首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic 3'5'-AMP (cAMP) is an important physiological amplifier of glucose-induced insulin secretion by the pancreatic islet beta-cell. In the beta-cell, cAMP is formed by the activity of adenylyl cyclase, especially in response to the incretin hormones glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic peptide. cAMP may also play a similar role in regulating GLP-1 secretion from intestinal L-cells. cAMP influences many steps involved in glucose-induced insulin secretion and may be important in regulating pancreatic islet beta-cell differentiation, growth and survival. cAMP itself is rapidly degraded in the pancreatic islet beta-cell by cyclic nucleotide phosphodiesterase enzymes. This review will discuss the possibility of targeting cAMP mechanisms in the treatment of type 2 diabetes mellitus, in which insulin release in response to glucose is impaired.  相似文献   

2.
Incretins are peptide hormones, exemplified by glucose-dependent insulinotropic peptide and glucagon-like peptide 1 that are released from the gut in response to nutrient ingestion and enhance glucose-stimulated insulin secretion. Incretin action is terminated due to N-terminal cleavage of the peptides by the aminopeptidase dipeptidyl peptidase IV (DPP-IV). Hence, inhibition of glucose-dependent insulinotropic peptide and glucagon-like peptide 1 degradation via reduction of DPP-IV activity represents an innovative strategy for enhancing incretin action in vivo. This review summarises the biology of incretin action, the structure, expression and pleiotropic biological activities of DPP-IV and provides an overview of the rationale, potential merits and theoretical pitfalls in the development of DPP-IV inhibitors for the treatment of type 2 diabetes.  相似文献   

3.
The incretin effect is a phenomenon in which enteral glucose administration provokes greater insulin secretion than intravenous administration. The main incretins, glucose-dependent insulinotropic peptide and glucagon-like peptide (GLP)-1 are defective in Type 2 diabetes; whereas glucose-dependent insulinotropic peptide displays diminished effectiveness, GLP-1 secretion is decreased; thus, GLP-1 was a stronger candidate for a new class of anti-diabetic agents designed to potentiate the incretin effect. In the past decade, GLP-1 mimetics, peptidase inhibitors and GLP-1 have been developed. Early randomised trials show that these agents contribute to glucose homeostasis and enhance beta-cell function, without causing hypoglycaemia or weight gain. This review includes an historical perspective, physiology of incretins, and discussions of the pathophysiology in Type 2 diabetes, pharmacology of the main agents and randomised clinical trials published to date.  相似文献   

4.
The incretin effect is a phenomenon in which enteral glucose administration provokes greater insulin secretion than intravenous administration. The main incretins, glucose-dependent insulinotropic peptide and glucagon-like peptide (GLP)-1 are defective in Type 2 diabetes; whereas glucose-dependent insulinotropic peptide displays diminished effectiveness, GLP-1 secretion is decreased; thus, GLP-1 was a stronger candidate for a new class of anti-diabetic agents designed to potentiate the incretin effect. In the past decade, GLP-1 mimetics, peptidase inhibitors and GLP-1 have been developed. Early randomised trials show that these agents contribute to glucose homeostasis and enhance β-cell function, without causing hypoglycaemia or weight gain. This review includes an historical perspective, physiology of incretins, and discussions of the pathophysiology in Type 2 diabetes, pharmacology of the main agents and randomised clinical trials published to date.  相似文献   

