首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The origin recognition complex (ORC) is an essential component of the prereplication complex (pre-RC) in mitotic cell cycles. The role of ORC as a foundation to assemble the pre-RC is conserved from yeast to human. Furthermore, in metazoans ORC plays a key role in determining the timing of replication initiation and origin usage. In this report we have produced and analyzed a Drosophila orc1 allele to investigate the roles of ORC1 in three different modes of DNA replication during development. As expected, ORC1 is essential for mitotic replication and proliferation in brains and imaginal discs, as well as for gene amplification in ovarian follicle cells. Surprisingly, however, ORC1 is not required for endoreplication. Decreased cell number in orc1 mutant salivary glands is consistent with the idea that undetectable levels of maternal ORC1 during embryogenesis fail to support further proliferation. Nevertheless, these cells begin endoreplicating normally and reach a final ploidy of >1000C in the absence of zygotic synthesis of ORC1. The dispensability of ORC is further supported by an examination of other ORC members, whereas Double-parked protein/Cdt1 and minichromosome maintenance proteins are apparently essential for endoreplication, implying that some aspects of initiation are shared among the three modes of DNA replication. This study provides insight into the physiologic roles of ORC during metazoan development and proposes that DNA replication initiation is governed differently in mitotic and endocycles.  相似文献   

2.
The origin recognition complex (ORC) is a 6-subunit complex required for the initiation of DNA replication in eukaryotic organisms. ORC is also involved in other cell functions. The smallest Drosophila ORC subunit, Orc6, is important for both DNA replication and cytokinesis. To study the role of Orc6 in vivo, the orc6 gene was deleted by imprecise excision of P element. Lethal alleles of orc6 are defective in DNA replication and also show abnormal chromosome condensation and segregation. The analysis of cells containing the orc6 deletion revealed that they arrest in both the G1 and mitotic stages of the cell cycle. Orc6 deletion can be rescued to viability by a full-length Orc6 transgene. The expression of mutant transgenes of Orc6 with deleted or mutated C-terminal domain results in a release of mutant cells from G1 arrest and restoration of DNA replication, indicating that the DNA replication function of Orc6 is associated with its N-terminal domain. However, these mutant cells accumulate at mitosis, suggesting that the C-terminal domain of Orc6 is important for the passage through the M phase. In a cross-species complementation experiment, the expression of human Orc6 in Drosophila Orc6 mutant cells rescued DNA replication, suggesting that this function of the protein is conserved among metazoans.  相似文献   

3.
Peroxisomes in wild-type and rosy mutant Drosophila melanogaster.   总被引:1,自引:1,他引:1  
This study shows that peroxisomes are abundant in the Malpighian tubule and gut of wild-type Oregon R Drosophila melanogaster and that the peroxisomal population of the rosy-506 eye-color mutant differs from that of the wild type. Catalase activity in wild-type flies is demonstrable in bodies of appearance and centrifugal behavior comparable to the peroxisomes of vertebrate tissues. Xanthine oxidase (xanthine:oxygen oxidoreductase, EC 1.1.3.22) activity of the Malpighian tubule of wild-type flies is demonstrable cytochemically in bodies like those containing catalase. The rosy-506 mutant flies, with a deletion in the structural gene for xanthine dehydrogenase (xanthine:NAD+ oxidoreductase, EC 1.1.1.204), lack cytochemically demonstrable peroxisomal xanthine oxidase activity. In addition, peroxisomes in the rosy-506 mutants show less intense cytochemical staining for catalase than those in wild-type flies, and biochemical assays indicate that catalase in the rosy mutant is much more accessible to substrate in the absence of detergent than in the wild type. Thus, the rosy-506 mutation appears to affect peroxisomes and may mimic aspects of the defects of peroxisomes in some human metabolic disorders.  相似文献   

