首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the power of studying mouse genetics and behavior advances, research tools to examine systems level connectivity in the mouse are critically needed. In this study, we compared statistical mapping of the olfactory system in adult mice using manganese-enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) with probabilistic tractography. The primary goal was to determine whether these complementary techniques can determine mouse olfactory bulb (OB) connectivity consistent with known anatomical connections. For MEMRI, 3D T1-weighted images were acquired before and after bilateral nasal administration of MnCl2 solution. Concomitantly, high-resolution diffusion-tensor images were obtained ex vivo from a second group of mice and processed with a probabilistic tractography algorithm originating in the OB. Incidence maps were created by co-registering and overlaying data from the two scan modalities. The resulting maps clearly show pathways between the OB and amygdala, piriform cortex, caudate putamen, and olfactory cortex in both the DTI and MEMRI techniques that are consistent with the known anatomical connections. These data demonstrate that MEMRI and DTI are complementary, high-resolution neuroimaging tools that can be applied to mouse genetic models of olfactory and limbic system connectivity.  相似文献   

2.
The possibility to compensate the loss of olfactory and non-olfactory functions due to removal of the olfactory bulb by embryonal brain grafts was investigated in adult rats. Spatial working memory was examined in an 8-arm radial water maze task 6 weeks after bulbectomy. During 15 daily trials, performance gradually improved in bulbectomized controls (n = 10) and in rats with olfactory bulb transplants (n = 9), but did not attain that of intact controls (n = 10). No improvement was observed in the rats with substantia nigra grafts (n = 8). Eleven weeks after bulbectomy, the same rats were tested in the water tank navigation task. The performance improved during ten 12-trial sessions in bulbectomized rats less than in intact controls, but more than in the transplanted rats. The olfactory food retrieval test performed 14 weeks after bulbectomy revealed almost full recovery of smell in bulbectomized rats, but not in the transplanted animals. It is concluded that the spatial memory deficit is probably due to bulbectomy-induced interference with septohippocampal function which is not alleviated, but rather enhanced by transplantation. The results suggest that the effect of brain grafting is not always beneficial.  相似文献   

3.
BACKGROUND: Recent studies have suggested that intranasal administration is one of the ways to target drug  delivery, and can effectively make the drug that cannot pass through the blood brain barrier by other pathways to bypass the blood brain barrier, resulting in targeted delivery to the brain. It provides a promising route for the treatment of central nervous system diseases. OBJECTIVE: To study the pharmacokinetic and brain-targeted channel-tropism tissue distribution character of cimicifugoside H-1 after nasal and intravenous administration in plasma and tissues in rats, in order to evaluate the feasibility of developing brain-targeted nasal delivery system of cimicifugoside H-1 by the passage between nose and brain in nasal olfactory area. METHODS: After intravenous injection and nasal administration of cimicifugoside H-1, the drug concentrations of plasma and channel-tropism organs (lung, spleen, stomach, large intestine, liver, kidney, brain, brain, cerebellum, cerebrospinal fluid, olfactory bulb and olfactory region) were detected. Drug-time curve was drawn. DAS program was used to select apartment model and pharmacokinetics parameters. RESULTS AND CONCLUSION: (1) The pharmacokinetics characters of cimicifugoside H-1 are rapidly absorbed and extensively distribution. Among major channel-tropism organs, drug concentrations were higher in the lung and brain than in the other organs. (2) Cimicifugoside H-1 could be straightly transported into brain by the intranasal administration. The molecule through olfactory mucosa in nasal cavity entered into olfactory bulb in arachno-hypostegal cavity, and then entered into olfactory region, cerebrospinal fluid, cerebrum and cerebellum gradually. Olfactory bulb was the only way for drug molecule to go through nasal cavity into brain. (3) Compared with the intravenous injection, cimicifugoside H-1 through the intranasal administration has a significant channel-tropism of lung and brain targeting.    相似文献   