5.
Glucagon-like peptide-1 (GLP-1) is an intestinally derived insulinotropic hormone currently under investigation for use as a novel therapeutic agent in the treatment of type 2 diabetes. One of several important effects of GLP-1 is on nutrient-induced pancreatic hormone release and is mediated by binding to a specific G-protein coupled receptor resulting in the activation of adenylate cyclase and an increase in cAMP generation. In the beta-cell, cAMP binds and modulates activities of both protein kinase A and cAMP-regulated guanine nucleotide exchange factor II, thereby enhancing glucose-dependent insulin secretion. The stimulatory action of GLP-1 on insulin secretion involves interaction with a plethora of signal transduction processes including ion channel activity, intracellular Ca(2+) handling and exocytosis of the insulin-containing granules. In this review we focus principally on recent advances in our understanding on the cellular mechanisms proposed to underlie GLP-1's insulinotropic effect and attempt to incorporate this knowledge into a working model for the control of insulin secretion. Lastly, this review discusses the applicability of GLP-1 as a therapeutic agent for the treatment of type 2 diabetes.  相似文献   

6.
Novel therapeutic strategies for type 2 diabetes are needed, since the current treatment options neither address all pathophysiological mechanisms nor achieve the glycemic target goals. A general islet-cell dysfunction including insulin- and glucagon-secretion defects contributes to the pathophysiology of type 2 diabetes. Improving islet function by incretin hormone action is a novel therapeutic approach. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are important incretin hormones contributing to 50-70% of the stimulation of insulin secretion after a meal. Dipeptidyl-peptidase IV (DPP-4) inhibitors inhibit the degradation of GLP-1 and GIP as well as that of other regulatory peptides. Sitagliptin, a DPP-4 inhibitor, is orally active and has been shown to be efficacious and safe in clinical studies. Sitagliptin has received approval in Mexico, the United States and other countries. Like other DPP-4 inhibitors, sitagliptin reduces hemoglobin A1c (HbA1c), fasting and postprandial glucose by glucose-dependent stimulation of insulin secretion and inhibition of glucagon secretion. Sitagliptin is weight neutral. Indirect measures show a possible improvement of beta-cell function. Sitagliptin does not cause a higher rate of hypoglycemia in comparison to metformin or placebo. This article gives an overview of the mechanisms of action, pharmacology and clinical trial results of sitagliptin.  相似文献   

7.
Gene therapies to produce insulin in diabetic patients have been considered for several years. Genetic engineering of ectopic insulin production and secretion in autologous non-beta-cells has been tested in different tissues. Recently, gut K-cells have been shown to express glucokinase, the glucose sensor of pancreatic beta-cells. K-cells are responsible for the secretion of the glucose-dependent insulinotropic peptide (GIP). Transfection of K-cells by a specific plasmid to produce insulin correlated to glucose level is being considered. Cationic liposomes are non-viral gene delivery to lung, spleen, liver and intestinal cells. DOTAP-GIP/Ins plasmid complex was used for transfection of K-cells in vivo. RT-PCR assay of human insulin mRNA revealed that the transfection of insulin gene by DOTAP liposome is an efficient tool. The genetic engineering of ectopic insulin production and secretion in autologous non-beta-cells is an appropriate method. The potential of the transmission of a constructed plasmid, which contains human insulin gene under the control of GIP promoter, to gut K-cells could be considered for treatment of diabetes.  相似文献   

8.
Gene therapies to produce insulin in diabetic patients have been considered for several years. Genetic engineering of ectopic insulin production and secretion in autologous non-beta-cells has been tested in different tissues. Recently, gut K-cells have been shown to express glucokinase, the glucose sensor of pancreatic beta-cells. K-cells are responsible for the secretion of the glucose-dependent insulinotropic peptide (GIP). Transfection of K-cells by a specific plasmid to produce insulin correlated to glucose level is being considered. Cationic liposomes are non-viral gene delivery to lung, spleen, liver and intestinal cells. DOTAP–GIP/Ins plasmid complex was used for transfection of K-cells in vivo. RT-PCR assay of human insulin mRNA revealed that the transfection of insulin gene by DOTAP liposome is an efficient tool. The genetic engineering of ectopic insulin production and secretion in autologous non-beta-cells is an appropriate method. The potential of the transmission of a constructed plasmid, which contains human insulin gene under the control of GIP promoter, to gut K-cells could be considered for treatment of diabetes.  相似文献   

