首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Forty-seven normal subjects performed two-dimensional arm movements on a digitizer board using a mouse device. The movements were projected on a computer monitor. Subjects were instructed to move the mouse using the whole arm from a center position to a peripheral target so that the projected movement would pass over the target without stopping on the target. A large number of targets (360) were used to cover the entire directional continuum. The direction of the arm movement was the parameter of interest, which was measured at an initial position, at one third of the distance towards the target, and at the vicinity of the target. Four conditions of delay between target presentation and movement execution were used (0, 2, 4, 6 s). A systematic directional error was observed at the initial portion of the trajectory. This error resulted from a clustering of movement directions on an axis that was perpendicular to the axis of the resting forearm before movement onset. This pattern of errors can be explained by the initial inertial anisotropy of the arm. As the trajectory evolved, a different directional error emerged, resulting from a clustering of movement directions in two orthogonal axes. This pattern of directional error increased in amplitude as the delay increased, in contrast to the error at the initial portion of the trajectory which remained invariant with increasing delay. Finally, the information transmitted by the movement direction was shown to increase with the evolution of the trajectory. The increase in delay resulted in a decrease in directional-information transmission. It is proposed that the directional bias towards the end of the movement trajectory might reflect the action of "movement primitives", that is patterns of muscle activation resulting from spinal interneuronal activation. It is further proposed that the directional bias observed at the vicinity of the target might reflect a loss of cortical directional information with increasing delay between target presentation and movement onset.  相似文献   

2.
In previous studies we observed a pattern of systematic directional errors when humans pointed to memorized visual target locations in two-dimensional (2-D) space. This directional error was also observed in the initial direction of slow movements toward visual targets or movements to kinesthetically defined targets in 2-D space. In this study we used a perceptual experiment where subjects decide whether an arrow points in the direction of a visual target in 2-D space and observed a systematic distortion in direction discrimination known as the "oblique effect." More specifically, direction discrimination was better for cardinal directions than for oblique. We then used an equivalent measure of direction discrimination in a task where subjects pointed to memorized visual target locations and showed the presence of a motor oblique effect. We finally modeled the oblique effect in the perceptual and motor task using a quadratic function. The model successfully predicted the observed direction discrimination differences in both tasks and, furthermore, the parameter of the model that was related to the shape of the function was not different between the motor and the perceptual tasks. We conclude that a similarly distorted representation of target direction is present for memorized pointing movements and perceptual direction discrimination.  相似文献   

3.
In previous studies, we provided evidence for a directional distortion of the endpoints of movements to memorized target locations. This distortion was similar to a perceptual distortion in direction discrimination known as the oblique effect so we named it the “motor oblique effect”. In this report we analyzed the directional errors during the evolution of the movement trajectory in memory guided and visually guided pointing movements and compared them with directional errors in a perceptual experiment of arrow pointing. We observed that the motor oblique effect was present in the evolving trajectory of both memory and visually guided reaching movements. In memory guided pointing the motor oblique effect did not disappear during trajectory evolution while in visually guided pointing the motor oblique effect disappeared with decreasing distance from the target and was smaller in magnitude compared to the perceptual oblique effect and the memory motor oblique effect early on after movement initiation. The motor oblique effect in visually guided pointing increased when reaction time was small and disappeared with larger reaction times. The results are best explained using the hypothesis that a low level oblique effect is present for visually guided pointing movements and this effect is corrected by a mechanism that does not depend on visual feedback from the trajectory evolution and might even be completed during movement planning. A second cognitive oblique effect is added in the perceptual estimation of direction and affects the memory guided pointing movements. It is finally argued that the motor oblique effect can be a useful probe for the study of perception–action interaction.  相似文献   

4.
5.
In various studies subjects have been shown to misperceive the positions of targets that are flashed during pursuit eye movements. They mislocalise them in the direction of pursuit. Nevertheless, Hansen (1979) found that subjects accurately hit targets that are flashed during pursuit with a quick hammer blow. We examined whether this is because there is a fundamental difference between the information that determines our perceptual judgements of a targets position and the information that is used to guide our hand to a similar target. Subjects were asked to quickly tap targets that were flashed during pursuit with their index finger. They systematically tapped ahead of the position of the flash, in accordance with the above-mentioned perceptual mislocalisations. Thus the lack of systematic errors in Hansens study is not a general property of fast motor responses.This work was financed by the Research Council for Earth and Life Sciences (ALW, grant number 809–37.006) of the Netherlands Organisation for Scientific Research (NWO)  相似文献   