4.
Juvenile hormone (JH) is a major regulator of insect development and reproduction and its titer is determined largely by central nervous system regulation of JH synthesis by the corpora allata. To establish the basis for a molecular genetic dissection of the neuroendocrine system responsible for modulating JH titer, a radiochemical assay was utilized to examine JH synthesis in vitro by the isolated corpus allatum as well as the regulation of this synthesis by brain extracts of wild-type and apterous mutant Drosophila melanogaster females during reproductive maturation. JH production by glands of wild-type females increases in parallel with the progress of ovarian maturation, the major product of the adult corpus allatum being juvenile hormone 3 bis-epoxide (JHB3). Gland activity appears to be regulated by both the availability of JH precursors and the level of terminal oxidase(s) in the JH biosynthetic pathway. The brain contains an allatostatic factor, that is transmitted to the glands via nervous connections. Allatostatin production in the brain appears to be positively regulated by JHB3. Adult corpora allata from the mutants ap4 and ap56f synthesize very low levels of JH; additionally, brains of ap56f homozygotes lack allatostatic activity.  相似文献   

5.
In eukaryotes, the initiation of DNA replication requires the interaction between origin sequences and the origin recognition complex (ORC), which is highly conserved. In this report, atomic force microscopy (AFM) was used to examine the binding of Schizosaccharomyces pombe (sp) ORC and the spOrc4 protein with the sp autonomously replicating sequence 1 (ars1). AFM imaging revealed that spORC binding to ars1 occurred solely through spOrc4p and depended on the N-terminal AT-hook domains present in spOrc4p. At high molar ratios of spORC (or spOrc4p alone) to DNA (6:1), all of the input ars1 was bound in a one protein complex to one plasmid manner. Restriction digestion and AFM analysis of protein-DNA fragments revealed the presence of two binding sites in ars1. One site mapped to a region centered at nucleotide 838 of ars1 previously detected by DNase I protection that was reported to be essential for the autonomously replicating sequence activity of ars1. The second site mapped to a previously uncharacterized region centered at nucleotide 1148. AFM showed that the length of the DNA fragment complexed with either spORC or spOrc4p was shortened by approximately 140 bp, suggesting the wrapping of two turns of the DNA around the spOrc4p alone as well as the spOrc4p in spORC. We also show that treatment of the spORC (spOrc4p)-ars1 complex with topoisomerase I induced a negative shift in the topoisomer distribution. These findings suggest that the binding of spORC to origin DNA alters the structure of the DNA. Thus, in the case of spORC, due to its unusual spOrc4p, at least two factors are likely to influence ars1 activation. These include the selective binding of the complex to A- and T-rich regions and the alteration of the DNA structure due to its wrapping around spOrc4p.  相似文献   

6.
The origin recognition complex (ORC), first identified in Saccharomyces cerevisiae (sc), is a six-subunit protein complex that binds to DNA origins. Here, we report the identification and cloning of cDNAs encoding the six subunits of the ORC of Schizosaccharomyces pombe (sp). Sequence analyses revealed that spOrc1, 2, and 5 subunits are highly conserved compared with their counterparts from S. cerevisiae, Xenopus, Drosophila, and human. In contrast, both spOrc3 and spOrc6 subunits are poorly conserved. As reported by Chuang and Kelly [(1999) Proc. Natl. Acad. Sci. USA 96, 2656-2661], the C-terminal region of spOrc4 is also conserved whereas the N terminus uniquely contains repeats of a sequence that binds strongly to AT-rich DNA regions. Consistent with this, extraction of S. pombe chromatin with 1 M NaCl, or after DNase I treatment, yielded the six-subunit ORC, whereas extraction with 0.3 M resulted in five-subunit ORC lacking spOrc4p. The spORC can be reconstituted in vitro with all six recombinant subunits expressed in the rabbit reticulocyte system. The association of spOrc4p with the other subunits required the removal of DNA from reaction mixture by DNase I. This suggests that a strong interaction between spOrc4p and DNA can prevent the isolation of the six-subunit ORC. The unique DNA-binding properties of the spORC may contribute to our understanding of the sequence-specific recognition required for the initiation of DNA replication in S. pombe.  相似文献   