9.
Novel therapeutic strategies for type 2 diabetes are needed, since the current treatment options neither address all pathophysiological mechanisms nor achieve the glycemic target goals. A general islet-cell dysfunction including insulin- and glucagon-secretion defects contributes to the pathophysiology of type 2 diabetes. Improving islet function by incretin hormone action is a novel therapeutic approach. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are important incretin hormones contributing to 50-70% of the stimulation of insulin secretion after a meal. Dipeptidyl-peptidase IV (DPP-4) inhibitors inhibit the degradation of GLP-1 and GIP as well as that of other regulatory peptides. Sitagliptin, a DPP-4 inhibitor, is orally active and has been shown to be efficacious and safe in clinical studies. Sitagliptin has received approval in Mexico, the United States and other countries. Like other DPP-4 inhibitors, sitagliptin reduces hemoglobin A1c (HbA1c), fasting and postprandial glucose by glucose-dependent stimulation of insulin secretion and inhibition of glucagon secretion. Sitagliptin is weight neutral. Indirect measures show a possible improvement of beta-cell function. Sitagliptin does not cause a higher rate of hypoglycemia in comparison to metformin or placebo. This article gives an overview of the mechanisms of action, pharmacology and clinical trial results of sitagliptin.  相似文献   

10.
《Drug discovery today》2021,26(8):1936-1943
Loss or dysfunction of the pancreatic beta cells or insulin receptors leads to diabetes mellitus (DM). This usually occurs over many years; therefore, the development of methods for the timely detection and clinical intervention are vital to prevent the development of this disease. Glucagon-like peptide-1 receptor (GLP-1R) is the receptor of GLP-1, an incretin hormone that causes insulin secretion in a glucose-dependent manner. GLP-1R is highly expressed on the surface of pancreatic beta cells, providing a potential target for bioimaging. In this review, we provide an overview of various strategies, such as the development of GLP-1R agonists (e.g., exendin-4), and GLP-1 sequence modifications for GLP-1R targeting for the diagnosis and treatment of pancreatic beta cell disorders. We also discuss the challenges of targeting pancreatic beta cells and strategies to address such challenges.  相似文献   

11.
Type 2 diabetes mellitus (T2DM) is a progressive disease characterized by insulin resistance, a steady decline in glucose-induced insulin secretion (most likely caused by a progressive decrease in functional beta-cell mass), and inappropriately regulated glucagon secretion; in combination, these effects result in hyperglycemia. In 1958, sulfonylurea (SU) was introduced to the market as one of the first oral treatments for T2DM. Since then, the ability of SU to stimulate the release of insulin from pancreatic beta-cells by the closure of ATP-sensitive K+-channels has been employed as one of the most widespread treatment options for T2DM. However, SUs are associated with weight gain and a risk of hypoglycemia, and the one-track antidiabetic mechanism of SUs often results in patients being treated with additional antidiabetic drugs. In recent studies, SU has proven to be associated with increased beta-cell apoptosis, suggesting that SU may actually accelerate the progressive decrease in beta-cell mass, thereby promoting the need for insulin replacement. In contrast, the newly developed incretin-based therapies for T2DM employ the beta-cell-preserving properties of incretin hormones - glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). More importantly, incretin-based therapies potentiate glucose-stimulated insulin secretion and may restore reduced glucose-induced insulin secretion in T2DM. Furthermore, the insulinotropic effects of GLP-1 and GIP are glucose-dependent, reducing the risk of hypoglycemia. GLP-1 inhibits glucagon secretion and decreases gastrointestinal motility, in turn reducing food intake and body weight. This feature review focuses on the challenges and feasibilities of replacing SU with incretin-based therapy in patients with T2DM.  相似文献   