6.
Information storage and retrieval from working memory is limited by the capacity of storage mechanisms and attentional processes. Nevertheless, it has been shown that processing of multiple features can proceed independently in working memory. In this study we investigated how serial order and directional information are processed when executing a movement to a remembered target direction. We compared the performance of 11 healthy subjects in 3 motor working memory tasks, one with a varying spatial memory load, one with a varying serial order memory load, and one in which memory load was varied for both features. We found that the spatial information memory load does not affect the ability to store information about serial order and vice versa. Furthermore, movement response latencies indicated that retrieval of information about both features proceeds simultaneously. These results strongly favor independent, parallel working memory systems for processing space and order information in the motor system.  相似文献   

7.
Maintenance of movement accuracy relies on motor learning, by which prior errors guide future behavior. One aspect of this learning process involves the accurate generation of predictions of movement outcome. These predictions can, for example, drive anticipatory movements during a predictive-saccade task. Predictive saccades are rapid eye movements made to anticipated future targets based on error information from prior movements. This predictive process exhibits long-memory (fractal) behavior, as suggested by inter-trial fluctuations. Here, we model this learning process using a regime-switching approach, which avoids the computational complexities associated with true long-memory processes. The resulting model demonstrates two fundamental characteristics. First, long-memory behavior can be mimicked by a system possessing no true long-term memory, producing model outputs consistent with human-subjects performance. In contrast, the popular two-state model, which is frequently used in motor learning, cannot replicate these findings. Second, our model suggests that apparent long-term memory arises from the trade-off between correcting for the most recent movement error and maintaining consistent long-term behavior. Thus, the model surprisingly predicts that stronger long-memory behavior correlates to faster learning during adaptation (in which systematic errors drive large behavioral changes); greater apparent long-term memory indicates more effective incorporation of error from the cumulative history across trials.  相似文献   

8.
Summary Experiments carried out on seven adult baboons were addressed at specifying the participation of the cerebellar dentate nucleus (DN) in the control of duration and accuracy of a goal-directed movement. The visuo-motor task used in this experiment involved trained pointing movement towards stationary target.The monkeys trained to point with the index finger to a target light were required to perform stereotyped movements of constant amplitude and direction, or movements with variable amplitude and direction. Duration of response execution was measured by movement time and accuracy by terminal spatial errors. We analysed the effects of excluding the DN on the arm ipsilateral or contralateral to the partially inactivated nucleus.Two techniques have been used to impair the DN activity: in three monkeys the structure was reversibly cooled with a chronically implanted thermode; in four others partial electrolytic destruction of the DN was performed.In the arm ipsilateral to the lesioned DN we observed modifications of movement times, appearance of systematic errors with increased dispersion. Contralateral effects were restricted to movement times. Changes in movement times and spatial errors were studied over time (4 months) in permanently lesioned animals. Only the spatial dispersion presented a total recovery.These data show that the DN is concerned with the control of speed and accuracy during the execution of visually triggered movements in monkeys. Moreover comparison of results concerning ipsilateral and contralateral effects of DN dysfunction on movement times and errors, and evidence of different time course of recovery in these variables, suggest a differential control exerted by the DN on speed and accuracy of goal directed movements.This work was in part supported by CNRS Grants and INSERM Grants (ATP 80.79.112, CRL 75.4.346.6)  相似文献   

9.
Results of two experiments are reported that examined how people respond to rectangular targets of different sizes in simple hitting tasks. If a target moves in a straight line and a person is constrained to move along a linear track oriented perpendicular to the targets motion, then the length of the target along its direction of motion constrains the temporal accuracy and precision required to make the interception. The dimensions of the target perpendicular to its direction of motion place no constraints on performance in such a task. In contrast, if the person is not constrained to move along a straight track, the targets dimensions may constrain the spatial as well as the temporal accuracy and precision. The experiments reported here examined how people responded to targets of different vertical extent (height): the task was to strike targets that moved along a straight, horizontal path. In experiment 1 participants were constrained to move along a horizontal linear track to strike targets and so target height did not constrain performance. Target height, length and speed were co-varied. Movement time (MT) was unaffected by target height but was systematically affected by length (briefer movements to smaller targets) and speed (briefer movements to faster targets). Peak movement speed (Vmax) was influenced by all three independent variables: participants struck shorter, narrower and faster targets harder. In experiment 2, participants were constrained to move in a vertical plane normal to the targets direction of motion. In this task target height constrains the spatial accuracy required to contact the target. Three groups of eight participants struck targets of different height but of constant length and speed, hence constant temporal accuracy demand (different for each group, one group struck stationary targets = no temporal accuracy demand). On average, participants showed little or no systematic response to changes in spatial accuracy demand on any dependent measure (MT, Vmax, spatial variable error). The results are interpreted in relation to previous results on movements aimed at stationary targets in the absence of visual feedback.  相似文献   

