首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we demonstrate a novel protocol showing that electroporation of CD14+ monocytes directly isolated from blood with green fluorescent protein (GFP) RNA results in a 3-fold higher yield of antigen presenting dendritic cells (DCs) when compared to conventional methods employing immature DCs for electroporation. We further show a stable electroporation efficacy resulting in 60% of GFP positive cells. Expression of co-stimulatory molecules and maturation markers such as CD80, CD86, CD83 as well of the chemokine receptor 7 (CCR7) was found in 90% of the mature DCs. Importantly, production of IL-12p70 was 10 times higher in cells electroporated at the monocyte stage compared to cells electroporated at the immature DC stage. Stimulation of autologous na?ve lymphocytes by DCs electroporated at monocytes stage elicited proliferation of CD8+ T-cell with 7-fold increase in IFN-gamma release. Blocking of the MHC-Class I molecules significantly inhibited the IFN-gamma release, indicating that antigen presentation was MHC-Class I mediated. In summary, electroporation of CD14+ monocytes with RNA results in a high yield of antigen presenting DCs with high immuno-stimulatory capacity and antigen presentation on MHC-Class I molecules. This improved method may represent an attractive approach for RNA-based DC immunotherapy.  相似文献   

2.
Antigen-loaded dendritic cells (DCs) provide key regulatory signals to T cells during a developing antitumor response. In addition to providing costimulation, mature DC provides cytokine and chemokine signals that can define the T1 vs T2 nature of the antitumor T-cell response as well as whether T cells engage in direct interactions with tumor cells. In serum-free culture conditions that hasten the differentiation of monocytes into mature DCs, certain agents, such as CD40L, accelerate phenotypic maturation (e.g., CD83 and costimulatory molecule expression) without influencing the acquisition of Dc1/Dc2 characteristics. In contrast, exposure to serum-free medium and interferon-gamma (IFN-gamma) rapidly influences CD83+ DCs to secrete high levels of IL-12, IL-6, and MIP-1beta, and promotes Dcl differentiation. In contrast, CD83+ DCs matured in serum-free medium in the absence of IFN-gamma, or in the presence of calcium signaling agents, prostaglandin-E2, or IFN-alpha, produce no IL-12, scant IL-6, and prodigious IL-8, MDC, and TARC, and promote Dc2 differentiation. T cells sensitized via IL-12-secreting, peptide-pulsed DCs secrete cytokines when subsequently exposed to relevant peptide-pulsed antigen-presenting cells (APCs) or to HLA-compatible tumor cells endogenously expressing the peptide. In contrast, T cells sensitized via IL-12 nonsecreting DC were limited to antigenic reactivation through APC contact rather than tumor cell contact. Therefore, the development of antitumor responses can be dramatically influenced not only by costimulation, but also by the cytokine and chemokine production of DCs, which must be considered in the development of cancer vaccines.  相似文献   

3.
目的探讨转染自体胃癌细胞总RNA的树突状细胞(DC)体外介导抗胃癌的免疫效应。方法制备短期培养的原代胃癌细胞。用rhGM-CSF、rhIL-4和TNF-α体外诱导胃癌患者外周血单个核细胞(PBMC)中DC的发育和成熟,并转染自体肿瘤细胞总RNA,激活自体T细胞产生CTL,用CCK-8试剂盒检测CTL的杀伤活性。应用流式细胞术及混合淋巴细胞培养技术检测DC的免疫功能状态。用ELISA法测定IL-12和INF-γ的水平。结果转染自体肿瘤细胞总RNA的成熟DC,不仅可高表达MHC-I、II类分子及CD80、CD83和CD86协同刺激分子,并可获得高效刺激自体或异体T细胞增殖的能力。转染RNA的成熟DC,分泌IL-12的水平及其刺激产生的CTL培养上清液中INF-γ的水平显著高于单纯成熟DC及未成熟DC;且CTL对自体胃癌细胞的杀伤率显著高于异体组。结论转染自体胃癌细胞总RNA的成熟DC能够体外诱导产生对自体肿瘤细胞具有高度抗原特异性杀伤活性的CTL。  相似文献   