12.
Incretins, which are insulinotropic gastrointestinal hormones, are produced mainly in K and L cells of the small intestine under the influence of nutritional stimuli. The best known incretins are glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). These hormones perform several functions: they stimulate insulin secretion in the pancreatic beta cells; they inhibit glucagon release from the alpha cells of the pancreas (GIP not in humans); they slow down gastric emptying and may directly suppress appetite; and, moreover, they indirectly increase peripheral glucose tolerance/insulin sensitivity. The insulinotropic and glucagonostatic effects of GLP-1 are glucose dependent. The incretins also have numerous other properties which are still being discovered and introduced in different branches of medicine. The patents mentioned in this work concern the use of incretins in diabetology, cardiology, gastroenterology and nuclear medicine. The pleiotropic effects of incretins offer therapeutic possibilities in numerous fields of medicine.  相似文献   

13.
Type 2 diabetes is a chronic metabolic disease characterized by the presence of both fasting and postprandial hyperglycemia which is a result of pancreas beta-cell dysfunction, deficiency in insulin secretion, insulin resistance and/or increased hepatic glucose production. More recently, the role of other glucoregulatory hormones, including glucagon, amylin, and the gut peptide glucagon-like peptide (GLP)-1, and an increase in the rate of postmeal carbohydrate absorption have also been included as important pathophysiologic defects. Existing anti-diabetes medications are often unefficient at achieving sustained glycemic control because they predominantly address only a single underlying defect. A number of alternative therapies for type 2 diabetes are currently under development that take advantage of the actions of the incretin hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide on the pancreatic beta-cell. One such approach is based on the inhibition of dipeptidyl peptidase IV (DPP-IV), the major enzyme responsible for degrading the incretins in vivo. DPP-IV exhibits characteristics that have allowed the development of specific inhibitors with proven efficacy in improving glucose tolerance in animal models of diabetes and type 2 diabetic patients. While enhancement of insulin secretion, resulting from blockade of incretin degradation, has been proposed to be the major mode of inhibitor action, there is also evidence that inhibition of gastric emptying, reduction in glucagon secretion, peripheral insulin sensitization and important effects on beta-cell differentiation and survival can potentially preserve beta-cell mass, and improve insulin secretory function and glucose handling in diabetic patients. The present article focuses on the preclinical and clinical data of DPP-IV inhibitors that make it unique therapeutic agents representing the next generation of antidiabetes drugs.  相似文献   

14.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a ubiquitous neuropeptide in the central and peripheral nervous systems. Previously we reported that PACAP38 is localized in pancreatic islets and serves as an endogenous amplifier of glucose-induced insulin secretion. PACAP activates Gs-cAMP system, stimulates voltage-dependent Ca(2+) channels, and increases cytosolic Ca(2+) concentration in beta-cells. On the other hand, PAC1 receptor is expressed in adipocytes. PACAP enhances insulin-stimulated glucose uptake in an adipocyte cell-line, 3T3-L1 cells. PACAP does not alter the tyrosine phosphorylation of insulin receptor and IRS-1, but increases the activity of PI-3 kinase, a distal site of insulin signaling. PACAP also promotes differentiation of 3T3-L1 cells from fibroblasts to adipocytes. In GK rats, an animal model of type 2 diabetes, daily i.p. injection of PACAP38 (6 pmol/kg) from the age of 3 weeks prevents development of hyperglycemia between 3 to 8 weeks. These results demonstrate that PACAP enhances glucose-stimulated insulin secretion in islets, enhances insulin action inadipocytes, and prevents hyperglycemia in diabetic animals. This finding presents a possible therapeutic use of PACAP in the treatment of diabetes.  相似文献   