10.
Two deafferented patients and several control subjects participated in a series of experiments to investigate how accurate single-joint movements are programed, spatially calibrated, and updated in the absence of proprioceptive information. The deafferented patients suffered from a permanent and severe loss of large sensory myelinated fibers below the neck. Subjects performed, with and without vision, sequences of forearm supinations and pronations with two temporal delays between each movement (0 s and 8 s). Overall, the lack of proprioception did not yield any significant decrease in movement accuracy when vision was available. Without vision, the absence of proprioceptive afferents yielded (1) significantly larger spatial errors, (2) amplitude errors similar to those of control subjects, and (3) a significant drift when an 8-s delay was introduced between two successive movements. Subjects also performed, without vision, a 20 supination followed by a 20 pronation that brought back the wrist to the starting position. On some trials, the supination was blocked unexpectedly by way of a magnetic brake. When the supination was blocked, subjects were already on the second target and no pronation was required when the brake was released. The defferented patients, unaware of the procedure, always produced a 20 pronation. These data confirm that deafferented patients were not coding a final position. It rather suggests that they coded an amplitude and translated the spatial distance between the two targets in a corresponding force pulse. Overall, the results highlight the powerful and key role of proprioceptive afferents for calibrating the spatial motor frame of reference.  相似文献   

11.
Perceptual updating of the location of visual targets in space after intervening eye, head or trunk movements requires an interaction between several afferent signals (visual, oculomotor efference copy, vestibular, proprioceptive). The nature of the interaction is still a matter of debate. To address this problem, we presented subjects (n=6) in the dark with a target (light spot) at various horizontal eccentricities (up to +/-20 degrees ) relative to the initially determined subjective straight-ahead direction (SSA). After a memory period of 12 s in complete darkness, the target reappeared at a random position and subjects were to reproduce its previous location in space using a remote control. For both the presentation and the reproduction of the target's location, subjects either kept their gaze in the SSA (retinal viewing condition) or fixated the eccentric target (visuo-oculomotor). Three experimental series were performed: A, "visual-only series": reproduction of the target's location in space was found to be close to ideal, independently of viewing condition; estimation curves (reproduced vs presented positions) showed intercepts approximately 0 degrees and slopes approximately 1; B, "visual-vestibular series": during the memory period, subjects were horizontally rotated to the right or left by 10 degrees or 18 degrees at 0.8-Hz or 0.1-Hz dominant frequency. Following the 0.8-Hz body rotation, reproduction was close to ideal, while at 0.1 Hz it was partially shifted along with the body, in line with the known vestibular high-pass characteristics. Additionally, eccentricity of target presentation reduced the slopes of the estimation curves (less than 1); C, "visual-vestibular-neck series": a shift toward the trunk also occurred after low-frequency neck stimulation (trunk rotated about stationary head). When vestibular and neck stimuli were combined (independent head and trunk rotations), their effects summed linearly, such that the errors cancelled each other during head rotation on the stationary trunk. Variability of responses was always lowest for targets presented at SSA, irrespective of intervening eye, head or trunk rotations. We conclude that: (1) subjects referenced "space" to pre-rotatory SSA and that the memory trace of the target's location in space was not altered during the memory period; and that (2) they used internal estimates of eye, head and trunk displacements with respect to space to match current target position with the memory trace during reproduction; these estimates would be obtained by inverting the physical coordinate transformations produced by these displacements. We present a model which is able to describe these operations and whose predictions closely parallel the experimental results. In this model the estimate of head rotation in space is not obtained directly from the vestibular head-in-space signal, but from a vestibular estimate of the kinematic state of the body support.  相似文献   

12.
In previous studies a systematic directional error (the “motor oblique effect”) was found in 2D memory pointing movements of healthy adults. In this study we extend these observations to observe that healthy children displayed the same motor oblique effect. In contrast other spatial and temporal movement parameters (mean amplitude error, square directional and amplitude error, latency and the time to maximum velocity) changed with increasing age. Memory delay increased the square directional and amplitude error independent of age. Finally failure of movement inhibition during the delay was more frequent in children compared to adults. These results favor the hypothesis that the motor oblique effect related to perceptual processing biases is constant from childhood while other movement parameters are modulated by age reflecting the continuing optimization of motor control from childhood to adulthood. The dissociation of memory and age effects suggests that motor working memory is already mature in young children.  相似文献   