4.
目的:研究IL-24基因修饰的CIK细胞与同源树突状细胞共培养后对白血病细胞的杀伤作用及其机制.方法:从健康人外周血单个核细胞中常规诱导DC和CIK 细胞,电穿孔法将IL-24基因导入CIK细胞中(获得细胞为CIK-IL24),RT-PCR 和ELISA法检测CIK细胞中IL-24基因的表达,FCM和ELISA法检测转基因前后CIK表型及分泌细胞因子能力的变化,将CIK 细胞和同源DC共培养,FCM法检测共培养的DC-CIK细胞对HL-60细胞细胞毒活性的变化.结果:通过电穿孔法成功将IL-24基因导入CIK细胞,与对照组相比,转IL-24基因后CIK细胞中CD3~+、CD3~+CD56~+细胞的比例无明显改变,CD4~+CD25~+细胞比例显著下降.IL-24可上调CD3+CD56+细胞表面粘附分子CD54、CXCR4的表达,转染IL-24基因后CIK分泌TNF-α和IFN-γ的能力显著增强,与DC共同作用HL-60细胞时转染IL-24基因后的CIK细胞细胞毒活性明显增强.结论:通过IL-24基因修饰,明显增强了CIK细胞对HL-60细胞的杀伤能力,其机制与IL-24促进CIK分泌TNF-α、IFN-γ,上调CIK细胞表面粘附分子的表达,减少CD4~+CD25~+调节性T细胞比例等密切相关.  相似文献   

5.
Understanding the signaling that governs the immunogenicity of human dendritic cells (DCs) is a prerequisite for improving DC‐based therapeutic vaccination strategies, in which the ability of DCs to induce robust and lasting Ag‐specific CTL responses is of critical importance. Cytokine‐matured DCs are regularly used, but to induce memory‐type CTLs, they require additional activation stimuli, such as CD4+ T‐cell help or TLR activation. One common denominator of these stimuli is the activation of NF‐κB. Here, we show that human monocyte‐derived, cytokine cocktail‐matured DCs transfected with constitutively active mutants of IκB kinases (caIKKs) by mRNA electroporation, further upregulated maturation markers, and secreted enhanced amounts of cytokines, including IL‐12p70, which was produced for more than 48 h after transfection. Most importantly, cytotoxic T cells induced by caIKK‐transfected DCs combined high CD27 expression, indicating a more memory‐like phenotype, and a markedly enhanced secondary expandability with a high lytic capacity. In contrast, CTLs primed and expanded with unmodified cytokine cocktail‐matured DCs did not maintain their proliferative capacity upon repetitive stimulations. We hypothesize that “designer” DCs expressing constitutively active IκB kinases will prove highly immunogenic also in vivo and possibly emerge as a new strategy to improve the clinical efficacy of therapeutic vaccinations against cancer and other chronic diseases.  相似文献   

6.
Impaired dendritic cell differentiation and maturation in the absence of C3   总被引:2,自引:2,他引:0  
Human monocytes can be differentiated into immature dendritic cells (DCs) in the presence of serum and cytokines. One of the main functions of immature DCs is to capture and process antigens. Following maturation, they differentiate into antigen presenting cells. The role of complement in the differentiation process from monocytes towards immature DCs remains elusive. Here we demonstrate that complement 3 (C3) has a regulatory impact on the expression of specific DC surface molecules and DC-derived cytokine production during DC differentiation. We isolated human adherent peripheral blood mononuclear cells, which were cultured in the presence of GM-CSF plus IL-4 in medium supplemented with normal human serum or C3 deficient serum. The lack of C3 during DC differentiation negatively impacted the expression of C-type lectin receptor DC-SIGN, the antigen presenting molecules HLA-DR and CD1a, and the costimulatory molecules CD80 and CD86. Further, the spontaneous production of IL-6 and IL-12 was reduced in the absence of C3. Moreover, the maturation of immature DCs in response to LPS challenge was impaired in the absence of C3 as evidenced by reduced MHC-II, co-stimulatory molecule expression as well as modulated IL-12 and TNF-alpha production. Collectively, our results provide evidence for a novel role of C3 as a critical cofactor in human DC differentiation and maturation.  相似文献   