4.
We investigated the CNS delivery of insulin-like growth factor-I (IGF-I), a 7.65 kDa protein neurotrophic factor, following intranasal administration and the possible pathways and mechanisms underlying transport from the nasal passages to the CNS. Anesthetized adult male Sprague-Dawley rats were given [125I]-IGF-I intranasally or intravenously and then killed by perfusion-fixation within 30 min. Other animals were killed following cisternal puncture and withdrawal of cerebrospinal fluid (CSF) or intranasal administration of unlabeled IGF-I or vehicle. Both gamma counting of microdissected tissue and high resolution phosphor imaging of tissue sections showed that the tissue concentrations and distribution following intranasal administration were consistent with two routes of rapid entry into the CNS: one associated with the peripheral olfactory system connecting the nasal passages with the olfactory bulbs and rostral brain regions (e.g. anterior olfactory nucleus and frontal cortex) and the other associated with the peripheral trigeminal system connecting the nasal passages with brainstem and spinal cord regions. Intranasal administration of [125I]-IGF-I also targeted the deep cervical lymph nodes, consistent with their possible role in lymphatic drainage of both the nasal passages and the CNS. Cisternal CSF did not contain [125I]-IGF-I following intranasal administration. Intravenous [125I]-IGF-I resulted in blood and peripheral tissue exposure similar to that seen following intranasal administration but CNS concentrations were significantly lower. Finally, delivery of IGF-I into the CNS activated IGF-I signaling pathways, confirming some portion of the IGF-I that reached CNS target sites was functionally intact. The results suggest intranasally delivered IGF-I can bypass the blood-brain barrier via olfactory- and trigeminal-associated extracellular pathways to rapidly elicit biological effects at multiple sites within the brain and spinal cord.  相似文献   

5.
Hu J  Wang X  Liu D  Wang Q  Zhu LQ 《Neuroscience letters》2012,506(2):180-183
Olfactory dysfunction, including structural abnormalities of the olfactory epithelium, the olfactory bulb and the central olfactory cortices is recognized as an early feature of Alzheimer disease (AD), the most prevalent neurodegenerative disease in aged population characterized by intracellular neurofibrillary tangles (NFTs). How olfactory deficits are linked with AD-like neuropathological changes is still unknown. Here, by using two anosmia animal models, bilateral olfactory bulbectomy (OBX) rats and Cnga2−/Y mice, which lack intact olfactory CNG channels, we found the immunoreactivity of phosphorylated neurofilament (NF) are highly increased in the neurites at both the hippocampus and the cortex. As hyperphosphorylated NF is one of the main components of NFTs, our study strongly suggested the underlying correlation of olfactory deficits with AD-like pathological impairments.  相似文献   

6.
In turtles (Emys orbicularls) immobilized with diplacin, unit responses to electrical stimulation of the optic nerve and olfactory bulb were recorded intracellularly. Earlier observations on the distribution of olfactory projections in cortical structures were confirmed; visual afferent impulses were spread more widely in the turtle cortex than had previously been shown. Visual afferent impulses probably reach the hippocampus via the general cortex along intracortical pathways. These are formed mainly by inhibitory afferent fibers. The response latency of hippocampal cortical neurons to stimulation of the olfactory bulb was clearly dependent on the depth of recording.  相似文献   

7.
Changes in blood pressure and heart rate following bilateral olfactory bulb ablation were investigated in unanesthetized and unrestrained rats with chronic arterial cannula implants. After bilateral olfactory bulbectomy, the rat exhibited a marked increase of emotional responses to given stimuli and a high incidence of muricide. Blood pressure and heart rate at 5 and 10 days after olfactory bulbectomy were significantly lower than in intact rats (rats before bulbectomy) and/or sham operated rats. Marked decreases in blood pressure and heart rate were seen especially in the period when the animals showed exploratory behavior after being transferred to the experimental cage from the home cage. These results suggest that olfactory bulbectomy has a great influence not only on emotionality but also on the central regulatory system of blood pressure in the rat.  相似文献   