15.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a ubiquitous neuropeptide in the central and peripheral nervous systems. PACAP is also produced by pancreatic islet cells. PACAP regulates the glucose and energy metabolism at multiple processes in several tissues. At postprandial states, PACAP potentiates both insulin release from pancreatic beta-cells and insulin action in adipocytes, contributing to energy storage. At fasting states, PACAP on the one hand promotes feeding behavior by activating neuropeptide Y neurons in the hypothalamic feeding center, arcuate nucleus, and on the other hand stimulates secretion of catecholamine and glucagon and thereby induces lipolysis in adipocytes and glucose output from liver. Thus, PACAP plays an integrative role in the glucose and energy homeostasis. Dysfunction of expression, secretion and/or action of PACAP might be involved in the type 2 diabetes and metabolic syndrome. PACAP receptor subtype-specific agonists and/or antagonists are hopeful therapeutic agents.  相似文献   

16.
Cyclic 3'5'AMP is an important physiological amplifier of glucose-induced insulin secretion by the pancreatic islet beta-cell, where it is formed by the activity of adenylyl cyclase, especially in response to the incretin hormones GLP-1 (glucagon-like peptide-1) and GIP (glucose-dependent insulinotropic peptide). These hormones are secreted from the small intestine during and following a meal, and are important in producing a full insulin secretory response to nutrient stimuli. Cyclic AMP influences many steps involved in glucose-induced insulin secretion and may be important in regulating pancreatic islet beta-cell differentiation, growth and survival. Cyclic AMP (cAMP) itself is rapidly degraded in the pancreatic islet beta-cell by cyclic nucleotide phosphodiesterase (PDE) enzymes. This review discusses the possibility of targeting cAMP mechanisms in the treatment of type 2 diabetes mellitus, in which insulin release in response to glucose is impaired. This could be achieved by the use of GLP-1 or GIP to elevate cAMP in the pancreatic islet beta-cell. However, these peptides are normally rapidly degraded by dipeptidyl peptidase IV (DPP IV). Thus longer-acting analogues of GLP-1 and GIP, resistant to enzymic degradation, and orally active inhibitors of DPP IV have also been developed, and these agents were found to improve metabolic control in experimentally diabetic animals and in patients with type 2 diabetes. The use of selective inhibitors of type 3 phosphodiesterase (PDE3B), which is probably the important pancreatic islet beta-cell PDE isoform, would require their targeting to the islet beta-cell, because inhibition of PDE3B in adipocytes and hepatocytes would induce insulin resistance.  相似文献   

17.
Type 2 diabetes mellitus is associated with a progressive decline in insulin-producing pancreatic β-cells, an increase in hepatic glucose production, and a decrease in insulin sensitivity. The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) stimulate glucose-induced insulin secretion; however, in patients with type 2 diabetes, the incretin system is impaired by loss of the insulinotropic effects of GIP as well as a possible reduction in secretion of GLP-1. Agents that modify GLP-1 secretion may have a role in the management of type 2 diabetes. The currently available incretin-based therapies, GLP-1 receptor agonists (incretin mimetics) and dipeptidyl peptidase-4 (DPP-4) inhibitors (CD26 antigen inhibitors) [incretin enhancers], are safe and effective in the treatment of type 2 diabetes. However, they may be unable to halt the progression of type 2 diabetes, perhaps because they do not increase secretion of endogenous GLP-1. Therapies that directly target intestinal L cells to stimulate secretion of endogenous GLP-1 could possibly prove more effective than treatment with GLP-1 receptor agonists and DPP-4 inhibitors. Potential new approaches to modifying intestinal GLP-1 secretion in patients with type 2 diabetes include G-protein-coupled receptor (GPCR) agonists, α-glucosidase inhibitors, peroxisome proliferator-activated receptor (PPAR) agonists, metformin, bile acid mimetics and bile acid sequestrants. Both the GPCR agonist AR231453 and the novel bile acid mimetic INT-777 have been shown to stimulate GLP-1 release, leading to increased insulin secretion and improved glucose tolerance in mice. Similarly, a study in insulin-resistant rats demonstrated that the bile acid sequestrant colesevelam increased GLP-1 secretion and improved glucose levels and insulin resistance. In addition, the bile acid sequestrant colestimide (colestilan) has been shown to increase GLP-1 secretion and decrease glucose levels in patients with type 2 diabetes; these results suggest that the glucose-lowering effects of bile acid sequestrants may be partly due to their ability to increase endogenous GLP-1 levels. Evidence suggests that GPCR agonists, α-glucosidase inhibitors, PPAR agonists, metformin, bile acid mimetics and bile acid sequestrants may represent a new approach to management of type 2 diabetes via modification of endogenous GLP-1 secretion.  相似文献   

