首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Patent lymphatic filariasis is characterized by antigen-specific T-cell unresponsiveness with diminished IFN-gamma and IL-2 production and defects in dendritic cell (DC) function. Because Toll-like receptors (TLRs) play an important role in pathogen recognition and TLR expression is diminished on B and T cells of filaria-infected individuals, we examined the effect of live microfilariae (mf) on expression and function of TLRs in human DCs. We show that mf-exposed monocyte-derived human DCs (mhDCs) demonstrate marked diminution of TLR3 and TLR4 mRNA expression compared with mf-unexposed mhDCs that translated into loss of function in response to appropriate TLR ligands. Exposure to mf significantly down-regulated production of IFN-alpha, MIP-1alpha, IL-12p70, and IL-1alpha following activation with poly I:C, and of IL-12p40 following activation with poly I:C or LPS. mRNA expression of MyD88, the adaptor molecule involved in TLR4 signaling, was significantly diminished in mhDCs after exposure to mf. Moreover, mf interfered with NF-kappaB activation (particularly p65 and p50) following stimulation with poly I:C or LPS. These data suggest that mf interfere with mhDC function by altering TLR expression and interfering with both MyD88-dependent signaling and a pathway that ultimately diminishes NF-kappaB activity. This down-regulated NF-kappaB activity impairs mhDC-produced cytokines needed for full T-cell activation.  相似文献   

2.
3.
Evidence from the animal model suggests that proteasome inhibitors may have immunosuppressive properties; however, their effects on the human immune system remain poorly investigated. Here, we show that bortezomib, a proteasome inhibitor with anticancer activity, impairs several immune properties of human monocyte-derived dendritic cells (DCs). Namely, exposure of DCs to bortezomib reduces their phagocytic capacity, as shown by FITC-labeled dextran internalization and mannose-receptor CD206 down-regulation. DCs treated with bortezomib show skewed phenotypic maturation in response to stimuli of bacterial (lipopolysaccharide [LPS]) and endogenous sources (including TNF-alpha and CD40L), as well as reduced cytokine production and immunostimulatory capacity. LPS-induced CCL-2/MCP-1 and CCL5/RANTES secretions by DCs were prevented by DC treatment with bortezomib. Finally, CCR7 up-regulation in DCs exposed to LPS as well as migration toward CCL19/MIP-3beta were strongly impaired. As a suitable mechanism for these effects, bortezomib was found to down-regulate MyD88, an essential adaptor for TLR signaling, and to relieve LPS-induced activation of NF-kappaB, IRF-3, and IRF-8 and of the MAP kinase pathway. In summary, inhibition of DC function may represent a novel mechanism by which proteasome inhibitors exert immunomodulatory effects. These compounds could prove useful for tuning TLR signaling and for the treatment of inflammatory and immune-mediated disorders.  相似文献   

4.
5.
Toll-like receptors (TLRs) are able to interact with pathogen-derived products and their signals induce the coordinated activation of innate and adaptive immune mechanisms. Dendritic cells (DCs) play a central role in these events. As the different TLRs are able to trigger MyD88/TRIF-dependent and -independent signaling pathways, we wondered if the simultaneous activation of these signaling cascades would synergize with respect to DC activation and induce superior cytotoxic T-lymphocyte (CTL) activity in vivo. We observed that indeed the combined activation of MyD88-dependent and -independent signaling induced by TLR7 and TLR3 ligands provoked a more rapid and more sustained bone marrow-derived DC (BMDC) activation with regard to the secretion of proinflammatory cytokines, like IL-6 and IL-12p70, and the expression of costimulatory molecules like CD40, CD70, and CD86. Furthermore, in the presence of combined TLR ligand-stimulated DCs, CD4(+) and CD8(+) T cells were insensitive toward the inhibitory effects of regulatory T cells. Most importantly, peptide-loaded BMDCs stimulated by TLR ligand combinations resulted in a marked increase of CTL effector functions in wild-type mice in vivo. Thus, our results provide evidence that unlocking the full potential of DCs by advanced activation protocols will boost their immunogenic potential and improve DC-based vaccination strategies.  相似文献   