7.
Oxidative stress is implicated as a major cause of aging and age-related diseases, such as Parkinson's and Alzheimer's, as well as ischemia-reperfusion injury in stroke. The mitochondrial electron transport chain is the principal source of reactive oxygen species within cells. Despite considerable medical interest, the molecular mechanisms that regulate reactive oxygen species formation within the mitochondrion remain poorly understood. Here, we report the isolation and characterization of a Drosophila mutant with a defect in subunit b of succinate dehydrogenase (SDH; mitochondrial complex II). The sdhB mutant is hypersensitive to oxygen and displays hallmarks of a progeroid syndrome, including early-onset mortality and age-related behavioral decay. Pathological analysis of the flight muscle, which is amongst the most highly energetic tissues in the animal kingdom, reveals structural abnormalities in the mitochondria. Biochemical analysis shows that, in the mutant, there is a complex II-specific respiratory defect and impaired complex II-mediated electron transport, although the other respiratory complexes remain functionally intact. The complex II defect is associated with an increased level of mitochondrial hydrogen peroxide production, suggesting a possible mechanism for the observed sensitivity to elevated oxygen concentration and the decreased lifespan of the mutant fly.  相似文献   

8.
9.
10.
The origin recognition complex (ORC) is conserved in all eukaryotes. The six proteins of the Saccharomyces cerevisiae ORC that form a stable complex bind to origins of DNA replication and recruit prereplicative complex (pre-RC) proteins, one of which is Cdc6. To further understand the function of ORC we recently determined by single-particle reconstruction of electron micrographs a low-resolution, 3D structure of S. cerevisiae ORC and the ORC–Cdc6 complex. In this article, the spatial arrangement of the ORC subunits within the ORC structure is described. In one approach, a maltose binding protein (MBP) was systematically fused to the N or the C termini of the five largest ORC subunits, one subunit at a time, generating 10 MBP-fused ORCs, and the MBP density was localized in the averaged, 2D EM images of the MBP-fused ORC particles. Determining the Orc1–5 structure and comparing it with the native ORC structure localized the Orc6 subunit near Orc2 and Orc3. Finally, subunit–subunit interactions were determined by immunoprecipitation of ORC subunits synthesized in vitro. Based on the derived ORC architecture and existing structures of archaeal Orc1–DNA structures, we propose a model for ORC and suggest how ORC interacts with origin DNA and Cdc6. The studies provide a basis for understanding the overall structure of the pre-RC.  相似文献   

11.
Fifty nine candidate olfactory receptor (Or) genes have recently been identified in Drosophila melanogaster, one of which is Or43a. In wild-type flies, Or43a is expressed at the distal edge of the third antennal segment in about 15 Or neurons. To identify ligands for the receptor we used the Gal4/UAS system to misexpress Or43a in the third antennal segment. Or43a mRNA expression in the antenna of transformed and wild-type flies was visualized by in situ hybridization with a digoxigenin-labeled probe. Electroantennogram recordings from transformed and wild-type flies were used to identify cyclohexanol, cyclohexanone, benzaldehyde, and benzyl alcohol as ligands for the Or43a. This in vivo analysis reveals functional properties of one member of the recently isolated Or family in Drosophila and will provide further insight into our understanding of olfactory coding.  相似文献   

12.
13.
Apparent molecular weights of wild-type and nti ('increased nuclear transfer') mutant glucocorticoid receptors were obtained from Stokes radii and sedimentation coefficients. At low salt concentrations molecular forms of Mr 328,000 and 298,000 of the wild-type and mutant, respectively, were predominant. Increasing ionic strength resulted in receptor dissociation. Dissociated forms of Mr 130,000 and 63,000 of the wild-type and mutant, respectively, were obtained at 300 mM KCl and above. Some metal oxi-anions prevented dissociation. Receptor activation to allow DNA binding produced the dissociated forms which could be separated from non-activated receptors by filtration through DNA-cellulose or by DEAE-cellulose chromatography. Non-activated wild-type and nti receptors eluted from DEAE-cellulose under identical conditions while activated wild-type and nti receptors eluted differently. Partially proteolyzed wild-type receptors behaved identically to nti receptors. We conclude that the large forms of wild-type and nti receptors are heteromeric and contain only one hormone-building polypeptide per complex.  相似文献   