13.
When reaching to remembered target locations following an intervening eye movement a systematic pattern of error is found indicating eye-centred updating of visuospatial memory. Here we investigated if implicit targets, defined only by allocentric visual cues, are also updated in an eye-centred reference frame as explicit targets are. Participants viewed vertical bars separated by varying distances, and horizontal lines of equivalently varying lengths, implying a “target” location at the midpoint of the stimulus. After determining the implied “target” location from only the allocentric stimuli provided, participants saccaded to an eccentric location, and reached to the remembered “target” location. Irrespective of the type of stimulus reaching errors to these implicit targets are gaze-dependent, and do not differ from those found when reaching to remembered explicit targets. Implicit target locations are coded and updated as a function of relative gaze direction with respect to those implied locations just as explicit targets are, even though no target is specifically represented.  相似文献   

14.
Irregularities in the velocity profile near the end of pointing movements have been interpreted as corrective submovements whose purpose is to provide accuracy of pointing to the target. The purpose of the present study was to investigate whether two additional factors related to biomechanical properties of the arm also cause submovements. First, motion termination and stabilization of the limb in the final position required by a discrete pointing task may contribute to submovements. Second, inaccurate regulation of interactive torque at the joints may also cause submovements. To investigate the contributions of these two biomechanical factors and the traditionally considered factor of pointing accuracy, the incidence of submovements was analyzed during three types of experimental manipulations. In addition to target size manipulations (small and large targets), conditions for motion termination were manipulated by examining discrete movements (which terminated at the target) and reciprocal movements (which reversed direction without dwelling on the target). Interaction torques were varied by using targets that require different shoulder–elbow coordination patterns. Submovements were detected in 41% of all analyzed movements. Data supported influences from the accuracy and motion termination factors but not from the interactive torque regulation factor on submovement incidence. Gross submovements were associated with motion termination; fine submovements primarily with accuracy demands. These findings and the analysis of temporal movement characteristics suggest that motion termination is an extra movement component that makes control of discrete movements different to control of reciprocal movements. Implications of the findings to a noise-related interpretation of Fitts law are discussed. The study emphasizes the influence of arm biomechanics on endpoint kinematics.  相似文献   

15.
We investigated the accuracy with which, in the absence of vision, one can reach again a 2D target location that had been previously identified by a guided movement. A robotic arm guided the participants hand to a target (locating motion) and away from it (homing motion). Then, the participant pointed freely toward the remembered target position. Two experiments manipulated separately the kinematics of the locating and homing motions. Some robot motions followed a straight path with the bell-shaped velocity profile that is typical of natural movements. Other motions followed curved paths, or had strong acceleration and deceleration peaks. Current motor theories of perception suggest that pointing should be more accurate when the homing and locating motion mimics natural movements. This expectation was not borne out by the results, because amplitude and direction errors were almost independent of the kinematics of the locating and homing phases. In both experiments, participants tended to overshoot the target positions along the lateral directions. In addition, pointing movements towards oblique targets were attracted by the closest diagonal (oblique effect). This error pattern was robust not only with respect to the manner in which participants located the target position (perceptual equivalence), but also with respect to the manner in which they executed the pointing movements (motor equivalence). Because of the similarity of the results with those of previous studies on visual pointing, it is argued that the observed error pattern is basically determined by the idiosyncratic properties of the mechanisms whereby space is represented internally.  相似文献   

16.
Converging lines of evidence suggest that the presence of non-target landmarks affects the performance of delayed target-directed movements (e.g., Diedrichsen et al. 2004; Sheth and Shimojo 2004). In the present experiment, we examined the effects of non-target landmarks on the accuracy and precision of delayed and immediate target-directed pointing movements. In our experiment, the landmarks were present just prior to and during the presentation of the target; they were never present during the execution of the movement. Absolute errors were significantly reduced when the landmarks were available during target presentation for both delayed and immediate action conditions. In contrast, the presence of landmarks improved the precision of delayed but not immediate movements (as indexed by the variable error). The locus of this “landmark benefit” appears to be in the encoding of target position since landmarks were never available after target offset. We suggest that, when available, information provided by landmarks is used to improve the accuracy of the estimation of target location. Since the targets were presented for only 100 ms, it is apparent that the spatial information available from landmarks can be quite rapidly used to estimate target position. Further, with respect to the precision of movements, we suggest that the presence of landmarks serves to improve the stability of the estimation of target position. This particular reliance on landmark information becomes more critical as the movement is delayed.  相似文献   