6.
Bartz H  Avalos NM  Baetz A  Heeg K  Dalpke AH 《Blood》2006,108(13):4102-4108
Dendritic cells (DCs) are important sentinels within innate immunity, monitoring the presence of infectious microorganisms. They operate in 2 different maturation stages, with transition from immature to mature DCs being induced by activation of toll-like receptors (TLRs). However, TLRs are also expressed on precursor cells of DCs. Here we analyzed the effects of TLR stimulation during the process of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-mediated in vitro generation of immature DCs from precursor cells. We show that TLR triggering deviated phenotypic and functional differentiation from CD14+ monocytes to CD1a+ DCs. Similar results were obtained when differentiation of murine myeloid DCs from bone marrow cells was analyzed. The inhibitory effects were independent of soluble factors. TLR stimulation in DC precursor cells induced proteins of the suppressor of cytokine signaling family (SOCS), which correlated with loss of sensitivity to GM-CSF. Overexpression of SOCS-1 abolished GM-CSF signal transduction. Moreover, forced SOCS-1 expression in DC precursors mimicked the inhibitory effects on DC generation observed for TLR stimulation. The results indicate that TLR stimulation during the period of DC generation interferes with and deviates DC differentiation and that these effects are mediated particularly by SOCS-1.  相似文献   

7.
OBJECTIVE: Pertussis toxin (PT) has the capacity to activate dendritic cells (DCs) for the augmentation of cell-mediated immune responses. To investigate the mechanism(s) by which PT activates DCs, we investigated the effects of PT and its B-oligomer (PTB) on the maturation of human and mouse DCs and determined whether PT could act as a pathogen-associated molecular pattern to activate one of the Toll-like receptors (TLRs). METHODS: The effects of PT and PTB on the maturation of human and mouse DCs were analyzed in terms of surface marker expression, cytokine production, antigen-presenting capacity, and intracellular signaling. The participation of TLR4 in PT-induced signaling was determined by comparing the effect of PT on DCs derived from TLR4-deficient and wild-type mice, as well as by measuring PT-induced NF-kappaB activation in HEK293 cells transiently transfected to express various TLRs. RESULTS: Although both promoted phenotypic and functional maturation DCs, however, unlike PT that induced DC production of interleukin (IL)-6, tumor necrosis factor-alpha, IL-12, and interferon-inducible protein, PTB was capable of stimulating the production of interferon-inducible protein. Bone marrow-derived DCs from C3H/HeJ mice with defective TLR-4 alleles were unresponsive to PT and PTB, whereas DCs from C3H/HeN mice responded. In addition, PT induced NF-kappaB activation and IL-8 production in HEK293 cells transfected with a combination of TLR4 and MD2 but not in nontransfected or TLR2-transfected HEK293 cells. Comparison of the patterns of cytokine induction and intracellular signaling events in DCs treated by PT and PTB revealed that although PT, like lipopolysaccharide, triggered both MyD88-dependent and -independent pathways, PTB preferentially triggered MyD88-independent pathways. Interestingly, mouse splenocyte proliferation in response to PT and PTB was only partially dependent on TLR4. CONCLUSION: The data identify PT as another pathogen-associated molecular pattern that induces DC maturation in a TLR4-dependent manner. Unlike PT, which triggers both MyD88-dependent and -independent pathways, PTB only triggers the MyD88-independent pathway in DCs.  相似文献   

8.
Dendritic cells (DCs) play a key role in immune homeostasis and maintenance of self-tolerance. Tolerogenic DCs can be established by an encounter with apoptotic cells (ACs) and subsequent inhibition of maturation and effector functions. The receptor(s) and signaling pathway(s) involved in AC-induced inhibition of DCs have yet to be defined. We demonstrate that pretreatment with apoptotic but not necrotic cells inhibits activation of IkappaB kinase (IKK) and downstream NF-kappaB. Notably, receptor tyrosine kinase Mer (MerTK) binding of ACs is required for mediating this effect. Monocyte-derived DCs lacking MerTK expression (MerTKKD) or treated with blocking MerTK-specific antibodies (Abs) are resistant to AC-induced inhibition and continue to activate NF-kappaB and secrete proinflammatory cytokines. Blocking MerTK activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway prevents AC-induced inhibition. These results demonstrate an essential role for MerTK-mediated regulation of the PI3K/AKT and NF-kappaB pathways in AC-induced inhibition of monocyte-derived DCs.  相似文献   