14.
The origin recognition complex (ORC) binds origins of replication and directs the assembly of a higher order protein complex at these sites. ORC binds and hydrolyzes ATP in vitro. ATP binding to the largest subunit of ORC, Orc1p, stimulates specific binding to origin DNA; however, the function of ATP hydrolysis by ORC is unknown. To address the role of ATP hydrolysis, we have generated mutants within Orc1p that are dominant lethal. At physiological ATP concentrations, these mutants are defective for ATP hydrolysis but not ATP binding in the absence of DNA. These mutants inhibit formation of the prereplicative complex when overexpressed. The dominant lethal phenotype of these mutant ORC complexes is suppressed by simultaneous overexpression of wild-type, but not mutant, Cdc6p. Our findings suggest that these hydrolysis-defective mutants inhibit growth by titrating Cdc6p away from the origin. Based on these observations, we propose that Cdc6p specifically recognizes the ATP-bound state of Orc1p and that ATP hydrolysis is coupled to preRC disassembly.  相似文献   

15.
In all eukaryotic cells, origins of DNA replication are characterized by the binding of the origin recognition complex (ORC). How ORC is positioned to sites where replication initiates is unknown, because metazoan ORC binds DNA without apparent sequence specificity. Thus, additional factors might be involved in ORC positioning. Our experiments indicate that a family member of the high-mobility group proteins, HMGA1a, can specifically target ORC to DNA. Coimmunoprecipitations and imaging studies demonstrate that HMGA1a interacts with different ORC subunits in vitro and in vivo. This interaction occurs mainly in AT-rich heterochromatic regions to which HMGA1a localizes. Fusion proteins of HMGA1a and the DNA-binding domain of the viral factor EBNA1 or the prokaryotic tetracycline repressor, TetR, can recruit ORC to cognate operator sites forming functional origins of DNA replication. When HMGA1a is targeted to plasmid DNA, the prereplicative complex is assembled during G(1) and the amount of ORC correlates with the local concentration of HMGA1a. Nascent-strand abundance assays demonstrate that DNA replication initiates at or near HMGA1a-rich sites. Our experiments indicate that chromatin proteins can target ORC to DNA, suggesting they might specify origins of DNA replication in metazoan cells.  相似文献   

16.
The eukaryotic six-subunit origin recognition complex (ORC) governs the initiation site of DNA replication and formation of the prereplication complex. In this report we describe the isolation of the wild-type Homo sapiens (Hs)ORC and variants containing a Walker A motif mutation in the Orc1, Orc4, or Orc5 subunit using the baculovirus-expression system. Coexpression of all six HsORC subunits yielded a stable complex containing HsOrc subunits 1-5 (HsORC1-5) with virtually no Orc6 protein (Orc6p). We examined the ATPase, DNA-binding, and replication activities of these complexes. Similar to other eukaryotic ORCs, wild-type HsORC1-5 possesses ATPase activity that is stimulated only 2-fold by single-stranded DNA. HsORC1-5 with a mutated Walker A motif in Orc1p contains no ATPase activity, whereas a similar mutation of either the Orc4 or Orc5 subunit did not affect this activity. The DNA-binding activity of HsORC1-5, using lamin B2 DNA as substrate, is stimulated by ATP 3- to 5-fold. Mutations in the Walker A motif of Orc1p, Orc4p, or Orc5p reduced the binding efficiency of HsORC1-5 modestly (2- to 5-fold). Xenopus laevis ORC-depleted extracts supplemented with HsORC1-5 supported prereplication complex formation and X. laevis sperm DNA replication, whereas the complex with a mutation in the Walker A motif of the Orc1, Orc4, or Orc5 subunit did not. These studies indicate that the ATP-binding motifs of Orc1, Orc4, and Orc5 are all essential for the replication activity associated with HsORC.  相似文献   

17.
18.
Reward learning in normal and mutant Drosophila   总被引:4,自引:6,他引:4       下载免费PDF全文
Hungry fruit flies can be trained by exposing them to two chemical odorants, one paired with the opportunity to feed on 1 M sucrose. On later testing, when given a choice between odorants the flies migrate specifically toward the sucrose-paired odor. This appetitively reinforced learning by the flies is similar in strength and character to previously demonstrated negatively reinforced learning, but it differs in several properties. Both memory consolidation and memory decay proceed relatively slowly after training with sucrose reward. Consolidation of learned information into anesthesia-resistant long-term memory requires about 100 min after training with sucrose compared to about 30 min after training with electric shock. Memory in wild-type flies persists for 24 hr after training with sucrose compared to 4-6 hr after training with electric shock. Memory in amnesiac mutants appears to be similarly lengthened, from 1 hr to 6 hr, by substituting sucrose reward for shock punishment. Two other mutants, dunce and rutabaga, which were isolated because they failed to learn the shock-avoidance task, learn normally in response to sucrose reward but forget rapidly afterward. One mutant, turnip, does not learn in either paradigm. Reward and punishment can be combined in olfactory discrimination training by pairing one odor to sucrose and the other to electric shock. In this situation, the expression of learning is approximately the sum of that obtained by using either reinforcement alone. After such training, memory decays at two distinct rates, each characteristic of one type of reinforcement.  相似文献   