8.
In order to clarify the influence of the olfactory system on female sexual behavior, ovariectomized rats were given sham operations (SHAM), total bilateral olfactory bulbectomy (TBULBX), partial bulbectomy (PBULBX), anterior olfactory nucleus lesions (AON) or accessory olfactory bulb lesions (AOB), and tested for lordosis behavior. Only TBULBX resulted in increased sensitivity to estradiol benzoate (EB) in that lordosis quotients (LQ) were increased and rejection behavior decreased following administration of 2, 4 or 8 μg EB/kg/day for 3 days. Only TBULBX group rats were anosmic on 2 postoperative tests. TBULBX group rats showed very mild hyperresponsiveness on an emotionality test. Effects of TBULBX on LQ are not due to general sensory hyperresponsiveness or EB-induced hyperresponsiveness since no differences in the quality of lordosis occurred, and no differences occurred in latency to paw-lift on hot plate tests with or without EB. Heightened EB sensitivity in the TBULBX group is not due to adrenal steroids since following adrenalectomy and 8 μg EB/kg treatment, TBULBX group LQ scores were still elevated relative to those of SHAM controls. The LQ scores of PBULBX group rats were intermediate to those of SHAM and TBULBX group rats. Bulbectomy-induced alterations in sensitivity to EB as measured by the LQ do not appear to be due to alterations in “arousal” mechanisms in general. While deficits in olfactory perception might exacerbate the effect, it is unlikely that anosmia per se is sufficient to induce major alterations in the degree of sexual receptivity following EB. The magnitude of behavioral effects of bulbectomy on EB sensitivity may be related, to some extent, to the amount of bulb tissue removed. It is possible that bulbectomy may enhance behavioral sensitivity to EB by disrupting biochemical responses to EB in limbic system structures which normally exert an inhibitory influence over sexual receptivity.  相似文献   

9.
Recently, nasal administration has been studied as a noninvasive route for delivery of plasmid DNA encoding therapeutic or antigenic genes. Here, we examined the brain targeting efficiency and transport pathways of intranasally administered plasmid DNA. Quantitative polymerase chain reaction (PCR) measurements of plasmid DNA in blood and brain tissues revealed that intranasally administered pCMVbeta (7.2 kb) and pN2/CMVbeta (14.1 kb) showed systemic absorption and brain distribution. Following intranasal administration, the beta-galactosidase protein encoded by these plasmids was significantly expressed in brain tissues. Kinetic studies showed that intranasally administered plasmid DNA reached the brain with a 2,595-fold higher efficiency than intravenously administered plasmid DNA did, 10 min post-dose. Over 1 h post-dose, the brain targeting efficiencies were consistently higher for intranasally administered plasmid DNA than for intravenously administered DNA. To examine how plasmid DNA enters the brain and moves to the various regions, we examined tissues from nine brain regions, at 5 and 10 min after intranasal or intravenous administration of plasmid DNA. Intravenously administered plasmid DNA displayed similar levels of plasmid DNA in the nine different regions, whereas, intranasally administered plasmid DNA exhibited different levels of distribution among the regions, with the highest plasmid DNA levels in the olfactory bulb. Moreover, plasmid DNA was mainly detected in the endothelial cells, but not in glial cells. Our results suggest that intranasally applied plasmid DNA may reach the brain through a direct route, possibly via the olfactory bulb, and that the nasal route might be an alternative method for efficiently delivering plasmid DNA to the brain.  相似文献   

10.
The aim of the present study was to assess the potential of delivering VEGF directly into the central nervous system (CNS) following intranasal administration. Adult Sprague-Dawley rats were randomized into two groups, given [(125)I]-VEGF intranasally or intravenously. VEGF was intranasally administered in both nares alternately, the single dose is 10 microl with time interval of 2 min for about 18.5 min. The intravenous (IV) group was treated with 100 microl [(125)I]-VEGF intravenously. Thirty minutes after administration, rats were killed following blood sample collections, then the brains were removed, and olfactory bulb, striatum corpora, cortex, thalamus, pons, cerebella, medulla, hippocampus, cervical cord and other tissues were collected, weighted, under auto gamma counting and autoradiography analysis. Cisternal sampling of cerebrospinal fluid (CSF) was performed in an additional group of animals. Both gamma counting and high resolution phosphor imaging of tissue sections showed that intranasal administration of [(125)I]-VEGF resulted in substantial delivery throughout the CNS. The highest CNS tissue concentration following IN delivery was found in the trigeminal nerve, followed by the optic nerve, olfactory bulbs, olfactory tubercle, striatum, medulla, frontal cortex, midbrain, pons, appendix cerebri, thalamus, hippocampus, cerebellum. Intranasal administration of [(125)I]-VEGF also targeted the deep cervical lymph nodes. CSF did not contain [(125)I]-VEGF following intranasal administration. Intravenous [(125)I]-VEGF resulted in blood and peripheral tissue exposure higher concentrations than that intranasal administration, but CNS concentrations were significantly lower. The results suggest intranasally delivered VEGF can bypass the blood-brain barrier via olfactory- and trigeminal-associated extracellular pathways to directly entry into the CNS. Intranasal administration of VEGF may provide an effective way for the treatments of CNS diseases.  相似文献   

