root-associated. The best characterized are the bacterial microbiomes of Arabidopsis thaliana. Approximately half of the bacterial community in the plant root is representative of the soil flora; the remainder is a conserved core consisting of a smaller number of bacterial lineages from three phyla: Actinobacteria, Proteobacteria, and Bacteroidetes (2, 4). Because these bacterial communities occur in nondiseased plants, they are thought to represent commensalistic or possibly mutualistic associations.Root-associated microbes could benefit plants in many ways, and a recent review (5) highlighted the parallel functional roles of the microbiomes of the human gut and those of plant roots. The best-characterized beneficial functions for plants are (i) the plant growth-promoting rhizobacteria (PGPR), which promote growth by a variety of direct and indirect means that include increasing nutrient availability, interfering with ethylene (ET) signaling, and preventing diseases (6), and (ii) the bacteria that elicit induced systemic resistance (ISR) (7) by activating jasmonic acid (JA) and ET signaling (8). PGPR and ISR have been studied in a variety of cultivated and model plants, usually with model microbes (5), but little is known about their ecological context or whether they increase the growth and fitness of native plants. Whether PGPR and ISR functions occur among the well-characterized root-associated bacterial communities of Arabidopsis, either collectively or individually, also remains unknown.The well-described agricultural phenomenon of disease-suppressive soils that harbor microbiomes that suppress particular soil-borne pathogens (9) illustrates the complexity of the dynamics involved. Native soils have a certain degree of pathogen-suppressive ability, frequently seen when a crop is grown continuously in a soil, suffers an outbreak of a disease, and subsequently becomes resistant to the disease (5). Perhaps the mechanisms involved are best understood in a root disease of wheat caused by Gaeumannomyces graminis var Tritici infections, known as “take-all” disease. After many years of continuous wheat cropping with several disease outbreaks, the disease suddenly wanes, apparently because of the build-up of antagonistic Pseudomonas spp. (9). Whether any of these interactions also occur in native plants remains unknown.Nicotiana attenuata, a native annual tobacco of North America, germinates from long-lived seed banks to grow in the immediate postfire environment (10). When N. attenuata seeds germinate from their seed banks, they acquire a root-associated microbiome from their native soils which has been characterized by pyrosequencing and culture-dependent approaches (11–14). The composition of the root-associated microbiome is not influenced by a plant’s ability to elicit JA signaling (14), but ET signaling, as mediated by the ability both to produce and to perceive ET, plays a decisive role in shaping the “immigration policy” for the root-associated microbiome (12). A certain Bacillus strain, B55, was isolated from the roots of an ET-insensitive N. attenuata plant (35S etr-1) and was able to rescue the impaired-growth and high-mortality phenotype of ET-insensitive plants under field conditions (15). Beneficial effects were attributed to B55’s ability to reduce sulfur and produce dimethyl disulfide, which N. attenuata uses to alleviate sulfur deficiencies. This rescue provided one of the first demonstrations that the soil bacteria recruited by plants during germination can form opportunistic mutualistic relationships with their host based on the host plant’s ecological context. Here we provide a second example that involves protection against a sudden wilt disease, which accumulated in a field plot after consecutive planting of N. attenuata seedlings. 相似文献
14.