7.
BACKGROUND: The proteolytic activity of the house dust mite allergen Der p 1 has recently been shown to bias Th cell subset development in favour of Th2. Apart from its direct effect on T cells, it is conceivable that the proteolytic activity of Der p 1 may induce the generation of dendritic cells (DCs) that favour a Th2 response. OBJECTIVE: To study the effect of the proteolytic activity of Der p 1 on DC functions; namely cell surface phenotype, IL-12 production and ability to favour a Th2 response. METHODS: We have generated immature DCs from peripheral blood monocytes, matured them with LPS in the presence of either proteolytically active or inactive Der p 1 and compared their functions using flow cytometric analysis. RESULTS: Here we demonstrate for the first time that DCs that have been matured in the presence of proteolytically active Der p 1 produce significantly less IL-12, compared to DCs that have been matured in the presence of proteolytically inactive Der p 1. The suppression of IL-12 production was due to the cleavage of CD40 by the proteolytic activity of Der p 1, hence rendering the DCs less responsive to stimulation through the CD40L-CD40 pathway. Furthermore, we demonstrate that DCs that have been matured in the presence of proteolytically active Der p 1 induce the production of significantly less IFN-gamma and more IL-4 by CD4 T cells, compared to DCs that have been matured in the presence of proteolytically inactive Der p 1. CONCLUSIONS: Collectively, our data provide compelling evidence for the role of the proteolytic activity of Der p 1 in directing DCs to induce Th2 subset development.  相似文献   

8.
Dendritic cells (DCs), generated ex vivo from blood mononuclear cells (PBMC) or CD34(+) stem cells, are being used to develop novel immunotherapies. To establish optimal DC generation, a direct comparison of the optimal cell source, culture conditions, and maturation stimuli was performed, utilizing phenotypic and functional assays as end points. Plastic adherent monocytes from PBMC were expanded in a serum-free medium (X-Vivo 10) for 7 days using GM-CSF/IL-4; CD34(+) cells were expanded for 14 days using GM-CSF/IL-4/ Flt3L, in either X-Vivo 10 alone or with albumin or autologous plasma. Expanded DC from both cell sources were matured for 7 days with CD40L or IFN-alpha/TNF-alpha. Starting from 2 x 10(7) monocytes, the optimal expansion/maturation process yielded 1.73 +/- 0.52 x 10(6) CD86(+) DC. Optimal expansion of CD34(+) cells (83.9 +/- 25.0-fold) was achieved using X-Vivo 10 with 5% plasma, matured with CD40L, and yielded 10.68 +/- 2.72 x 10(6) CD86(+) DC from 1 x 10(6) CD34(+) cells. Mature DC from PBMC or CD34(+) cells had similar enhanced expression of MHC class II HLA-DR, CD80, CD83, and CD86 and were potent stimulators of mixed lymphocyte reactions. Prior to maturation, all groups of DC actively phagocytosed apoptotic melanoma cells (approximately 50% of HLA-DR(+)). CD34(+) DC matured with CD40L or IFN-alpha/TNF-alpha had reduced phagocytic capability (34 and 31% of HLA-DR(+) DC, respectively). Similar expansion and functional activity was found using cryopreserved DC precursors, cultured in gas permeable bags. We conclude that both cell lineages produce potent mature DC, permitting exploration of the optimal clinical strategy to trigger anti-tumor immune responses in patients with malignancies.  相似文献   

