首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Abp1 is a fission yeast CENP‐B homologue that contributes to centromere function, silencing at pericentromeric heterochromatin and silencing of retrotransposons. We identified the sfh1 gene, encoding a core subunit of the fission yeast chromatin remodeling complex RSC as an Abp1‐interacting protein. Because sfh1 is essential for growth, we isolated temperature‐sensitive sfh1 mutants. These mutants showed defects in centromere functions, reflected by sensitivity to an inhibitor of spindle formation and minichromosome instability. Sfh1 localized at both kinetochore and pericentromeric heterochromatin regions. Although sfh1 mutations had minor effect on silencing at these regions, they decreased the levels of cohesin on centromeric heterochromatin. Sfh1 also localized at a retrotransposon, Tf2, in a partly Abp1‐dependent manner, and assisted in silencing of Tf2 by Abp1 probably in the same pathway as a histone chaperon, HIRA, which is also known to involve in Tf2 repression. Furthermore, sfh1 mutants were sensitive to several DNA‐damaging treatments (HU, MMS, UV and X‐ray). Increase in spontaneous foci of Rad22, a recombination Mediator protein Rad52 homologue, in sfh1 mutant suggests that RSC functions in homologous recombination repair of double‐stranded break downstream of the Rad22 recruitment. These results indicate that RSC plays multiple roles in the maintenance of genome integrity.  相似文献   

6.
7.
8.
9.
We have constructed double mutants carrying either ssb-1 or ssb-113 alleles, which encode temperature-sensitive single strand DNA binding proteins (SSB), and the uvrD::Tn5 allele causing deficiency in DNA helicase II, and have examined sensitivity to ultraviolet light (UV), recombination and spontaneous as well as UV-induced mutagenesis. We have found in a recA+ background that (i) none of the ssb uvrD double mutants was more sensitive to UV than either single mutant; (ii) the ssb-1 allele partially suppressed the strong UV sensitivity of uvrD::Tn5 mutants; (iii) in the recA730 background with constitutive SOS expression, the ssb-1 and ssb-113 alleles suppressed the strong UV-sensitivity caused by the uvrD::Tn5 mutation; (iv) in ssb-113 mutants, the level of recombination was reduced only 10-fold but 100-fold in ssb-1 mutants, showing that there was no correlation between the DNA repair deficiency and the recombination deficiency; (v) the hyper-recombination phenotype of the uvrD::Tn5 mutant was suppressed by the addition of either the ssb-1 or the ssb-113 allele; (vi) no addition of the spontaneous mutator effects promoted by the uvrD::Tn5 and the ssb-113 alleles was observed. These results suggest a possible functional interaction between SSB and Helicase II in DNA repair and mutagenesis.  相似文献   

10.
We have investigated the effects of alterations in potassium homeostasis on cell cycle progression and genome stability in Saccharomyces cerevisiae. Yeast strains lacking the PPZ1 and PPZ2 phosphatase genes, which aberrantly accumulate potassium, are sensitive to agents causing replicative stress or DNA damage and present a cell cycle delay in the G(1) /S phase. A synthetic slow growth phenotype was identified in a subset of DNA repair mutants upon inhibition of Ppz activity. Moreover, we observe that this slow growth phenotype observed in cdc7(ts) mutants with reduced Ppz activity is reverted by disrupting the TRK1 potassium transporter gene. As over-expression of a mammalian potassium transporter leads to similar phenotypes, we conclude that these defects can be attributed to potassium accumulation. As we reported previously, internal potassium accumulation activates the Slt2 MAP kinase pathway. We show that the removal of SLT2 in ppz1 ppz2 mutants ameliorates sensitivity to agents causing replication stress and DNA damage, whereas over-activation of the pathway leads to similar cell cycle-related defects. Taken together, these results are consistent with inappropriate potassium accumulation reducing DNA replication efficiency, negatively influencing DNA integrity and leading to the requirement of mismatch repair, the MRX complex, or homologous recombination pathways for normal growth.  相似文献   

11.
A site-specific recombination system that probes the relative probabilities that pairs of chromosomal loci collide with one another in living cells of budding yeast was used to explore the relative contributions of pairing, recombination, synaptonemal complex formation, and telomere clustering to the close juxtaposition of homologous chromosome pairs during meiosis. The level of Cre-mediated recombination between a pair of loxP sites located at an allelic position on homologous chromosomes was 13-fold greater than that between a pair of loxP sites located at ectopic positions on nonhomologous chromosomes. Mutations affecting meiotic recombination initiation and the processing of DNA double-strand breaks (DSBs) into single-end invasions (SEIs) reduced the levels of allelic Cre-mediated recombination levels by three- to sixfold. The severity of Cre/loxP phenotypes is presented in contrast to relatively weak DSB-independent pairing defects as assayed using fluorescence in situ hybridization for these mutants. Mutations affecting synaptonemal complex (SC) formation or crossover control gave wild-type levels of allelic Cre-mediated recombination. A delay in attaining maximum levels of allelic Cre-mediated recombination was observed for a mutant defective in telomere clustering. None of the mutants affected ectopic levels of recombination. These data suggest that stable, close homolog juxtaposition in yeast is distinct from pre-DSB pairing interactions, requires both DSB and SEI formation, but does not depend on crossovers or SC.  相似文献   