11.
Summary A technique of cryogenic blockade was used in waking rabbits to produce complete and reversible isolation of the olfactory bulb from the rest of the brain. During cooling of the olfactory peduncle epileptiform activity occurred spontaneously in the pyriform cortex in 3 out of 20 sessions, but never in the bulb. Following removal of the cryoblockade, during the seizure state, epileptiform discharges appeared simultaneously in the bulb and pyriform cortex. In the control state, without cooling of the peduncle, epileptiform activity could be evoked in the bulb and cortex by intense electrical stimulation of either the bulb or the lateral olfactory tract. During the cryoblockade, however, intense stimulation of the bulb failed to evoke seizure-like discharges. The results demonstrate a dependency on more central olfactory structures for the induction and maintenance of epileptiform activity in the olfactory bulb.This project was supported by a grant no. HL31164 from NIH  相似文献   

12.
Mouly AM  Di Scala G 《Neuroscience》2006,137(4):1131-1141
The rodent olfactory bulb sends direct projections to the piriform cortex and to two structures intimately implicated in memory processes, the entorhinal cortex and the amygdala. The piriform cortex has monosynaptic projections with the amygdala and the piriform cortex and is therefore in a position to modulate olfactory input either directly in the piriform cortex, or via the amygdala. In order to investigate this hypothesis, field potential signals induced in anesthetized rats by electrical stimulation of the olfactory bulb or the entorhinal cortex were recorded simultaneously in the piriform cortex (anterior part and posterior part) and the amygdala (basolateral nucleus and cortical nucleus). Single-site paired-pulse stimulation was used to assess the time courses of short-term inhibition and facilitation in each recording site in response to electrical stimulation of the olfactory bulb and entorhinal cortex. Paired-pulse stimulation of the olfactory bulb induced homosynaptic inhibition for short interpulse interpulse intervals (20-30 ms) in all the recording sites, with a significantly lower degree of inhibition in the anterior piriform cortex than in the other structures. At longer intervals (40-80 ms), paired-pulse facilitation was observed in all the structures. Paired-pulse stimulation of the entorhinal cortex mainly resulted in inhibition for the shortest interval duration (20 ms) in anterior piriform cortex, posterior piriform cortex and amygdala basolateral but not cortical nucleus. Double-site paired-pulse stimulation was then applied to determine if stimulation of the entorhinal cortex can modulate responses to olfactory bulb stimulation. For short interpulse intervals (20 ms) heterosynaptic inhibition was observed in anterior piriform cortex, posterior piriform cortex and amygdala basolateral but not cortical nucleus. The level of inhibition was greater in the basolateral nucleus than in the other structures. Taken together these data suggest that the entorhinal cortex exerts a main inhibitory effect on the olfactory input via the amygdala basolateral nucleus and to a lesser extent the piriform cortex. The potential role of these effects on the processing of olfactory information is discussed.  相似文献   

13.
Neonatal mice underwent unilateral bulbectomy, which included the main and accessory olfactory bulbs. From 5 days of survival onward, there was a marked anterior displacement of the frontal cortex into the cavity previously occupied by the bulb. As a result of the bulbectomy and consequent damage to olfactory axons, the olfactory perikarya underwent retrograde degeneration. New neurons were then reconstituted from stem cells within the olfactory neuroepithelium. By 20 postoperative days the new olfactory axons had reached the level of the lamina cribrosa and by 30 days the fibers had penetrated into the telencephalon and had formed typical glomerular structures within the host tissue. Fibers were directed to either the paleo- or neocortex where they were observed in close proximity to large cortical neurons. The formation of glomeruli persisted over the course of the study (180 days) and showed an expansion within the cortical tissue up to 60 days of survival. The identification of these fibers and glomerular structures as olfactory was confirmed by immunohistochemical techniques using antisera to the specific olfactory protein. Ultrastructural observations clearly indicated the typical glomerular pattern of the structures and demonstrated synaptic contacts between the sensory terminals and dendritic processes, as yet unidentified, originating from the surrounding cerebral matrix.Our observations thus demonstrate that following bulbectomy and retrograde degeneration of olfactory neurons, the cells can regenerate in the absence of their normal target. Furthermore, the newly formed axons can penetrate a ‘foreign’ environment, the cerebral cortex, and form typical glomerular structures and corresponding sensory synapses. The findings suggest a heretofore unsuspected degree of plasticity in the olfactory system as well as in the cerebral cortex.  相似文献   