9.
That monocytes can differentiate into macrophages or dendritic cells (DCs) makes them an essential link between innate and adaptive immunity. However, little is known about how interactions with pathogens or T cells influence monocyte engagement toward DCs. We approached this point in cultures where granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-4 induced monocytes to differentiate into immature DCs. Activating monocytes with soluble CD40 ligand (CD40L) led to accelerated differentiation toward mature CD83(+) DCs with up-regulated human leukocyte antigen-DR, costimulatory molecules and CD116 (GM-CSF receptor), and down-regulation of molecules involved in antigen capture. Monocytes primed by phagocytosis of antibody-opsonized, killed Escherichia coli differentiated into DCs with an immature phenotype, whereas Zymosan priming yielded active DCs with an intermediate phenotype. Accordingly, DCs obtained from cultures with CD40L or after Zymosan priming had a decreased capacity to endocytose dextran, but only DCs cultured with CD40L had increased capacity to stimulate allogeneic T cells. DCs obtained after E. coli or Zymosan priming of monocytes produced high levels of proinflammatory tumor necrosis factor alpha and IL-6 as well as of regulatory IL-10, but they produced IL-12p70 only after secondary CD40 ligation. Thus, CD40 ligation on monocytes accelerates the maturation of DCs in the presence of GM-CSF/IL-4, whereas phagocytosis of different microorganisms does not alter and even facilitates their potential to differentiate into immature or active DCs, the maturation of which can be completed upon CD40 ligation. In vivo, such differences may correspond to DCs with different trafficking and T helper cell-stimulating capacities that could differently affect induction of adaptive immune responses to infections.  相似文献   

10.
Monocyte differentiation into dendritic cells (DCs) depends on microenvironmental conditions. In this study, the capacity of human monocytes to differentiate into mature DCs and their ability to induce an antiviral immune response was investigated in HIV-infected patients. In healthy subjects, monocytes differentiate into CD1a+ DCs in the presence of granulocyte macrophage colony-stimulating factor and interleukin (IL)-4 and matured in the presence of lipopolysaccharide. Here, we found that in 30% and 45% of HIV-infected white and African subjects, respectively, monocytes gave rise to a homogeneous CD1a* DC population. In the patients who gave rise only to the CD1a* DCs, this population spontaneously produced IL-10 but not IL-12, and induced a T helper 2-like immune response when cultured with human T cells isolated from cord blood mononuclear cells. In patients with monocytes differentiated into CD1a* DCs, a high percentage of HIV-specific CD4 T cells producing IL-4 were seen in the peripheral blood. Furthermore, differentiation of monocytes into DCs with CD1a* phenotype correlated with low CD4 T-cell counts and high viral loads in HIV-infected subjects. These results suggest that the differentiation of monocytes into CD1a* DCs may be a phenotypic marker associated with progression of the disease.  相似文献   

11.
Yanagawa Y  Onoé K 《Immunology》2006,117(4):526-535
The role of mitogen-activated protein kinase (MAPK) and nuclear factor kappaB (NF-kappaB) pathways, especially NF-kappaB-inducing kinase (NIK)-mediated alternative pathway, in CD40-mediated interleukin (IL)-6 and IL-12 productions by immature or mature dendritic cells (DCs) was investigated. Murine myeloid DCs were matured by treatment with lipopolysaccharide. CD40 ligation induced modest or vigorous cytokine productions in immature or mature DCs, respectively. After CD40 ligation, p38 MAPK was significantly activated in either immature or mature DCs. SB203580, a p38 MAPK inhibitor, markedly decreased CD40-mediated IL-6 and IL-12 productions in immature DCs. In mature DCs, SB203580 significantly decreased CD40-mediated IL-6 but not IL-12 production. On the other hand, CD40 ligation induced vigorous activation of the NF-kappaB alternative pathway including p100 phosphorylation and subsequent nuclear translocations of p52, a processed form of p100, and RelB in mature but not immature DCs. The CD40-mediated phosphorylation of p100 was completely abolished in NIK-mutated mature DCs. The NIK mutation markedly reduced CD40-mediated IL-12 but not IL-6 production by mature DCs. Taken together, we concluded that IL-6 and IL-12 productions in response to CD40 ligation were controlled by p38 MAPK and NIK mediated alternative pathway, respectively, in mature DCs.  相似文献   