19.
The origin recognition complex (ORC) is a DNA replication initiator protein also known to be involved in diverse cellular functions including gene silencing, sister chromatid cohesion, telomere biology, heterochromatin localization, centromere and centrosome activity, and cytokinesis. We show that, in human cells, multiple ORC subunits associate with hetereochromatin protein 1 (HP1) α- and HP1β-containing heterochromatic foci. Fluorescent bleaching studies indicate that multiple subcomplexes of ORC exist at heterochromatin, with Orc1 stably associating with heterochromatin in G1 phase, whereas other ORC subunits have transient interactions throughout the cell-division cycle. Both Orc1 and Orc3 directly bind to HP1α, and two domains of Orc3, a coiled-coil domain and a mod-interacting region domain, can independently bind to HP1α; however, both are essential for in vivo localization of Orc3 to heterochromatic foci. Direct binding of both Orc1 and Orc3 to HP1 suggests that, after the degradation of Orc1 at the G1/S boundary, Orc3 facilitates assembly of ORC/HP1 proteins to chromatin. Although depletion of Orc2 and Orc3 subunits by siRNA caused loss of HP1α association to heterochromatin, loss of Orc1 and Orc5 caused aberrant HP1α distribution only to pericentric heterochromatin-surrounding nucleoli. Depletion of HP1α from human cells also shows loss of Orc2 binding to heterochromatin, suggesting that ORC and HP1 proteins are mutually required for each other to bind to heterochromatin. Similar to HP1α-depleted cells, Orc2 and Orc3 siRNA-treated cells also show loss of compaction at satellite repeats, suggesting that ORC together with HP1 proteins may be involved in organizing higher-order chromatin structure and centromere function.  相似文献   

20.
K N Lee  W C Tae  K W Jackson  S H Kwon  P A McKee 《Blood》1999,94(1):164-171
During human blood clotting, alpha2-antiplasmin (alpha2AP) becomes covalently linked to fibrin when activated blood clotting factor XIII (FXIIIa) catalyzes the formation of an isopeptide bond between glutamine at position two in alpha2AP and a specific epsilon-lysyl group in each of the alpha-chains of fibrin. This causes fibrin to become resistant to plasmin-mediated lysis. We found that chemically Arg-modified alpha2AP, which lacked plasmin-inhibitory activity, competed effectively with native alpha2AP for becoming cross-linked to fibrin and as a consequence, enhanced fibrinolysis. Recombinant alpha2AP reported to date by other groups either lacked or possessed a low level of FXIIIa substrate activity. As a first step in the development of an engineered protein that might have potential as a localized fibrin-specific fibrinolytic enhancer, we expressed recombinant alpha2AP in Pichia pastoris yeast. Two forms of nonglycosylated recombinant alpha2AP were expressed, isolated and characterized: (1) wild-type, which was analogous to native alpha2AP, and (2) a mutant form, which had Ala substituted for the reactive-site Arg364. Both the wild-type and mutant forms of alpha2AP functioned as FXIIIa substrates with affinities and kinetic efficiencies comparable to those of native alpha2AP, despite each having an additional acetylated Met blocking group at their respective amino-termini. Wild-type recombinant alpha2AP displayed full plasmin inhibitory activity, while mutant alpha2AP had none. Neither the absence of glycosylation nor blockage of the amino-terminus affected plasmin-inhibitory or FXIIIa substrate activities of wild-type alpha2AP. When our mutant alpha2AP, which lacked plasmin-inhibitory function, was added to human plasma or whole blood clots, urokinase (UK)-induced clot lysis was enhanced in a dose-dependent manner, indicating that mutant alpha2AP augmented lysis by competing with native alpha2AP for FXIIIa-catalyzed incorporation into fibrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号