Javed Yakoob Zaigham Abbas Wasim Jafri Muhammad W. Usman Fatima Jafri Safia Awan 《Saudi Journal Of Gastroenterology》2013,19(5):211-218
Background/Aim:
Helicobacter pylori is a Gram-negative bacteria, which is associated with development of gastroduodenal diseases. The prevalence of H. pylori and the virulence markers cytotoxin-associated gene A and E (cagA, cagE) and vacuolating-associated cytotoxin gene (vacA) alleles varies in different parts of the world. H. pylori virulence markers cagA, cagE, and vacA alleles in local and Afghan nationals with H. pylori-associated gastroduodenal diseases were studied.Patients and Methods:
Two hundred and ten patients with upper gastrointestinal symptoms and positive for H. pylori by the urease test and histology were included. One hundred and nineteen were local nationals and 91 were Afghans. The cagA, cagE, and vacA allelic status was determined by polymerase chain reaction.Results:
The nonulcer dyspepsia (NUD) was common in the Afghan patients (P = 0.025). In Afghan H. pylori strains, cagA was positive in 14 (82%) with gastric carcinoma (GC) compared with 29 (45%) with NUD (P = 0.006), whereas cagE was positive in 11 (65%) with GC and 4 (67%) with duodenal ulcer (DU) compared with 12 (18%) with NUD (P < 0.001 and 0.021, respectively). The vacA s1a/b1 was positive in 10 (59%) of GC compared with 20 (31%) in NUD (P = 0.033). In Pakistani strains, cagE was positive in 12 (60%) with GC, 7 (58%) with GU, 12 (60%) with DU compared with 11 (16%) with NUD (P < 0.001, 0.004, and < 0.001, respectively). In Pakistani strains, cagA/s1a/m1 was 39 (33%) compared with Afghans in 17 (19%) (P = 0.022). Moderate to severe mucosal inflammation was present in 51 (43%) Pakistani patients compared with 26 (28%) (P = 0.033) in Afghans. It was also associated with grade 1 lymphoid aggregate development in Pakistani patients 67 (56%) compared with 36 (40%) (P = 0.016) in Afghans.Conclusion:
Distribution of H. pylori virulence marker cagE with DU was similar in Afghan and Pakistan H. pylori strains. Chronic active inflammation was significantly associated with Pakistani H. pylori strains. 相似文献15.
16.
Tradeoffs associated with constitutive and induced plant resistance against herbivory 总被引:1,自引:0,他引:1
Kempel A Schädler M Chrobock T Fischer M van Kleunen M 《Proceedings of the National Academy of Sciences of the United States of America》2011,108(14):5685-5689
Several prominent hypotheses have been posed to explain the immense variability among plant species in defense against herbivores. A major concept in the evolutionary ecology of plant defenses is that tradeoffs of defense strategies are likely to generate and maintain species diversity. In particular, tradeoffs between constitutive and induced resistance and tradeoffs relating these strategies to growth and competitive ability have been predicted. We performed three independent experiments on 58 plant species from 15 different plant families to address these hypotheses in a phylogenetic framework. Because evolutionary tradeoffs may be altered by human-imposed artificial selection, we used 18 wild plant species and 40 cultivated garden-plant species. Across all 58 plant species, we demonstrate a tradeoff between constitutive and induced resistance, which was robust to accounting for phylogenetic history of the species. Moreover, the tradeoff was driven by wild species and was not evident for cultivated species. In addition, we demonstrate that more competitive species-but not fast growing ones-had lower constitutive but higher induced resistance. Thus, our multispecies experiments indicate that the competition-defense tradeoff holds for constitutive resistance and is complemented by a positive relationship of competitive ability with induced resistance. We conclude that the studied genetically determined tradeoffs are indeed likely to play an important role in shaping the high diversity observed among plant species in resistance against herbivores and in life history traits. 相似文献
17.
Paul Roddy 《Viruses》2014,6(10):3699-3718
The frequency and magnitude of recognized and declared filovirus-disease outbreaks have increased in recent years, while pathogenic filoviruses are potentially ubiquitous throughout sub-Saharan Africa. Meanwhile, the efficiency and effectiveness of filovirus-disease outbreak preparedness and response efforts are currently limited by inherent challenges and persistent shortcomings. This paper delineates some of these challenges and shortcomings and provides a proposal for enhancing future filovirus-disease outbreak preparedness and response. The proposal serves as a call for prompt action by the organizations that comprise filovirus-disease outbreak response teams, namely, Ministries of Health of outbreak-prone countries, the World Health Organization, Médecins Sans Frontières, the Centers for Disease Control and Prevention—Atlanta, and others. 相似文献
18.