12.
Dendritic cells (DCs) are the most potent professional antigen-presenting cells which can activate T cells to induce the primary immune response. For clinical studies, DCs are often differentiated in vitro from peripheral blood mononuclear cells (PBMCs) through treatment with granulocyte macrophage colony-stimulating factor (GM-CSF) and IL-4. However, IL-13, a cytokine closely related to IL-4, has also been reported to induce differentiation equally or more efficiently when used with GM-CSF. For the present study, we compared the DC characteristics exhibited by iDCs and LPS-matured DCs differentiated from PBMCs using GM-CSF and IL-4 or IL-13. Physical characteristics examined include cellular morphology and surface phenotype. Functional traits investigated include FITC-dextran uptake, IL-10 and IL-12 production, allostimulation and cytokine production by stimulated T cells and antigen-specific T cell stimulation. Compared with IL-13-derived DCs, IL-4 treatment yielded more differentiated DCs, with extensive dendrites and higher expression of DC-SIGN, DEC-205, CD86 and HLA-DR. In addition, IL-4 DCs were more efficient at inducing allogeneic T cell proliferation and immature IL-4 DCs had higher endocytic activity at low FITC-dextran concentrations (1 microg ml(-1)). Although IL-13 was capable of generating DCs from PBMCs, it was not as effective as IL-4 in generating DC phenotype and functionality. Thus, the use of GM-CSF and IL-4 is the more efficient treatment for inducing DC differentiation from PBMCs.  相似文献   

13.
Human dendritic cells (DCs) generated in culture from either monocytes or CD34+ hematopoietic progenitor cells (CD34-HPCs) have been used in cancer immunotherapy protocols with encouraging results. Yet an optimal strategy for the delivery of antigen(s) to DCs still remains to be established. Recent studies demonstrated the feasibility of mRNA transfection to load monocyte-derived DCs. It is not known, however, whether DCs derived by culturing CD34-HPC with GM-CSF and TNF-alpha for 9 days (CD34-DCs) can be efficiently transduced with mRNA. Here we show that clinical-grade CD34-DCs generated after 8 days of culture can be transfected with mRNA without significant alteration of cell viability. About 90% of cells transfected with GFP-RNA express GFP 24 h post-transfection. Remarkably, transfected CD34-DCs retain high levels of GFP expression for at least 14 days. CD34-DCs transfected with Flu-MP RNA were highly efficient in inducing the proliferation of Flu-MP-specific CD8+ T cells as measured by tetramer staining. Furthermore, the stimulated CD8+ T cells produced IFN-gamma upon antigenic stimulation and were able to kill targets pulsed with Flu-MP peptide. Both DC subsets in CD34-DCs, CD1a+-DC (Langerhans cells) and CD14+-DC (interstitial DC), were equally transfected with GFP-RNA, and yielded Flu-specific cytotoxic T cells upon transfection with Flu-MP RNA. Thus, RNA can be used to deliver antigens to two distinct myeloid DC subsets in CD34-DC cultures.  相似文献   

14.
Dendritic cells (DCs) are bone marrow-originated, professional antigen-capturing cells and APCs, which can function as vaccine carriers. Although efficient transfection of human DCs has been achieved with viral vectors, viral gene products may influence cellular functions. In contrast, nonviral methods have generally resulted in inefficient gene transfer, low levels of gene expression, and/or low cell viability. Monocyte-derived DCs are the most common source of DCs for in vitro studies and for in vivo applications. We hypothesized that reduction of the time to generate immature DCs (iDCs) might result in higher viability after transfection. Therefore, we established a protocol to generate human iDCs from CD14(+) monocytes within 3 days. These "fast" iDCs were phenotypically and functionally indistinguishable from conventional iDCs, showing high endocytic ability and low antigen-presenting capacity. Furthermore, the fast iDCs matured normally and had similar antigen-presenting capacity to conventional mature DCs. To optimize transfection of iDCs, we compared nonviral transfection of plasmid DNA and in vitro-transcribed (IVT) RNA with transfection reagents, electroporation, and nucleofection. Nucleofection of IVT RNA with the X1 program of an Amaxa Co. Nucleofector resulted in the most efficient transfection, with an average of 93% transfected iDCs, excellent long-term viability, and strong protein expression. Furthermore, the IVT RNA-transfected iDCs retained all phenotypic and functional characteristics of iDCs. This method is applicable to most purposes, including in vitro functional assays, in vivo DC immunotherapy, and DC-based vaccines.  相似文献   