14.
The visualization of activity in mouse brain using inversion recovery spin echo (IR‐SE) manganese‐enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice‐encoding direction. Super‐resolution reconstruction (SRR) is a resolution‐enhancing post‐processing technique in which multiple low‐resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three‐dimensional resolution of IR‐SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast‐to‐noise ratio of the two‐dimensional slice stacks. Second, the contrast‐to‐noise ratio of SRR IR‐SE MEMRI was compared with a conventional three‐dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal‐to‐noise ratio of three‐dimensional GE acquisition is higher than that of SRR IR‐SE MEMRI. However, the contrast‐to‐noise ratio between different compartments can be superior with SRR IR‐SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution‐enhancing technique in IR‐SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three‐dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
An odorant's code is represented by activity in a dispersed ensemble of olfactory sensory neurons in the nose, activation of a specific combination of groups of mitral cells in the olfactory bulb and is considered to be mapped at divergent locations in the olfactory cortex. We present here an in vitro model of the mammalian olfactory system developed to gain easy access to all stations of the olfactory pathway. Mouse olfactory epithelial explants are cocultured with a brain slice that includes the olfactory bulb and olfactory cortex areas and maintains the central olfactory pathway intact and functional. Organotypicity of bulb and cortex is preserved and mitral cell axons can be traced to their target areas. Calcium imaging shows propagation of mitral cell activity to the piriform cortex. Long term coculturing with postnatal olfactory epithelial explants restores the peripheral olfactory pathway. Olfactory receptor neurons renew and progressively acquire a mature phenotype. Axons of olfactory receptor neurons grow out of the explant and rewire into the olfactory bulb. The extent of reinnervation exhibits features of a postlesion recovery. Functional imaging confirms the recovery of part of the peripheral olfactory pathway and shows that activity elicited in olfactory receptor neurons or the olfactory nerves is synaptically propagated into olfactory cortex areas. This model is the first attempt to reassemble a sensory system in culture, from the peripheral sensor to the site of cortical representation. It will increase our knowledge on how neuronal circuits in the central olfactory areas integrate sensory input and counterbalance damage.  相似文献   

16.
结合磁共振成像和脑机接口的新型在体生物电子鼻的研究   总被引:1,自引:0,他引:1  
在体生物电子鼻利用了哺乳动物的嗅觉系统,因此具有很高的灵敏度和特异性,但在嗅球中植入电极的过程中其位置主要根据经验确定,因此成功率并不理想。利用锰离子的钙离子相似性和强顺磁性,在10只大鼠单侧鼻腔中滴入锰离子并给予气味刺激,进行磁共振扫描并标记出大鼠嗅球中的对特定气味的响应区域。在该区域中植入微丝阵列电极,记录电生理信号并就行神经信号解码,实验结果表明,受到该特异性气体刺激后,嗅球神经元的电生理信号中LFP信号β波能量增强,spike信号对该气体刺激也会有响应,并且有些通道的spike发放频率变化与刺激气体的浓度有较好的线性关系。此方法对乙酸异戊酯和正丁酸的检测下限分别为0.033和0.007 2 μM。第一次利用锰离子增强磁共振辅助定位的生物电子鼻,未来在爆炸物搜索、食品安全等方面都有广阔的前景。  相似文献   

17.
Itoh K  Sakata M  Watanabe M  Aikawa Y  Fujii H 《Neuroscience》2008,154(2):732-740
Manganese-enhanced magnetic resonance imaging (MEMRI) is receiving increased interest as a valuable tool for monitoring the physiological functions in the animal brain based on the ability of manganese ions to mimic calcium ions entering to excitable cells. Here the possibility that in vivo MEMRI can detect the entry of manganese ions (Mn2+) in the brain of rats behaving without intended stimulation is tested. This hypothesis was a result of the unexpected observation that Mn2+-dependent signal enhancement was dramatically suppressed in ketamine-anesthetized rats compared with other anesthetics, such as urethane, pentobarbital and isoflurane. The effects of noncompetitive N-methyl-d-aspartate receptor (NMDAR) antagonists, ketamine and MK-801, on MEMRI for MnCl2 injected rats were examined. Treatment with MK-801 suppressed the signal enhancement more effectively than with ketamine. NMDAR agonists, glutamate (100 mg/kg) and N-methyl-d-aspartate (NMDA) (35 mg/kg), enhanced the signal intensities on MEMRI, and this signal enhancement was completely antagonized by MK-801. The systemic administration of the competitive NMDAR antagonist, D-2-amino-5-phosphono-pentanoate (D-AP5), which does not cross the blood-brain barrier (BBB), showed no effects on the signal enhancement induced by NMDA and glutamate. A selective AMPA receptor (AMPAR) antagonist, 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), did not block the signal enhancement. These data indicated that the Mn2+-dependent signal enhancement took place as a result of the activation of glutamatergic neurons through NMDAR, but not through AMPAR in the brain.  相似文献   