17.
 We attempt to determine the egocentric reference frame used in directing saccades to remembered targets when landmark-based (exocentric) cues are not available. Specifically, we tested whether memory-guided saccades rely on a retina-centered frame, which must account for eye movements that intervene during the memory period (thereby accumulating error) or on a head-centered representation that requires knowledge of the position of the eyes in the head. We also examined the role of an exocentric reference frame in saccadic targeting since it would not need to account for intervening movements. We measured the precision of eye movements made by human observers to target locations held in memory for a few seconds. A variable number of saccades intervened between the visual presentation of a target and a later eye movement to its remembered location. A visual landmark that allowed for exocentric encoding of the memory target appeared in half the trials. Variable error increased slightly with a greater number of intervening saccades. The landmark aided targeting precision, but did not eliminate the increase in variable error with additional intervening saccades. We interpret these results as evidence for a representation that relies on knowledge of eye position with respect to the head and not one that relies solely on updating in a retina-centered frame. Our results allow us to set an upper bound on the standard deviation of an eye position signal available to the saccadic system during short memory periods at 1.4° for saccades of about 10°. Received: 7 February 1995 / Accepted: 4 October 1996  相似文献   

18.
Healthy humans performed arm movements in a horizontal plane, from an initial position toward remembered targets, while the movement and the targets were projected on a vertical computer monitor. We analyzed the mean error of movement endpoints and we observed two distinct systematic error patterns. The first pattern resulted in the clustering of movement endpoints toward the diagonals of the four quadrants of an imaginary circular area encompassing all target locations (oblique effect). The second pattern resulted in a tendency of movement endpoints to be closer to the body or equivalently lower than the actual target positions on the computer monitor (y-effect). Both these patterns of systematic error increased in magnitude when a time delay was imposed between target presentation and initiation of movement. In addition, the presence of a stable visual cue in the vicinity of some targets imposed a novel pattern of systematic errors, including minimal errors near the cue and a tendency for other movement endpoints within the cue quadrant to err away from the cue location. A pattern of systematic errors similar to the oblique effect has already been reported in the literature and is attributed to the subject's conceptual categorization of space. Given the properties of the errors in the present work, we discuss the possibility that such conceptual effects could be reflected in a broad variety of visuomotor tasks. Our results also provide insight into the problem of reference frames used in the execution of these aiming movements. Thus, the oblique effect could reflect a hand-centered reference frame while the y-effect could reflect a body or eye-centered reference frame. The presence of the stable visual cue may impose an additional cue-centered (allocentric) reference frame. Electronic Publication  相似文献   

19.
We tested between two coding mechanisms that the brain may use to retain distance information about a target for a reaching movement across vergence eye movements. If the brain was to encode a retinal disparity representation (retinal model), i.e., target depth relative to the plane of fixation, each vergence eye movement would require an active update of this representation to preserve depth constancy. Alternatively, if the brain was to store an egocentric distance representation of the target by integrating retinal disparity and vergence signals at the moment of target presentation, this representation should remain stable across subsequent vergence shifts (nonretinal model). We tested between these schemes by measuring errors of human reaching movements (n = 14 subjects) to remembered targets, briefly presented before a vergence eye movement. For comparison, we also tested their directional accuracy across version eye movements. With intervening vergence shifts, the memory-guided reaches showed an error pattern that was based on the new eye position and on the depth of the remembered target relative to that position. This suggests that target depth is recomputed after the gaze shift, supporting the retinal model. Our results also confirm earlier literature showing retinal updating of target direction. Furthermore, regression analyses revealed updating gains close to one for both target depth and direction, suggesting that the errors arise after the updating stage during the subsequent reference frame transformations that are involved in reaching.  相似文献   

20.
Saccadic eye movements made to remembered locations in the dark show a distinct up-shift in macaque monkey, and slight upward bias in humans (Gnadt et al. 1991). This upward bias created in the visual spatial mapping of a saccade may be translated downstream in a hand/touch movement. This error could possibly reveal (a) information about the frames of reference used in each scenario and (b) the sources of this error within the brain. This would suggest an early planning stage if they are shared, or a later stage if the errors are distinct. Methods: Eight human subjects performed touch responses to a touch screen monitor to both visual and remembered target locations. The subjects used a high-resolution touch-screen monitor, a bite bar and chin-rest for restricting head movements during responses. All target locations were 20° vectors from the central starting position in horizontal, vertical and oblique planes of motion. Results: Subjects were accurate to both visual and remembered target locations with little variance. Subject means showed no significant differences between control and memory trials; however, a distinct asymmetry was observed between cardinal and oblique planes during memory trials. Subjects consistently made errors to oblique locations during touches made to the remembered location that was not evident in control conditions. This error pattern revealed a strong hypermetric tendency for oblique planes of touches made to a remembered location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号