15.
Dendritic cells (DCs) were derived from human peripheral blood monocytes or cord blood monocytes cultured in the presence of IL-4 and GM-CSF. Adult and cord DCs were observed to have comparable immature phenotypes. However, the increase in surface expression of HLA-DR and CD86 after addition of LPS was significantly attenuated in cord DCs, with CD25 and CD83 expression also markedly reduced. Cord DCs were also unable to produce IL-12p70, failed to down-regulate expression of the chemokine receptor CCR5 and induced lower levels of IFN-gamma production from allogeneic naive CD4+ T cells than their adult counterparts. In contrast, the kinetics of the production of TNF-alpha and IL-10 in response to LPS stimulation was comparable to adult DCs. The reduced ability of cord DCs to attain a fully mature adult phenotype, and to activate naive CD4+ T cells to produce IFN-gamma, suggests that they are intrinsically preprogrammed against the generation of Th-1 immune responses.  相似文献   

16.
Monocyte-derived dendritic cells (DC) are currently under extensive evaluation as cell vaccines for cancer treatment. The requirement for large-scale cell products demands optimized and standardized protocols. However, the yield of DCs from inoculated monocytes is reported to be always lower than 50%. In this present study we investigated whether this cell loss was caused by the properties of the starting population of inoculated monocytes. CD14 cells were enriched by immunomagnetic-bead selection and analyzed for apoptosis by an annexin V/propidium iodide assay. We found that 37.8+/-11.1% (n=8) of freshly isolated monocytes from buffy coats of healthy donors underwent programmed cell death. Further analysis of the fate of apoptotic cells during differentiation suggested phagocytosis. Monocytes were differentiated with GM-CSF and interleukin-4 into a viable, non-apoptotic population of immature dendritic cells. Addition of tumor necrosis factor-alpha and prostaglandin E2 resulted in fully matured dendritic cells, which were evaluated by phenotypic analysis and by allogeneic and MHC class-I-restricted T-cell responses. About 90.2+/-16.7% of the non-apoptotic monocyte population differentiated to viable matured dendritic cells. These results indicate that the yield of dendritic cells is mainly influenced by the percentage of apoptotic cells in the inoculum, and this has implications for DC generation in clinical applications.  相似文献   

17.
 目的:将体外扩增的黏蛋白1 (MUC1) mRNA转染入成熟的树突状细胞(DCs),观察其体外诱导的特异性抗肿瘤效应。方法:将分离提纯的单核细胞培养诱导为DC并用流式细胞术鉴定。构建pcDNA3.1(+)-MUC1质粒,体外转录为mRNA,电穿孔法转染DCs。定量 PCR检测转染的DCs中MUC1的表达;MTT法检测T细胞增殖情况;流式细胞术检测CD8+ 在T细胞的表达;LDH释放法测定细胞毒性,ELISA检测IFN-γ分泌水平。结果:流式细胞术结果表明成熟DCs标志表型的表达明显高于对照组。定量PCR结果说明转染后的DCs MUC1 mRNA相对表达量增高。转染组DCs与T细胞按1∶10共培养时,刺激增殖能力明显高于未转染组,且CD8+  T细胞表达率高于未转染组,诱导产生特异性的细胞毒性T细胞杀伤表达MUC1蛋白的靶细胞,而未转染组的杀伤作用较弱。转染组DCs与T细胞共培养的上清中IFN-γ的分泌水平高于未转染组。结论:电穿孔法可以将MUC1 mRNA成功转染至DCs,产生特异性杀伤效应,为以MUC1为靶点的非小细胞肺癌的免疫治疗提供实验和理论依据。  相似文献   