9.
10.
Although dendritic cells (DCs) are the most potent antigen-presenting cells involved in numerous physiologic and pathologic processes, little is known about the signaling pathways that regulate DC activation and antigen-presenting function. Recently, we demonstrated that nuclear factor (NF)-kappaB activation is central to that process, as overexpression of IkappaBalpha blocks the allogeneic mixed lymphocyte reaction (MLR), an in vitro model of T-cell activation. In this study, we investigated the role of 2 putative NF-kappaB-inducing components, NF-kappaB-inducing kinase (NIK), and IkappaB kinase 2 (IKK2). Using an adenoviral gene transfer method to efficiently express dominant-negative (dn) forms of these molecules in monocyte-derived DCs, we found that IKK2dn but not NIKdn inhibited the allogeneic MLR. When DCs were fixed, this inhibitory effect of IKK2dn was lost, suggesting that IKK2 is involved in T-cell-derived signals that enhance DC antigen presentation during the allogeneic MLR period and does not have an effect on viability or differentiation state of DCs prior to coculture with T cells. One such signal is likely to be CD40 ligand (CD40L), as IKK2dn blocked CD40L but not lipopolysaccharide (LPS)-induced NF-kappaB activation, cytokine production, and up-regulation of costimulatory molecules and HLA-DR in DCs. In summary, our results demonstrate that IKK2 is essential for DC activation induced by CD40L or contact with allogeneic T cells, but not by LPS, whereas NIK is not required for any of these signals. In addition, our results support IKK2 as a potential therapeutic target for the down-regulation of unwanted immune responses that may occur during transplantation or autoimmunity.  相似文献   

11.
Guo Z  Zhang M  Tang H  Cao X 《Blood》2005,106(6):2033-2041
Dendritic cells (DCs) and chemokines are important in linking innate and adaptive immunity. We previously reported that Fas ligation induced interleukin 1beta (IL-1beta)-dependent maturation and IL-1beta-independent survival of DCs, with extracellular signal-regulated kinase (ERK) and nuclear factor-kappaB (NF-kappaB) signaling pathways involved, respectively. We describe here that Fas ligation induced DCs to rapidly produce both CXC and CC chemokines, including macrophage inflammatory protein 2 (MIP-2), MIP-1alpha, MIP-1beta, monocyte chemoattractant protein 1 (MCP-1), RANTES (regulated on activation normal T cell expressed and secreted), and TARC (thymus and activation-regulated chemokine), resulting in enhanced chemoattraction of neutrophils and T cells by Fas-ligated DCs in vivo or by its supernatant in vitro. These chemokines work synergistically in chemoattraction of neutrophils and T cells with MIP-2 more important for neutrophils, MIP-1alpha and TARC more important for T cells. Moreover, Fas-ligated DCs increased endocytosis by neutrophils and activation and proliferation of antigen-specific naive T cells. Fas ligation-induced DC secretion of chemokines involves Ras/Raf/mitogen-activated protein kinase kinase (MEK)/ERK activation and is ERK, but not NF-kappaB, dependent. Activation of caspases, including caspase 1, but not IL-1 autocrine action, is involved in this process. These data indicate that Fas signaling provides a key link between innate response and adaptive immunity by promoting DC chemokine production.  相似文献   

12.
Guo Z  Zhang M  An H  Chen W  Liu S  Guo J  Yu Y  Cao X 《Blood》2003,102(13):4441-4447
The mechanisms that underpin the intriguing capacity of Fas ligation on dendritic cells (DCs) to induce maturation and activation, rather than apoptosis, remain unclear. In the present study we confirm that Fas signaling induces both phenotypic and functional maturation of murine DCs, and we demonstrate that phenotypic maturation is associated with phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, activation of caspase-1, and secretion of interleukin-beta (IL-1beta). Specific inhibition of ERK1/2 diminished Fas ligation-induced caspase-1 activation, IL-1beta secretion, and ensuing up-regulation of developmental markers, whereas treatment with neutralizing anti-IL-1beta antibody abrogated phenotypic and functional maturation, indicating that IL-1beta mediates Fas ligation-induced DC maturation in an autocrine manner. NF-kappaB activation was responsible for maintaining DC viability after Fas ligation. Inhibiting NF-kappaB did not affect either IL-1beta secretion or phenotypic maturation but rather sensitized DCs to Fas-mediated apoptosis. In conclusion, positive signals originating from Fas are transduced through at least 2 different intracellular pathways in DCs, promoting not only survival but also an increase in maturation that correlates with increased antigen-presentation capability.  相似文献   