12.
13.
14.
Ofloxacin, a specific inhibitor of bacterial topoisomerase II, is known to inhibit the growth of yeast cells and to induce rho mutants in the yeast S. cerevisiae. The frequency of ofloxacin-induced petite mutants under non-growth conditions was found to be strongly diminished when the cells were depleted in intramitochondrial ATP. Under optimal conditions of mitochondrial mutagenesis the drug induced mitotic recombination and reverse mutation in diploid strains but failed to cure either killer plasmids or the 2 m DNA of dividing cells. The sensitivity to ofloxacin of the strains deficient in the DNA strandbreak repair pathway (rad52) was significantly higher then that of the wild-type strains and of the mutants deficient in excision or mutagenic DNA repair. The results are compatible with the idea that the cytotoxic and genetic activity of ofloxacin in yeast probably results from the inhibited DNA ligation function of topoisomerase II creating DNA breaks that are reparable through the recombination repair pathway.  相似文献   

15.
16.
17.
The treatment of cells with simple DNA methylating agents such as methyl methanesulfonate (MMS) results in genotoxic lesions, including 3-methyladenine which blocks DNA replication. All the organisms studied to date contain an alkylation-specific base excision repair pathway. In the yeast Saccharomyces cerevisiae, the base excision repair pathway is initiated by a Mag1 3-methyladenine DNA glycosylase that removes the damaged base, followed by the Apn1 apurinic/apyrimidinic endonuclease which cleaves the DNA strand at the abasic site for subsequent repair and synthesis. Several nucleotide excision repair pathway mutants display only slightly increased sensitivity to killing by MMS, indicating that nucleotide excision repair per se does not play a major role in the repair of DNA methylation damage. However, mag1 and apn1 mutants that are also defective in nucleotide excision repair are extremely sensitive to MMS-induced killing and the effects are synergistic. These observations suggest that nucleotide excision repair and alkylation-specific base excision repair provide alternative pathways for the repair of DNA methylation damage. In addition to their role in nucleotide excision repair, Rad1 and Rad10 form a complex that is involved in recombination repair. It was found that the apn1 rad1 and apn1 rad10 double mutants have a growth defect and are significantly more sensitive to MMS killing than apn1 rad2 and apn1 rad4 double mutants in a gradient plate assay. Furthermore, the apn1 rad1 double mutant increased both the spontaneous and MMS-induced mutation frequency. Thus, the recombination repair defects of rad1 and rad10 may confer an additional synergistic effect when combined with the apn1 mutation. Received: 8 September 1997 / 13 November 1997  相似文献   

18.
The knowledge about the existence of different pathways for the repairing of DNA lesions has made possible a better understanding of mutation processes. The double mutant method has been shown to be useful for grouping rad mutants in yeast. Through this method, three different groups of repair mechanisms were found: (a) RAD3 group corresponding to the excision repair of UV lesions, (b) RAD6 group corresponding to the translesion type of post-replication repair and, (c) RAD52 group corresponding to the recombination type of post-replication repair. In this work, a search for a classification of Drosophila mus mutants in groups analogous to yeast RAD groups is done. Information obtained by double mutant studies was integrated with that obtained by biochemical, recombination, DNA damaging agent sensitivity and mutation studies. The following groups were found: (a) group of mei9 and mus201, analogous to RAD3, (b) group of mei41 and mus302 analogous to RAD52 and, (c) group of mus104 and mus101 analogous to RAD6. In addition, there are mutants that belong to a group corresponding to pre-replication repair of MMS lesions such as mus103, mus306 and mus207. As a peculiarity of Drosophila, it was found that interaction between pre- and post-replication repair mechanisms is indifferent and not synergistic as was found in yeast. A possible explanation could be a weaker control of post-replication repair mechanisms in Drosophila than in yeast. It is expected that this research could help for a better understanding of repair mechanisms in complex organisms.  相似文献   

19.
We have isolated and characterized auxotrophic mutants of Trichosporon adeninovorans, strain PAR-4 to get genetic markers that cover the entire nuclear genome of this thermotolerant yeast of technological interest. The nitrosoguanidine mutagenesis yielded mutants at a high frequency. We detected a broad spectrum of auxotrophic phenotypes in the random mutant samples. Obviously, strain PAR-4 is a haploid or hyperhaploid yeast. In correspondence we determined a low DNA content per cell. In contrast to NG1), UV light was an inefficient mutagen. UV survival curves were without the typical shoulder indicating suppression of repair of UV-induced lethal lesions. Thus, the response of PAR-4 to UV was different from those of Saccharomyces cerevisiae and other yeasts.  相似文献   

20.
The 26 S proteasome degrades a broad spectrum of proteins and interacts with several nucleotide excision repair (NER) proteins, including the complex of Rad4 and Rad23 that binds preferentially to UV-damaged DNA. The rate of NER is increased in yeast strains with mutations in genes encoding subunits of the 26 S proteasome, indicating that it could negatively regulate a repair process. The specific function of the 26 S proteasome in DNA repair is unclear. It might degrade DNA repair proteins after repair is completed or act as a molecular chaperone to promote the assembly or disassembly of the repair complex. In this study, we show that Rad4 is ubiquitylated and that Rad23 can control this process. We also find that ubiquitylated Rad4 is degraded by the 26 S proteasome. However, the interaction of Rad23 with Rad4 is not only to control degradation of Rad4, but also to assist in assembling the NER incision complex at UV-induced cyclobutane pyrimidine dimers. We speculate that, following the completion of DNA repair, specific repair proteins might be degraded by the proteasome to regulate repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号