18.
It has been known for at least one century that agents secreted from the intestine during meal absorption regulates glucose assimilation. Extensive research during the past three decades has identified two gut hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP, also known as gastric inhibitory polypeptide) that are important in postprandial glucose metabolism. Both peptides are incretins; they are secreted during carbohydrate absorption and increase insulin secretion. Since they are potent insulin secretagogues, GIP and GLP-1 have received considerable attention as potential diabetes therapeutics. However, only GLP-1 exerts insulinotropic properties when administered to patients with Type 2 diabetes. Both GLP-1 and GIP are rapidly inactivated in the circulation by the enzyme dipeptidyl peptidase IV (DPP-IV). The application of GLP-1 into clinical practice has been delayed due to the need to develop compounds that overcome this rapid inactivation. Two approaches have been taken to utilise the insulinotropic and glucose-lowering actions of GLP-1 as an antidiabetic agent: the development of DPPIV-resistant analogues and the inhibition of DPP-IV. This review focuses on the physiology of GLP-1 and GIP and the advances that have been made thus far in developing treatments based on these physiological incretins for Type 2 diabetes.  相似文献   

19.
It has been known for at least one century that agents secreted from the intestine during meal absorption regulates glucose assimilation. Extensive research during the past three decades has identified two gut hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP, also known as gastric inhibitory polypeptide) that are important in postprandial glucose metabolism. Both peptides are incretins; they are secreted during carbohydrate absorption and increase insulin secretion. Since they are potent insulin secretagogues, GIP and GLP-1 have received considerable attention as potential diabetes therapeutics. However, only GLP-1 exerts insulinotropic properties when administered to patients with Type 2 diabetes. Both GLP-1 and GIP are rapidly inactivated in the circulation by the enzyme dipeptidyl peptidase IV (DPP-IV). The application of GLP-1 into clinical practice has been delayed due to the need to develop compounds that overcome this rapid inactivation. Two approaches have been taken to utilise the insulinotropic and glucose-lowering actions of GLP-1 as an antidiabetic agent: the development of DPP-IV-resistant analogues and the inhibition of DPP-IV. This review focuses on the physiology of GLP-1 and GIP and the advances that have been made thus far in developing treatments based on these physiological incretins for Type 2 diabetes.  相似文献   

20.
The emergence of the glucoregulatory hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide has expanded our understanding of glucose homeostasis. In particular, the glucoregulatory actions of the incretin hormone GLP-1 include enhancement of glucosedependent insulin secretion, suppression of inappropriately elevated glucagon secretion, slowing of gastric emptying, and reduction of food intake. Two approaches have been developed to overcome rapid degradation of GLP-1. One is the use of agents that mimic the enhancement of glucose-dependent insulin secretion, and potentially other antihyperglycemic actions of incretins, and the other is the use of dipeptidyl peptidase-IV inhibitors, which reduce the inactivation of GLP-1, increasing the concentration of endogenous GLP-1. The development of incretin mimetics and dipeptidyl peptidase-IV inhibitors opens the door to a new generation of antihyperglycemic agents to treat several otherwise unaddressed pathophysiologic defects of type 2 diabetes mellitus. We review the physiology of glucose homeostasis, emphasizing the role of GLP-1, the pathophysiology of type 2 diabetes mellitus, the clinical shortcomings of current therapies, and the potential of new therapies -- including the newly approved incretin mimetic exenatide -- that elicit actions similar to those of GLP-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号