13.
Chen CH  Floyd H  Olson NE  Magaletti D  Li C  Draves K  Clark EA 《Blood》2006,107(4):1459-1467
Dendritic-cell (DC)-associated C-type lectin receptors (CLRs) take up antigens to present to T cells and regulate DC functions. DCAL-2 is a CLR with a cytosolic immunoreceptor tyrosine-based inhibitory motif (ITIM), which is restricted to immature DCs (iDCs), monocytes, and CD1a+ DCs. Cross-linking DCAL-2 on iDCs induced protein tyrosine phosphorylation and MAPK activation as well as receptor internalization. To test if DCAL-2 is involved in DC maturation and cytokine expression, we stimulated iDCs with anti-DCAL-2 mAb with or without LPS, zymosan, or CD40L. While anti-DCAL-2 did not induce iDCs to mature, it did up-regulate CCR7 expression and IL-6 and IL-10 production. DCAL-2 signals augmented DC maturation induced by LPS or zymosan, increasing both CCR7 and DC-LAMP expression. Of interest, DCAL-2 ligation had the opposite effects on TLR versus CD40L signaling: anti-DCAL-2 suppressed TLR-induced IL-12 expression, but significantly enhanced CD40L-induced IL-12 production. DCAL-2 ligation also suppressed the ability of TLR-matured DCs to induce IFN-gamma-secreting Th1 cells but augmented the capacity of CD40L-matured DCs to polarize naive T cells into Th1 cells. Thus, DCAL-2 may program DCs differently depending on whether DCs are signaled via TLRs or by T cells. DCAL-2 may be a potential immunotherapeutic target for modulating autoimmune diseases or for developing vaccines.  相似文献   

14.
Kock G  Bringmann A  Held SA  Daecke S  Heine A  Brossart P 《Blood》2011,117(13):3569-3574
Dectin-1 is the major receptor for fungal β-glucans. The activation of Dectin-1 leads to the up-regulation of surface molecules on dendritic cells (DCs) and cytokine secretion. Furthermore, Dectin-1 is important for the recruitment of leukocytes and the production of inflammatory mediators. Peroxisome proliferator-activated receptor-γ (PPAR-γ) and its ligands, cyclopentenone prostaglandins or thiazolidinediones, have modulatory effects on B-cell, T-cell, and DC function. In the present study, we analyzed the effects of troglitazone (TGZ), a high-affinity synthetic PPAR-γ ligand, on the Dectin-1-mediated activation of monocyte-derived human DCs. Dectin-1-mediated activation of DCs was inhibited by TGZ, as shown by down-regulation of costimulatory molecules and reduced secretion of cytokines and chemokines involved in T-lymphocyte activation. Furthermore, TGZ inhibited the T-cell-stimulatory capacity of DCs. These effects were not due to a diminished expression of Dectin-1 or to a reduced phosphorylation of spleen tyrosine kinase; they were mediated by the inhibition of downstream signaling molecules such as mitogen-activated protein kinases and nuclear factor-κB. Furthermore, curdlan-mediated accumulation of caspase recruitment domain 9 (CARD9) in the cytosol was inhibited by TGZ. Our data demonstrate that the PPAR-γ ligand TGZ inhibits Dectin-1-mediated activation by interfering with CARD9, mitogen-activated protein kinase, and nuclear factor-κB signaling pathways. This confirms their important role as negative-feedback regulators of potentially harmful inflammatory responses.  相似文献   

15.
16.

Objective

To evaluate the expression of Toll‐like receptors (TLRs) 3 and 7 in synovium and to study potential differences in the maturation and cytokine production mediated by TLR‐2, TLR‐3, TLR‐4, and TLR‐7/8 by dendritic cells (DCs) from rheumatoid arthritis (RA) patients and DCs from healthy controls.

Methods

Synovial expression of TLR‐3 and TLR‐7 in RA was studied using immunohistochemistry. Monocyte‐derived DCs from RA patients and healthy controls were cultured for 6 days and subsequently stimulated for 48 hours via TLR‐mediated pathways (lipoteichoic acid, Pam3Cys, and fibroblast‐stimulating lipopeptide 1 for TLR‐2, poly[I‐C] for TLR‐3, lipopolysaccharide and extra domain A for TLR‐4, and R848 for TLR‐7/8). Phenotypic DC maturation was measured using flow cytometry. The secretion of tumor necrosis factor α (TNFα), interleukin‐6 (IL‐6), IL‐10, and IL‐12 was measured using the Bio‐Plex system. Cell lines expressing TLR‐2 and TLR‐4 were used for the detection of TLR‐2 and TLR‐4 ligands in serum and synovial fluid from RA patients.