18.
Dendritic cell (DC)-based immunization represents a promising approach for the immunotherapy of cancer. The optimal conditions required to prepare DCs remain to be defined. Monocytes incubated in the presence of interferon (IFN)-beta and interleukin (IL)-3 give rise to a distinct type of DCs (IFN-beta/IL-3 DCs) that are particularly efficient at eliciting IFN-gamma and IL-5 production by allogeneic helper T cells. We assessed the capacity of this new type of DCs to prime antigen-specific naive CD8(+) T cells and compared them to the conventional DCs differentiated in the presence of granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-4 (GM-CSF/IL-4 DCs). We demonstrate that IFN-beta/IL-3 DCs matured by TLR3 or CD40 ligation efficiently prime Melan-A(26-35)-specific CD8(+) T cells in vitro, at a similar level as GM-CSF/IL-4 DCs. Activated antigen-specific CD8(+) T cells produced IFN-gamma and displayed potent cytotoxic activity against peptide-pulsed target cells. Expansion of CD8(+) T cell numbers was generally higher following priming with CD40-L than with polyinosinic-polycytidylic acid (poly I:C) matured DCs. Cytolytic activity was induced by both maturing agents. These data indicate that IFN-beta/IL-3 DCs represent a promising cell population for the immunotherapy of cancer.  相似文献   

19.
Type I interferons (IFNs) are potent regulators of both innate and adaptive immunity. All type I IFNs bind to the same heterodimeric cell surface receptor composed of IFN-alpha receptor (IFNAR-1) and IFN-alpha/beta receptor (IFNAR-2) polypeptides. This study revealed that type I IFN receptor levels vary considerably on hematopoietic cells, with monocytes and B cells expressing the highest levels. Overnight treatment of peripheral blood mononuclear cells (PBMCs) with IFN-alpha2b or IFN-beta led to increased expression on monocytes and B cells of surface markers commonly associated with activated antigen-presenting cells (APCs), such as CD38, CD86, MHC class I, and MHC class II. Five-day exposure of adherent monocytes to granulocyte-macrophage colony-stimulating factor (GM-CSF) plus IFN-alpha or IFN-beta caused the development of potent allostimulatory cells with morphology similar to that of myeloid dendritic cells (DCs) obtained from culture with GM-CSF and interleukin-4 (IL-4) but with distinct cell surface marker profiles and activity. In contrast to IL-4-derived DCs, IFN-alpha-derived DCs were CD14+, CD1a-, CD123+, CD32+, and CD38+ and expressed high levels of CD86 and MHC class II. Development of these cells was completely blocked by an antibody to IFNAR-1. Furthermore, activity of the type I IFN-derived DC in a mixed lymphocyte reaction (MLR) was consistently more potent than that of IL-4-derived DCs, especially at high responder/stimulator ratios. This MLR activity was abrogated by the addition of anti-IFNAR-1 antibody at the start of the DC culture. In contrast, there was no effect of anti-IFNAR-1 on IL-4-derived DCs, indicating that this is a distinct pathway of DC differentiation. These results suggest a potential role for anti-IFNAR-1 immunotherapy in autoimmune diseases, such as systemic lupus erythematosus (SLE), in which the action of excessive type I IFN on B cells and myeloid DCs may play a role in disease pathology.  相似文献   

20.
Perfluoroalkyl carboxylic acids (PFCA) are commercially used for their surfactant properties combined with chemical and thermal stability. Differentiation of peripheral monocytes to immature dendritic cells (DCs) in the presence of the PFCA, ammonium perfluorooctanoate (APFO, 200 μM) led to a considerably increased expression of CD86 and HLA-DR on immature DCs. However, these phenotypic changes were not reflected by an increased T cell-stimulatory capacity of the cells. Notably, activated, fully mature APFO-treated DCs secreted significantly less IL-12 and IL-10 than control cells. Thus, APFO at non-cytotoxic concentration affects the phenotype and cytokine secretion of human DCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号