Recent studies have demonstrated that a diverse array of mycoviruses infect the plant pathogenic fungus Sclerotinia sclerotiorum. Here, we report the molecular characterization of a newly identified mycovirus, Sclerotinia sclerotiorum fusarivirus 1 (SsFV1), which was isolated from a sclerotia-defective strain JMTJ14 of S. sclerotiorum. Excluding a poly (A) tail, the genome of SsFV1 comprises 7754 nucleotides (nts) in length with 83 and 418 nts for 5''- and 3''-untranslated regions, respectively. SsFV1 has four non-overlapping open reading frames (ORFs): ORF1 encodes a 191 kDa polyprotein (1664 amino acid residues in length) containing conserved RNA-dependent RNA polymerase (RdRp) and helicase domains; the other three ORFs encode three putative hypothetical proteins of unknown function. Phylogenetic analysis, based on RdRp and Helicase domains, indicated that SsFV1 is phylogenetically related to Rosellinia necatrix fusarivirus 1 (RnFV1), Fusarium graminearum virus-DK21 (FgV1), and Penicillium roqueforti RNA mycovirus 1 (PrRV1), a cluster of an independent group belonging to a newly proposed family Fusarividae. However, SsFV1 is markedly different from FgV1 and RnFV1 in genome organization and nucleotide sequence. SsFV1 was transmitted successfully to two vegetatively incompatible virus-free strains. SsFV1 is not responsible for the abnormal phenotype of strain JMTJ14. 相似文献
19.
Davide Lelli Ana Moreno Andrej Steyer Tina Nagli? Chiara Chiapponi Alice Prosperi Francesca Faccin Enrica Sozzi Antonio Lavazza 《Viruses》2015,7(11):5844-5854
A renewed interest in mammalian orthoreoviruses (MRVs) has emerged since new viruses related to bat MRV type 3, detected in Europe, were identified in humans and pigs with gastroenteritis. This study reports the isolation and characterization of a novel reassortant MRV from the lesser horseshoe bat (Rhinolophus hipposideros). The isolate, here designated BatMRV1-IT2011, was first identified by electron microscopy and confirmed using PCR and virus-neutralization tests. The full genome sequence was obtained by next-generation sequencing. Molecular and antigenic characterizations revealed that BatMRV1-IT2011 belonged to serotype 1, which had not previously been identified in bats. Phylogenetic and recombination detection program analyses suggested that BatMRV1-IT2011 was a reassortant strain containing an S1 genome segment similar to those of MRV T1/bovine/Maryland/Clone23/59 and C/bovine/Indiana/MRV00304/2014, while other segments were more similar to MRVs of different hosts, origins and serotypes. The presence of neutralizing antibodies against MRVs has also been investigated in animals (dogs, pigs, bovines and horses). Preliminary results suggested that MRVs are widespread in animals and that infections containing multiple serotypes, including MRVs of serotype 1 with an S1 gene similar to BatMRV1-IT2011, are common. This paper extends the current knowledge of MRVs and stresses the importance to continue and improve MRV surveillance in bats and other mammals through the development and standardization of specific diagnostic tools. 相似文献
20.
Characterization of MADS-box genes in charophycean green algae and its implication for the evolution of MADS-box genes 下载免费PDF全文
Tanabe Y Hasebe M Sekimoto H Nishiyama T Kitani M Henschel K Münster T Theissen G Nozaki H Ito M 《Proceedings of the National Academy of Sciences of the United States of America》2005,102(7):2436-2441
The MADS-box genes of land plants are extensively diverged to form a superfamily and are important in various aspects of development including the specification of floral organs as homeotic selector genes. The closest relatives of land plants are the freshwater green algae charophyceans. To study the origin and evolution of land plant MADS-box genes, we characterized these genes in three charophycean green algae: the stonewort Chara globularis, the coleochaete Coleochaete scutata, and the desmid Closterium peracerosum-strigosum-littorale complex. Phylogenetic analyses suggested that MADS-box genes diverged extensively in the land plant lineage after the separation of charophyceans from land plants. The stonewort C. globularis mRNA was specifically detected in the oogonium and antheridium together with the egg and spermatozoid during their differentiation. The expression of the C. peracerosum-strigosum-littorale-complex gene increased when vegetative cells began to differentiate into gametangial cells and decreased after fertilization. These expression patterns suggest that the precursors of land plant MADS-box genes originally functioned in haploid reproductive cell differentiation and that the haploid MADS-box genes were recruited into a diploid generation during the evolution of land plants. 相似文献