Results

TLR‐3 and TLR‐7 were highly expressed in RA synovium. All TLR ligands elicited phenotypic DC maturation equally between DCs from RA patients and those from healthy controls. TLR‐2– and TLR‐4–mediated stimulation of DCs from RA patients resulted in markedly higher production of inflammatory mediators (TNFα and IL‐6) compared with DCs from healthy controls. In contrast, upon stimulation of TLR‐3 and TLR‐7/8, the level of cytokine production was equal between DCs from RA patients and those from healthy controls. Remarkably, both TLR‐3 and TLR‐7/8 stimulation resulted in a skewed balance toward IL‐12. Intriguingly, the combined stimulation of TLR‐4 and TLR‐3–7/8 resulted in a marked synergy with respect to the production of inflammatory mediators. As a proof of concept, TLR‐4 ligands were increased in the serum and synovial fluid of RA patients.

Conclusion

TLRs are involved in the regulation of DC activation and cytokine production. We hypothesize that various TLR ligands in the joint trigger multiple TLRs simultaneously, favoring the breakthrough of tolerance in RA.
  相似文献   

17.
Engaging mammalian Toll-like receptors (TLRs) activate both the NF-kappaB and mitogen-activated protein kinase signaling pathways. Here we establish that mitogen-activated protein 3 kinase Tpl2, levels of which are markedly reduced in nfkb1(-/-) cells, is required for extracellular signal-regulated kinase (ERK) activation in bone marrow-derived macrophages and B cells stimulated with diverse TLR ligands. Despite rescuing TLR-dependent ERK activation in nfkb1(-/-) bone marrow-derived macrophages by using an estrogen receptor-regulated version of the mitogen-activated protein 3 kinase, c-Raf (Raf:ER), CpG or LPS induction of IL-10 was only partially restored in nfkb1(-/-) cells expressing Raf:ER, a finding consistent with NF-kappaB1 regulating IL-10 by a combination of ERK-independent and -dependent mechanisms. Collectively, our findings indicate that the Tpl2/MEK/ERK signaling module is a master regulator of ERK-dependent gene expression downstream of TLRs in different hemopoietic cells.  相似文献   

18.
The critical role of Bruton tyrosine kinase (Btk) in B cells has been documented by the block of B-cell development in X-linked agammaglobulinemia (XLA). Less is known about Btk function in myeloid cells. Several pieces of evidence indicate that Btk is a component of Toll-like receptor (TLR) signaling. We analyzed whether Btk deficiency in XLA is associated with an impaired dendritic cell (DC) compartment or defective TLR signaling. We analyzed the expression of TLRs 1 to 9 on myeloid DCs generated from XLA patients and evaluated their response to activation by specific TLR agonists. We show that XLA patients have normal numbers of circulating DCs. Btk-deficient DCs have no defect in response to stimulation of TLRs 1/2, 2/6, 3, 4, and 5 but display a profound impairment of IL-6 and TNF-alpha production in response to stimulation by TLR-8 cognate agonist, ssRNA. These findings may provide an explanation for the susceptibility to enteroviral infections in XLA patients.  相似文献   

19.
Interaction of the activating receptor NKG2D with its ligands is a major stimulatory pathway for cytotoxicity of natural killer (NK) cells. Here, the signaling pathway involved after NKG2D ligation is examined. Either incubation of the NKG2D-bearing human NKL tumor cell line with K562 target cells or cross-linking with NKG2D mAb induced strong activation of the mitogen-activated protein (MAP) kinases. Selective inhibition of JNK MAP kinase with four different means of inhibition greatly reduced NKG2D-mediated cytotoxicity toward target cells and furthermore, blocked the movement of the microtubule organizing center (MTOC), granzyme B (a component of cytotoxic granules), and paxillin (a scaffold protein) to the immune synapse. NKG2D-induced activation of JNK kinase was also blocked by inhibitors of Src protein tyrosine kinases and phospholipase PLCgamma, upstream of JNK. Similarly, a second MAP kinase pathway through ERK was previously shown to be required for NK cell cytotoxicity. Thus, activation of two MAP kinase pathways is required for cytotoxic granule and MTOC polarization and for cytotoxicity of human NK cells when NKG2D is ligated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号