18.
Basic fibroblast growth factor (bFGF) is a neurotrophic and vasoactive factor, and has therapeutic potential for some central nervous system (CNS) disorders. In this study, we used the intranasal pathway to administer bFGF in adult rats, and evaluated its neuroprotective benefits and effects on endogenous neural stem cells. The bFGF levels after intranasal administration in normal rats were determined by western blot. Transient focal ischemia was achieved by occlusion of the right middle cerebral artery for 2 h. bFGF was given intranasally 2 h after reperfusion and daily thereafter on 3 successive days. Dividing progenitor cells were labeled with bromodeoxyuridine (BrdU) on day 3 of reperfusion. Rats were killed the next day after BrdU labeling. bFGF levels were significantly raised in the olfactory bulb (OB) and striatum following intranasal administration. Intranasal bFGF treatment improved neurological function and reduced infarct volume after cerebral ischemia/reperfusion, while no influence was observed on the blood pressure. And the BrdU incorporation was enhanced in the ipsilateral subventricular zone (SVZ) and striatum following intranasal administration of bFGF. These results demonstrated that bFGF can be directly delivered into brain following intranasal administration, and protects against cerebral ischemia/reperfusion. The protective effects may be attributed to the reduction of infarct volume and enhancement of endogenous progenitors in brain. Therefore, intranasal administration of bFGF may provide an alternative treatment for brain ischemia and some other CNS disorders.  相似文献   

19.
Olfactory bulb removal: influences on the aggressive behaviors of male mice   总被引:2,自引:0,他引:2  
Bilateral removal of the olfactory bulbs of castrated male mice completely prevented the arousal of aggressiveness by exogenous administration of androgen. Unilateralally bulbectomized mice showed fighting comparable to that shown by sham-operated control mice. It was concluded that earlier demonstrations of the abolition of intermale aggressive behavior in mice following olfactory bulb removal could not be attributed to impairment in pituitary-gonadal function. Although in this experiment bulbectomy completely prevented the androgenic arousal of intermale aggression, bulbectomy did not affect the display of aggressive behavior in a competition for food situation.  相似文献   

20.
Summary The sensory neurons of the olfactory epithelium, as a consequence of their odor detection function, contact both the external environment and the central nervous system. The possibility that substances applied to the epithelium might reach the central nervous system was investigated by the intranasal application of peroxidase-conjugated wheat germ agglutinin (WGA-HRP). WGA-HRP was transported through olfactory receptor axons to the glomerulus of the olfactory bulb. Reaction product was localized electron microscopically to tubulovesicular profiles and dense bodies in sensory axons. Evidence of transneuronal transport was indicated by reaction product localized in dense bodies in dendrites postsynaptic to receptor cell axons. Periglomerular, tufted and mitral cells in the olfactory bulb also were transneuronally labeled. Anterograde transneuronal labeling occured in the olfactory tubercle, piriform cortex and surrounding the lateral olfactory tract. Retrograde transneuronal label was found in neurons of the basal forebrain with the largest number of perikarya in the lateral nucleus of the horizontal limb of the diagonal band, a major source of cholinergic afferents to the olfactory bulb. These data suggest that substances, specifically those which bind to receptors, are transported from the olfactory receptor neurons in the nasal epithelium to the brain. Thus, the olfactory system may provide a route of entry for exogenous substances to the basal forebrain.Abbreviations AC anterior commissure - CC corpus callosum - CI internal capsule - CP caudate putamen - DBB diagonal band of Broca - FX fornix - GP globus pallidus - IC island of Callelae - LV lateral ventricle - MS medial septum - OC optic chiasm - PIR piriform cortex - RF rhinal fissure - SON supraoptic nucleus - SCN suprachiasmatic nucleus - SM stria medullaris - ST stria terminalis - TOL lateral olfactory tract - TUO olfactory tubercle - III third ventricle  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号